
Stability of non-autonomous difference equations: simple ideas leading
to useful results

Eduardo Liz*
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We address the stability properties in a non-autonomous difference equation

xnþ1 ¼ f ðn; xn; . . . ; xn2kÞ; n $ 0;

where f is continuous, and the zero solution is assumed to be the unique equilibrium.
We focus our discussion on two techniques motivated by stability results for functional
differential equations (FDEs) that proved recently to be useful in the frame of
difference equations too. The first one involves the use of discrete inequalities and
monotonicity arguments, and it is inspired by the so-called Halanay inequality; the
second one is based on the well-known 3/2 stability results for FDEs. We give further
insight into the simple ideas that are behind these methods, prove some new results and
show applications and open problems.
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1. Introduction

Difference equations are the appropriate mathematical representation for discrete
processes, which have special importance in areas such as population dynamics and
economics (see the monographs [1,10,11,15,24,48]). Recently, the issue of global stability
has attracted special attention in the areas indicated above, and in others such as social
sciences [48], numerical analysis [3] and neural networks [42,46,56].

The simplest case is given by the first-order difference equation

xnþ1 ¼ f ðxnÞ; n $ 0;

which is widely investigated in the literature. Difference equations of order greater than
one are much less studied, and they have great importance in applications where the state
(for example, the size of a population) after n steps depends on the previous k þ 1 states
ðk $ 1Þ. We consider a general nonlinear difference equation of order k þ 1

xnþ1 ¼ f nðxn; . . . ; xn2kÞ; n $ 0; ð1:1Þ

where f n : R
kþ1 ! R is a continuous function for each integer n $ 0. Note that equation

(1.1) is in general non-autonomous. As it is well known, a solution of (1.1) with initial data
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ða0; . . . ;a2kÞ is a real sequence {xn}n$2k that satisfies equation (1.1) for n $ 0, and
xi ¼ ai for i ¼ 2k; . . . ; 0. We assume that the zero solution is the unique equilibrium, i.e.
f nðc; . . . cÞ ¼ c for some real constant c and all n [ N if and only if c ¼ 0. We note that in
many applications there is a positive equilibrium, but the model can be written in this form
after a change of variables.

The main aim of this paper is to provide a brief overview of several recent results for
the stability of the equilibrium in equation (1.1). We give further insight into the simple
ideas that are behind these methods, state new results, show some applications, discuss
some related conjectures and formulate new open problems.

We deal with two techniques that have two facts in common: first, they are inspired by
the stability results for functional differential equations (FDEs); and, second, they involve
at some extent the max functional.

Section 2 is devoted to the first method, based on the so-called Halanay-type
inequalities, while the second method is treated in Section 3; it is inspired by the famous
3/2 stability results for FDEs developed by many authors such as Myshkis, Yorke,
Yoneyama and Krisztin, among others. For more discussions and the relationship between
these two topics, see [20].

First, we recall some notations and definitions that will be used in the paper. For a
vector x ¼ ðx0; . . . ; xkÞ [ Rkþ1, we denote kxk0 ¼ max{jx0j; . . . ; jxkj}.

Definition 1.1. For equation (1.1), we understand that

. the zero solution is stable if for every 1 . 0 and n0 . 0 there exists dð1; n0Þ . 0
such that if {xn} is a solution of (1.1) with kðxn02k; . . . ; xn0Þk0 # d, then jxnj , 1 for
all n $ n0;

. the zero solution is uniformly stable if for every 1 . 0 the number d in the previous
definition may be chosen independent of n0;

. the zero solution is attracting if there exists m . 0 such that limn!1xn ¼ 0 for any
solution {xn} of (1.1) such that kðx0; . . . ; x2kÞk0 # m;

. the zero solution is uniformly asymptotically stable if it is attracting and uniformly
stable;

. the zero solution is globally attracting if limn!1xn ¼ 0, for all solutions {xn} of
(1.1);

. the zero solution is globally asymptotically stable (or simply globally stable) if it is
stable and globally attracting and

. the zero solution is globally exponentially stable if there exist constants M . 0 and
l [ ð0; 1Þ such that, for every solution {xn}n$2k of (1.1), the inequality

jxnj # Mln max
2k#i#0

jxijf g
! "

holds for all n $ 0.

We note that analogous definitions can be stated in the frame of difference equations in
a Banach space X, replacing everywhere the modulus of a real number by the norm of a
vector in X.

2. Halanay-type results

In this section, we present some sufficient conditions for the global stability of the
equilibrium often referred to as Halanay-type results. They are inspired by the elegant
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ideas developed by Halanay [19] to prove a stability result for delay differential equations
based on differential inequalities involving the max functional. As far as we know, the first
results for difference equations in this direction may be found in [4] and [41], where they
are presented in the frame of numerical approximations of FDEs. This makes the
statements of the related results (Theorem 7.1 in [4] and Theorem 3.1 in [41]) quite
complicated, and the simple ideas of Halanay are somehow hidden in the proofs.

We put a special emphasis on these ideas, showing how to generalize the known results
in different ways, including their application to the stability of difference equations in
Banach spaces. We remark that all results in this section establish sufficient conditions for
the global exponential stability.

To begin our discussion, we state a result from [34].

Theorem 2.1 [34, Theorem 2]. Assume that 0 # a , 1 and there exists a positive
constant b such that

j f nðxÞj # bkxk0; ;x [ Rkþ1 and n $ 0: ð2:1Þ

If 0 , b , 1 2 a, then there exists a constant l0 [ (0,1) such that

jxnj # max
2k#i#0

jxijf g
! "

ln0; n $ 0; ð2:2Þ

for every solution {xn} of equation

xnþ1 ¼ axn þ f nðxn; . . . ; xn2kÞ; n $ 0; ð2:3Þ

where l0 can be chosen as the unique root in the interval (0,1) of equation

l kþ1 2 al k 2 b ¼ 0: ð2:4Þ

As a consequence, the zero solution of equation (2.3) is globally exponentially stable.
Obviously, equation (1.1) can be written as (2.3) with a ¼ 0. Hence, we have the

following corollary.

Corollary 2.2. The zero solution of equation (1.1) is globally exponentially stable if
(2.1) holds for some b [ (0,1).

We note that, in this case, we can choose l0 ¼ b1=ðkþ1Þ in (2.2).

Remark 1. Theorem 3.1 in [41] is a direct consequence of Corollary 2.2.

Remark 2. Corollary 2.2 may also be proved by a simple induction argument (see [6],
Theorem 2.1), and it also applies to equation (2.3) since, under condition (2.1),

ax0 þ f nðxÞj j # ðaþ bÞkxk0; ;x ¼ ðx0; . . . ; xkÞ [ Rkþ1 and n $ 0;

with aþ b , 1. Thus, we recover Theorem 2.1 from Corollary 2.2.
It should be noted that an autonomous version of this corollary was proved by

Sedaghat in [47, Corollary 2] (see also Section 4.3 in the monograph [48] of the same
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author). Memarbashi [39,40] recently extended Sedaghat’s arguments to get similar
stability results for the non-autonomous difference equation (1.1).

We briefly discuss the relation between our approach and Sedaghat’s results in more
detail. In our opinion, the real difference is that, while Sedaghat’s result relies on a
‘contraction argument’, the Halanay-type approach is based on monotonicity arguments
for positively homogeneous operators (like the max functional).

Remark 3. An interesting approach to contraction-like criteria for studying the asymptotic
behaviour of non-autonomous difference equations can be found in the recent paper of Ey
and Pötzsche [14].

The first advantage of the Halanay-type approach for equation (2.3) is the following:
one can check that, for a . 0, the constant l0 given by Theorem 2.1 is less than
ðaþ bÞ1=ðkþ1Þ, and hence Theorem 2.1 provides a sharper decaying rate.

However, a more interesting aspect is that the same ideas used in [34] may be easily
extended to get new stability results.

We recall the definition of a monotone function. Given two Banach spaces X, Y
partially ordered by cones Xþ; Yþ, respectively, a map F : Xþ ! Yþ is monotone if
FðxÞ # FðyÞ for all x; y [ Xþ such that x # y.

The usual pointwise ordering in Rkþ1 is induced by the cone

Rkþ1
þ ¼ {ðx0; x1; . . . ; xkÞ [ Rkþ1 : xi $ 0;;i ¼ 0; 1; . . . ; k}:

If h : Rkþ1
þ ! Rþ is monotone, then the autonomous difference equation

xnþ1 ¼ hðxn; . . . ; xn2kÞ; n $ 0 ð2:5Þ

is monotone in the sense that if {xn}; {yn} are two solutions of (2.5) such that
ðx0; . . . ; x2kÞ # ðy0; . . . ; y2kÞ, then xn # yn for all n $ 0.

Associated to (2.5), we can define a map Th : R
kþ1
þ ! Rkþ1

þ by

Thðx0; . . . ; xkÞ ¼ ðhðx0; . . . ; xkÞ; x1; . . . ; xk21Þ: ð2:6Þ

It is clear that equation (2.5) is monotone if and only if Th is monotone. This fact
allows us to employ some abstract results for monotone operators in cones due to Krause
[25], and Kloeden and Rubinov [23].

The proof of Theorem 2.1 is based on a comparison result (Theorem 1 in [34]), which
is demonstrated using two basic facts:

(1) The difference equation

xnþ1 ¼ axn þ bmax{xn; . . . ; xn2k}; n $ 0

is monotone with respect to the usual pointwise ordering in Rkþ1 if a; b $ 0.
(2) Equation (2.4) has a unique real root l0 [ ð0; 1Þ since b . 0, aþ b , 1.

In order to generalize Theorem 2.1, we state a new comparison result that is proved
following the same arguments mentioned above in a more general setting.

We recall that a map h : Rkþ1
þ ! Rþ is positively homogeneous if hðlxÞ ¼ lhðxÞ for all

l $ 0 and x [ Rkþ1
þ :
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Theorem 2.3. Assume that h : Rkþ1
þ ! Rþ is continuous, monotone and positively

homogeneous. Let the following properties hold:

(1) h(1,1, . . . ,1) , 1
(2) Either hð0; 0; . . . ; 0; 1Þ . 0 or lim

l!0þ
hð1; l21; . . . ; l2kÞ . 0.

If {xn}n$2k is a sequence of non-negative real numbers satisfying the inequality

xnþ1 # hðxn; xn21; . . . ; xn2kÞ; n $ 0; ð2:7Þ

then there exists a constant l0 [ ð0; 1Þ such that

xn # max x0; x21; . . . x2kf gln0; n $ 0:

Moreover, l0 can be chosen as the unique root in the interval (0,1) of equation

l kþ1 ¼ hðl k; l k21; . . . ; l; 1Þ: ð2:8Þ

Proof. Let {yn} be a solution of the difference equation

ynþ1 ¼ hðyn; yn21; . . . ; yn2kÞ; n $ 0: ð2:9Þ

Since h is monotone, it is easy to prove by induction that if {xn} satisfies the inequality
(2.7) and xn # yn for n ¼ 2k; . . . ; 0, then xn # yn for all n $ 0.

Since h is positively homogeneous, for K . 0 and l . 0, the sequence {yn} defined by
yn ¼ Kln is a solution of equation (2.9) if and only if l is a solution of (2.8).

Assume first that hð0; 0; . . . ; 0; 1Þ . 0. Define FðlÞ ¼ l kþ1 2 hðl k; l k21; . . . ; l; 1Þ. F
is continuous on ½0; 1&, Fð0Þ ¼ 2hð0; 0; . . . ; 0; 1Þ , 0, and Fð1Þ ¼ 12 hð1; 1; . . . ; 1Þ . 0.
Hence, there exists l0 [ ð0; 1Þ such thatFðl0Þ ¼ 0.Moreover, an application of Theorem 4
in [25] proves that l0 is the unique non-negative solution of (2.8).

Thus, {yn} ¼ {Kln0} is a solution of (2.9) for every K . 0. Choosing
K ¼ max{x0; x21; . . . x2k}, it is clear that yn $ xn for all n ¼ 2k; . . . ; 0. Hence, using
the first part of the proof, we can conclude that xn # yn ¼ Kln0 for all n $ 0.

If hð0; 0; . . . ; 0; 1Þ ¼ 0 but lim
l!0þ

hð1; l21; . . . ; l2kÞ . 0, then the same arguments

work, taking into account that, for l . 0, the equation (2.8) is equivalent to

l ¼ hð1; l21; . . . ; l2kÞ: ð2:10Þ

In this case, the uniqueness of l0 follows from the application of [23, Corollary 3.1] to
the operator Th : R

kþ1
þ ! Rkþ1

þ defined by (2.6). A

Remark 4. The original Halanay-type result given in [34, Theorem 1] is a particular case of
Theorem 2.3, with

hðx0; . . . ; xkÞ ¼ ð12 aÞx0 þ bmax{x0; . . . ; xk}: ð2:11Þ

It is clear that h is continuous, monotone and positively homogeneous if b . 0 and a # 1.
Conditions (a) and (b) hold when 0 , b , a. For a ¼ 1 in (2.11), the same result was
previously proved by Stević [49], and was applied to investigate the asymptotic behaviour
of the solutions in an ecological model.
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We also derive from Theorem 2.3 some recent results that employ different
functionals. For example, taking hðx0; . . . ; xkÞ ¼ ð12 pÞx0 þ

Qr
i¼0 bix

ai

hi
, where p;ai;bi

are positive real numbers, 0 ¼ h0 , h1 , · · · , hr ¼ k,
Pr

i¼0 ai ¼ 1,
Qr

i¼0 bi , p # 1,
we get Theorem 2.2 in [53]. Note that in this case hð0; 0; . . . ; 0; 1Þ ¼ 0, but lim

l!0þ
h

ð1; l21; . . . ; l2kÞ ¼ þ1:
Other straightforward consequences of Theorem 2.3 are Theorem 2.2 in [2], Theorem

16 in [3] and Theorem 2.1 in [53].
Once, one has the comparison result for inequality (2.7), it is easy to prove a global

stability result for non-autonomous difference equations, when the nonlinear part is
dominated in some sense for the monotone positively homogeneous function h. For it, we
use the variation of constants formula for (2.3)

xn ¼ anx0 þ
Xn21

i¼0

an2i21f iðxi; . . . ; xi2kÞ; n $ 0; ð2:12Þ

together with an idea taken from Halanay’s book [19]; see the proof of [34, Theorem 2],
where hðx0; . . . ; xkÞ ¼ max{x0; . . . ; xk}. Following the same arguments, but considering a
general h in the conditions of Theorem 2.3, we get the following generalization of
Theorem 2.1.

Theorem 2.4. Assume that 0 # a , 1 and there exists a continuous, monotone and
positively homogeneous function h : Rkþ1

þ ! Rþ such that

j f nðx0; . . . ; xkÞj # hðjx0j; . . . ; jxkjÞ;;ðx0; . . . ; xkÞ [ Rkþ1 and n $ 0: ð2:13Þ

If hð1; 1; . . . ; 1Þ , 12 a, and either hð0; 0; . . . ; 0; 1Þ . 0 or lim
l!0þ

hð1; l21; . . . ;
l2kÞ . 2a, then equation (2.3) is globally exponentially stable. More precisely, there
exists a constant l0 [ ð0; 1Þ such that (2.2) holds for every solution {xn} of (2.3), where l0
can be chosen as the unique root in the interval ð0; 1Þ of equation

l kþ1 2 al k ¼ hðl k; l k21; . . . ; l; 1Þ: ð2:14Þ

When a ¼ 0, this result is easily generalized to non-autonomous difference equations
in Banach spaces. Let X be a Banach space and consider the difference equation

xnþ1 ¼ f nðxn; . . . ; xn2kÞ; n $ 0; ð2:15Þ

with initial conditions x2k; . . . ; x0 [ X, where f n : X
kþ1 ! X is continuous for every

n $ 0.

Theorem 2.5. Assume that there exists a function h : Rkþ1
þ ! Rþ in the conditions of

Theorem 2 such that

kf nðx0; . . . ; xkÞk # hðkx0k; . . . ; kxkkÞ;;ðx0; . . . ; xkÞ [ X kþ1 and n $ 0: ð2:16Þ

Then, equation (2.15) is globally exponentially stable.

E. Liz208

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
L
i
z
,
 
E
d
u
a
r
d
o
]
 
A
t
:
 
0
8
:
0
8
 
1
8
 
M
a
r
c
h
 
2
0
1
1



Proof. Let {xn} be a solution of equation (2.15). Using (2.16), we obtain

kxnþ1k ¼ kf nðxn; . . . ; xn2kÞk # hðkxnk; . . . ; kxn2kkÞ; n $ 0:

Denote vn ¼ kxnk for n ¼ 2r; . . . ; 0; and vnþ1 ¼ hðkxnk; . . . ; kxn2kkÞ for n $ 0. Since
kxnk # vn for all n $ 2k, and h is monotone, we have

vnþ1 ¼ hðkxnk; . . . ; kxn2kkÞ # hðvn; . . . ; vn2kÞ; n . 0:

Theorem 2.3 ensures that

kxnk # vn # max v0; . . . v2kf gln0 ¼ max kx0k; . . . kx2kkf gln0; n $ 0:

Moreover, l0 can be chosen as the unique root in the interval ð0; 1Þ of equation (2.8). A

Remark 5. In the particular case when hðx0; . . . ; xkÞ ¼ a
Qk

i¼0 x
pi
i , where a . 0, pi $ 0 for

i ¼ 0; 1; . . . ; k, and
Pk

i¼0 pi ¼ 1, Theorem 2.3 states that equation (2.15) is globally
exponentially stable if a , 1 and

kf nðx0; . . . ; xkÞk # a
Yk

i¼0

kxikpi ;;ðx0; . . . ; xkÞ [ X kþ1 and n $ 0:

This result improves Theorem 3.1 (ii) in [5], where only the asymptotic stability is proved
under the same conditions.

Theorem 2.5 allows us to get results of global exponential stability for systems of
difference equations too.

As an example, let us consider a linear system of non-autonomous difference equations
in Rm

unþ1 ¼
Xk

i¼0

AiðnÞun2k; n $ 0; ð2:17Þ

where un [ Rm and AiðnÞ [ Rm£m, for all n $ 0. We consider a norm in Rm£m consistent
with a vector norm in Rm. The following result follows easily from Theorem 2.5.

Corollary 2.6. Assume that

sup
n$0

Xk

i¼0

kAiðnÞk ¼ a , 1:

Then, system (2.17) is globally exponentially stable.

Proof. Let us denote f nðu0; . . . ; ukÞ ¼
Pk

i¼0 AiðnÞuk, and take hðx0; . . . ; xkÞ ¼ amax
{x0; . . . ; xk}. Then, (2.17) takes the form (2.15), and

kf nðu0; . . . ; ukÞk ¼
Xk

i¼0

AiðnÞuk
#####

##### # amax{ku0k; . . . ; kukk} ¼ hðku0k; . . . ; kukkÞ;

for all ðu0; . . . ; ukÞ [ Rmðkþ1Þ and n $ 0. An application of Theorem 2.5 shows that system
(2.17) is exponentially stable. A

An autonomous version of Corollary 2.6 was proved by Kipnis and Komissarova [21].
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A special feature of the stability results included in this section is that they are very
easy to apply. For example, another immediate application of Theorem 2.5 is Theorem 2.9
in [57], which provides the global exponential stability of a system of discrete-time
Hopfield neural networks. For related results in the same area using Halanay-type
theorems see [46]. Other fields of application are stability theory for models in economic
dynamics, see [6,12,28], and control theory [30].

On the other hand, the simple ideas used in the proofs of Theorems 1 and 2 in [34] led
us to obtain other results in equations, where Theorem 2.4 does not apply. As an example,
consider the non-autonomous difference equation

xnþ1 2 xn þ pxn2m þ f nðxn; . . . ; xn2kÞ ¼ 0; n $ 0; ð2:18Þ

where p . 0 is a real number, and m, k are integers, where 1 # m # k.
Assuming that (2.1) holds for some b . 0, we cannot apply any of the previous results

to get the exponential stability of (2.18). The main reason is that, contrary to what happens
in the case m ¼ 0, p , 1, the linear equation

xnþ1 2 xn þ pxn2m ¼ 0

is not monotone with respect to the usual ordering in Rkþ1 for any value of p . 0.
However, we can find a different ordering for which it is monotone if an additional
condition is assumed.

Thus, we can expect to get sufficient conditions for the exponential stability of (2.18),
if we are able to use the same ideas involved in the proofs of the discrete Halanay-type
results using different orderings in Rkþ1. This approach was developed in [36], using the
discrete exponential ordering introduced in [26]. We note that, in this case, the generalized
form of the variation of constants formula in terms of the fundamental solution is needed
instead of (2.12) (see [36], for details).

The following corollary of Theorem 1.4 in [36] applies to equation (2.18).

Proposition 2.7. Assume that (2.1) holds for some constant b such that

0 , b , p #
mm

ðmþ 1Þmþ1
: ð2:19Þ

Then, there exist two constants M . 0 and l0 [ ð0; 1Þ such that

jxnj # M max
2k#i#0

jxijf g
! "

ln0; n $ 0; ð2:20Þ

for every solution {xn} of equation (2.18), where l0 can be chosen as the unique root in the
interval ðm=ðmþ 1Þ; 1Þ of equation

l kþ1 2 l k þ pl k2m 2 b ¼ 0: ð2:21Þ

Therefore, the zero solution of equation (2.18) is globally exponentially stable.
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Another way to get new stability results using the approach in this section consists in
considering equation

xnþ1 2 xn ¼ 2
Xk

i¼0

aiðnÞxn2i þ f nðxn; . . . ; xn2kÞ; n $ 0 ð2:22Þ

(where the non-autonomous part consists of a linear term and a nonlinear one), and
manipulate it to get a new expression to which we can apply the Halanay-type stability
results. Three different ideas in this direction were introduced in [35], [31] (see also [6])
and, more recently, in El-Morshedy’s paper [12].

The following corollary of [31, Theorem 2.4] provides a new sufficient condition for
the exponential stability in Equation (2.18).

Proposition 2.8. Assume that mp , 1 and (2.1) holds for some constant b such that

0 , b , p
12 mp

1þ mp
: ð2:23Þ

Then, equation (2.18) is globally exponentially stable.
We can apply [35, Theorem 4] to get a new condition that ensures the exponential

stability of the zero solution of (2.18) by requiring, instead of (2.1), the following stronger
condition on the nonlinearity f:

amin{x0; . . . ; xk} # f nðx0; . . . ; xkÞ # amax{x0; . . . ; xk}; ;n $ 0; ð2:24Þ

for some positive constant a. This is stated in the following result.

Proposition 2.9. Assume that condition (2.24) is satisfied for some constant a such that

pþ a ,
1

k
: ð2:25Þ

Then, equation (2.18) is globally exponentially stable.

Remark 6. Condition (2.24) is the discrete version of a similar assumption used in stability
results for FDEs; in Section 3, we will come back to this type of ‘min–max’ hypotheses.

We emphasize that the stability conditions given for equation (2.18) in Propositions
2.7–2.9 are not comparable, and all of them follow from different generalizations of the
Halanay-type Theorem 2.1.

3. Stability results of 3/2-type and the use of EPCA

In this section, we state some stability results using another approach that has also been
motivated by the qualitative theory of FDEs, more precisely, by the so-called 3/2 stability
results. In his famous paper [55], Yorke investigated the asymptotic stability of a nonlinear
non-autonomous FDE

x0ðtÞ ¼ 2Fðt; xtÞ; t $ 0; ð3:1Þ
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where F : ½0;1Þ £ C ! R is continuous, C is the Banach space of the continuous real
functions defined in ½2t; 0& and, for each t $ 0, xt [ C is defined as xtðsÞ ¼ xðt þ sÞ;;s [
½2t; 0&: A key assumption is a growth condition on F, namely, there is a constant a . 0
such that

amin 0; min
s[½2t;0&

fðsÞ
$ %

# Fðt;fÞ # amax 0; max
s[½2t;0&

fðsÞ
$ %

; ;f [ C: ð3:2Þ

A generalization of (3.2) replacing constant a by aðtÞ, where a : Rþ ! Rþ is a non-
negative continuous function, was introduced by Yoneyama [54].

Some interesting variants of (3.2), involving the Riemann–Stieltjes integral, were
introduced by Krisztin in [27]. One example is

Xk

i¼0

ai min
s[½2ti;0&

fðsÞ # Fðt;fÞ #
Xk

i¼0

ai max
s[½2ti;0&

fðsÞ; ;f [ C; ð3:3Þ

where 0 # t0 , · · · , tk ¼ t, a0; . . . ;ak are non-negative numbers, where
Pk

i¼0 ai . 0.
Note that condition (2.24) introduced in the previous section is a discrete version of

(3.3), with ai ¼ 0 for 0 # i # k2 1, ak ¼ a . 0.
The stability theorems obtained under the conditions mentioned above are called the

3=2 stability results, because they require a restriction on the size of the delay which
involves the number 3=2. For example, in the main result of [55], it is required that
at , 3=2 to ensure the asymptotic stability of the zero solution in (3.1).

Condition (3.2) was generalized in [37] to extend Yorke’s Theorem to a broader family
of FDEs of the form (3.1), with applications in population dynamics and other areas.

Let b be a non-negative real number, and define the rational function RðxÞ ¼
x=ð1þ bxÞ for x . 21=b. We call the following property the generalized Yorke
condition:

aR min 0; min
s[½2t;0&

fðsÞ
$ %! "

# Fðt;fÞ # aR max 0; max
s[½2t;0&

fðsÞ
$ %! "

; ð3:4Þ

where the second inequality holds for all f [ C, and the first one for all f such that
mins[½21;0&fðsÞ . 2b21 [ ½21; 0Þ.

Note that for b ¼ 0, we recover the Yorke condition (3.2).
An easy way to get 3=2 stability theorems for difference equations consists in

exploiting the fact that a solution {xn} of the difference equation

xnþ1 2 xn þ f nðxn; . . . ; xn2kÞ ¼ 0; n $ 0; ð3:5Þ

can be considered as the solution (at the integers) of a delay differential equation with
piecewise constant arguments (EPCA), namely

x0ðtÞ ¼ 2f ð½t&; xð½t&Þ; . . . ; xð½t2 k&ÞÞ; t $ 0; ð3:6Þ

where f ðn; xn; . . . ; xn2kÞ ¼ f nðxn; . . . ; xn2kÞ; and ½z& denotes the integer part of z. This fact
gives us the possibility to get stability results for (3.5) as a straightforward corollary of the
corresponding stability results for FDEs. This argument goes back at least up to the paper
[16] by Győri (see also [8,18]). For a detailed use of this technique, see the interesting
paper [17] of Győri and Hartung, where the authors get new sufficient conditions for the
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asymptotic stability of linear difference equations. More recently, other stability
conditions for nonlinear difference equations with applications in population dynamics
were found using the same approach in [38,51].

In this section, we state a new result that can be proved using the EPCA approach,
discuss some other stability results of the 3=2-type for difference equations that involve
the discretized versions of Yorke-type conditions (3.2)–(3.4) and suggest some open
problems.

For other stability results for difference equations related to the 3=2 conditions, see the
recent papers of Muroya et al. [43,44] and their references.

3.1 The sublinear case

Let us consider the difference equation (3.5). The following hypothesis is a discretized
version of condition (3.2):

(A1) There exist constants an . 0 such that, for every ðx0; . . . ; xkÞ [ Rkþ1 and
n [ N,

anmin{0; x0; . . . ; xk} # f nðx0; . . . ; xkÞ # anmax{0; x0; . . . ; xk}: ð3:7Þ

We note that condition (A1) is a sort of sublinearity condition combined with a
positive feedback condition. For example, if f nðx0; . . . ; xkÞ ; anf ðxÞ, then (3.7) reads

min{x; 0} # f ðxÞ # max{x; 0}; ;x [ R;

which is equivalent to xf ðxÞ $ 0 and j f ðxÞj # jxj for all x [ R.
As far as we know, condition (A1) was used for the first time in the frame of the

stability theory for difference equations by Zhou and Zhang in [58], to prove the following
result:

Theorem 3.1 [58, Theorem 1.3]. Assume that condition (A1) holds, and

lim sup
m!1

Xmþk

i¼m

ai ,
3

2
þ 1

2ðk þ 1Þ : ð3:8Þ

Then, every oscillatory solution of equation (3.5) tends to zero as n!1.
An easy consequence of Theorem 3.1 is the following.

Corollary 3.2. Assume that (A1), (3.8), and the following condition hold:

(A2) If {xn}n$2k is a sequence of real numbers such that limn!1xn ¼ x * – 0, then
the series

P1
n¼0 f nðxn; . . . ; xn2kÞ diverges.

Then, the zero solution of equation (3.5) is globally attracting.
Note that condition (A2) ensures that zero is the unique equilibrium of (3.5). This

condition is used to prove that all non-oscillatory solutions of (3.5) converge to zero.

Remark 7. Condition (3.8) was established for the first time by Erbe, Xia and Yu [13] for a
linear difference equation, namely, when f nðxn; . . . ; xn2kÞ ¼ pnxn2k in equation (3.5),
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pn $ 0; ;n $ 0. The authors of that paper were also motivated by the 3=2-stability
results obtained by Yorke and Yoneyama for FDEs.

Tkachenko and Trofimchuk [52] proved that condition (3.8) is sharp within the class of
equations (3.5) with f n satisfying (A1). Assuming that (3.7) holds with an ¼ a for all
n [ N, Nenya, Tkachenko and Trofimchuk proved that the conclusions of Corollary 3.2
are still true replacing (3.8) by a weaker condition (see [45]); moreover, such a condition is
sharp in the class of equations (3.5) satisfying

a min{0; x0; . . . ; xk} # f nðx0; . . . ; xkÞ # amax{0; x0; . . . ; xk}; n $ 0; ð3:9Þ

for a positive constant a and all ðx0; . . . ; xkÞ [ Rkþ1.
In our next result, we replace (A1) by a discrete version of Krisztin’s condition (3.3) in

order to get a new sufficient condition for the uniform asymptotic stability of (3.5). It can
be easily proved by considering the EPCA (3.6) associated with (3.5), and applying the
3=2-type Theorem 1.1 in Krisztin’s paper [27] (we leave the details to the reader).

Theorem 3.3. Assume that there exist constants a0; . . . ;ak $ 0 such that, for every
n [ N and ðx0; . . . ; xkÞ [ Rkþ1,

Xk

i¼0

ai min{x0; . . . ; xi} # f nðx0; . . . ; xkÞ #
Xk

i¼0

ai max{x0; . . . ; xi}: ð3:10Þ

Then, the zero solution of equation (3.5) is uniformly asymptotically stable if the following
condition holds:

0 ,
Xk

i¼0

ðiþ 1Þai ,
3

2
: ð3:11Þ

For the linear equation with constant coefficients,

xnþ1 2 xn ¼ 2
Xk

i¼0

aixn2i; n $ 0: ð3:12Þ

Theorem 3.3 provides the following result.

Corollary 3.4. Assume that ai $ 0 for all i ¼ 0; 1; . . . ; k, and

0 ,
Xk

i¼0

ðiþ 1Þai ,
3

2
: ð3:13Þ

Then, the zero solution of (3.12) is exponentially stable.

Remark 8. The result of Corollary 3.4 has been recently improved by Kipnis and
Komissarova [22]; they show that constant 3=2 in condition (3.13) may be replaced by
p=2: Moreover, constant p=2 is sharp. A different improvement of Corollary 3.4 can be
found in the recent paper of Tang and Jiang [50]. Remarkably, this latest result was also
motivated by Krisztin’s paper [27].
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The previous remark suggests the following question:

Open problem 1. Investigate whether it is true or not that the conclusions of Theorem
3.3 hold when constant 3=2 in (3.11) is replaced by p=2.
Motivated by condition (3.8) in Theorem 3.1, we also think it is interesting to study the
following problem:
Open problem 2. Investigate if the conclusions of Theorem 3.3 hold when condition
(3.11) is replaced by

0 ,
Xk

i¼0

ðiþ 1Þai ,
3

2
þ 1

2ðk þ 1Þ :

Note that both problems are independent. Actually, p=2 , 3=2þ 1=ð2k þ 2Þ, only for
k ¼ 0; 1; . . . ; 6.

We underline the fact that not only linear equations fall in the scope of Theorem 3.3. It
applies also to some nonlinear difference equations; in particular, those involving
‘min–max’ terms. For examples of such equations, see [9,25,35].

Example 3.5. Consider the following difference equation:

xnþ1 2 xn þ pxn21 þ qmax{xn; xn21; xn22} ¼ 0; n $ 0; ð3:14Þ

where p, q are positive constants.
Note that it is a particular case of equation (2.18) considered in Section 2, with m ¼ 1.

Thus, Propositions 2.7–2.9, based on the Halanay approach, apply to provide the
following conditions for the exponential stability of the zero solution in (3.14).

Proposition 3.6. Any one of the following conditions ensures the global exponential
stability of the zero solution in (3.14):

(1) 0 , q , p , 4
9 ;

(2) p ,
1

2
and 0 , q ,

pð12 2pÞ
1þ 2p

and

(3) 0 , pþ q ,
1

2
:

The application of Corollary 3.2 provides the condition 0 , pþ q , 5=9; which is
sharper than condition (3) in Proposition 3.6. Using [45, Theorem 4], this condition is
improved up to

0 , pþ q , 22
ffiffiffi
2

p
< 0:5857: ð3:15Þ

Theorem 3.3 also applies to this example, and it ensures that the zero solution in
equation (3.14) is asymptotically stable if

0 , 2pþ 3q ,
3

2
: ð3:16Þ

One can check that (3.16) improves (3.15) if q , ð4
ffiffiffi
2

p
2 5Þ=2 < 0:328:
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We note that condition (1) in Proposition 3.6 ensures the global exponential stability of
(3.14) in some cases, where both (3.15) and (3.16) fail. For example, if p ¼ 0:4 and
q [ ð0:25; 0:4Þ.

3.2 When (A1) fails

In many important cases, function f does not satisfy the sublinearity condition (A1). As an
example, consider the discrete model for population dynamics

Nnþ1 ¼ NnFðNn2kÞ; ð3:17Þ

where Nn . 0 is the size of a population after n generations, and it is assumed that the
density-dependent mechanisms operate with a delay of k generations (see [29]). Assuming
that F : ð0;1Þ! ð0;1Þ, and the initial data N0; . . . ;N2k are positive, then Nn . 0 for all
n $ 0. We suppose that there is a unique positive equilibrium N *, which is defined by the
relation FðN *Þ ¼ 1. We say that N * is globally attracting if all positive solutions of (3.17)
converge to N * as n tends to infinity. In order to apply our results to equation (3.17), we
make the change of variables xn ¼ lnðN *Þ2 lnðNnÞ, which transforms the previous
equation into

xnþ1 2 xn ¼ 2f ðxn2kÞ; ð3:18Þ

with f ðxÞ ¼ lnðFðN *e2xÞÞ, for all x [ R. Note that N * is globally attracting for (3.17) if
and only if the zero solution of (3.18) is globally attracting in the sense of Definition 1.1.

A typical example of (3.17) is the Ricker difference equation with delay

Nnþ1 ¼ Nne
rð12Nn2kÞ; ð3:19Þ

where r is a positive constant. Thus, N * ¼ 1, and (3.19) takes the form (3.18) with
f ðxÞ ¼ rð12 e2xÞ. Clearly, f does not satisfy the sublinearity condition j f ðxÞj # ajxj for
any a , 0, and hence Corollary 3.2 does not apply.

Next, we state a generalization of Corollary 3.2 obtained by Tkachenko and
Trofimchuk [52] under an assumption weaker than (A1), allowing the case
f ðxÞ ¼ rð12 e2xÞ. First, we introduce two new assumptions:

(A10) There exist constants an . 0 and b . 0 such that, for every n [ N,

anRðmin{0; x0; . . . ; xk}Þ # f nðx0; . . . ; xkÞ # anRðmax{0; x0; . . . ; xk}Þ;

where RðxÞ ¼ x=ð1þ bxÞ, the first inequality holds for all ðx0; . . . ; xkÞ [ Rkþ1, and the
second one only for those ðx0; . . . ; xkÞ [ Rkþ1 such that min{xi : 0 # i # k} . 21=b.
(A3) There exists q : R! Rþ such that f nðx0; . . . ; xkÞ # qðsÞ for every
ðx0; . . . ; xkÞ [ Rkþ1 with min{xi : 0 # i # k} $ s:

Note that condition (A10) is the discrete version of the generalized Yorke condition
(3.4). It was used for the first time in [38].

Theorem 3.7 [52, Theorem 1.3]. Assume that the hypotheses (A1 0), (A2) and (A3) are
satisfied. If condition (3.8) holds, then the zero solution of equation (3.5) is globally
attracting.
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Using the following corollary of Theorem 3.7 (that improves the result of [38,
Corollary 4.3]), it is easy to prove that the equilibrium N * in the delayed Ricker equation
(3.19) is globally attracting if

r #
3

2ðk þ 1Þ þ
1

2ðk þ 1Þ2 :

Corollary 3.8. Assume that f satisfies the following conditions:

(1) f ð0Þ ¼ 0, f 00ð0Þ – 0, f 0ðxÞ . 0 for all x [ R, and f is bounded from above.
(2) f [ C 3ðR;RÞ, and ðSf ÞðxÞ , 0 for all x [ R, where

ðSf ÞðxÞ ¼ f 000ðxÞ
f 0ðxÞ 2

3

2

f 00ðxÞ
f 0ðxÞ

! "2

is the Schwarzian derivative of f.

Then, the zero solution of equation (3.18) is globally stable if

f 0ð0Þ # 3

2ðk þ 1Þ þ
1

2ðk þ 1Þ2 : ð3:20Þ

Remark 9. It is immediate to check that conditions (1) and (2) hold for f ðxÞ ¼ rð12 e2xÞ.
In particular, ðSf ÞðxÞ ¼ 21=2 for all x [ R.

For k ¼ 0, Corollary 3.8 was proved in [32]. In this case, the conclusion may be written
in the following way.

Proposition 3.9. Consider the first-order difference equation

xnþ1 2 xn ¼ 2f ðxnÞ: ð3:21Þ
Assume that f satisfies conditions (1) and (2) in the statement of Corollary 3.8. Then, the

local asymptotic stability of the zero solution of (3.21) implies its global asymptotic stability.
See [7,32,33] for the application of this result to several population models.
For equation (3.19) and other forms of (3.17), Levin and May affirmed in [29] that

‘ . . . extensive numerical studies suggest that the local asymptotic stability imply global
stability in those models’. Corollary 3.8 is a good support for this conjecture, since the
curves defined by the global stability condition (3.20) and the condition for the local
asymptotic stability f 0ð0Þ , 2 cosððkpÞ=ð2k þ 1ÞÞ given in [29] are very close (see [38], for
more details). This motivates the following conjecture.

Conjecture 3.10 [38, Conjecture 4.8]. Assume that f satisfies conditions (1) and (2)
from the statement of Corollary 3.8. Then, the zero solution of equation (3.18) is globally
stable whenever it is asymptotically stable.

As an interesting challenge, in order to complement the result of Corollary 3.8 and
support a positive answer to the previous conjecture, we propose the study of the following
question.

Open problem 3. Investigate if the conclusions of Corollary 3.8 hold when condition
(3.20) is replaced by

f 0ð0Þ # p

2ðk þ 1Þ :
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