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Abstract

In the 1990s, after a series of experiments, the behavioural psychologist and
economist Daniel Kahneman and his colleagues formulated the following
peak-end evaluation rule: the remembered utility of pleasant or unpleasant
episodes is accurately predicted by averaging the peak (most intense value) of
instant utility (or disutility) recorded during an episode and the instant utility
recorded near the end of the experience (Kahneman et al 1997 Q. J. Econ. 112
375-405). Based on this rule, we propose a mathematical model for the time
evolution of the experienced utility function u = u(r) given by the scalar dif-
ferential equation u'(f) = au(t) + bmax{u(s) : s € [t — h,#]} +f(t) (*), where
f represents exogenous stimuli, /2 is the maximal duration of the experience,
and a,b € R are some averaging weights. In this work, we study equation (x)
and show that, for a range of parameters a,b,h and a periodic sine-like term
/> the dynamics of (x) can be completely described in terms of an associated
one-dimensional dynamical system generated by a piece-wise continuous map

" To the memory of Anatoly Samoilenko (1938-2020).
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from a finite interval into itself. We illustrate our approach with two repres-
entative examples. In particular, we show that the utility u(?) (e.g. ‘happiness’,
interpreted as hedonic utility) can exhibit chaotic behaviour.

Keywords: peak-end rule, differential equations with maxima, return map,
turbulent (chaotic) behaviour

Mathematics Subject Classification numbers: 34K13, 34K23, 37E05, 91E45

(Some figures may appear in colour only in the online journal)
1. Introduction

Utility theory plays a key role in decision making, which influenced important fields of study,
including behavioural economics, consumer psychology, well-being studies and political sci-
ence, among others [29]. Although in economics and modern decision theory utility is under-
stood as utility of outcomes and refers to their weight in decisions, the original Bentham’s
concept of utility [4] is hedonic quality and aims at measuring the value of pleasure or pain.
This latter interpretation is referred to as experienced utility (or hedonic utility) by Kahneman
et al in [28], an influential paper in which the authors provide some key ideas to measure
experienced utility, which in turn can be interpreted as an assessment of a person’s objective
happiness [26].

Fredrickson and Kahneman introduced in [14] a moment-based approach to make retro-
spective evaluations of affective episodes (an episode is here understood as a connected time
interval); see also [29, chapter 38]. This approach assumes that evaluations of experienced
utility require two types of utility concepts: instant utility and remembered utility. Instant util-
ity refers to the sign and intensity of a hedonic experience at a given moment time, which
can be characterized by a value on a good/bad dimension. Even if pleasure and pains are
attributes of a moment experience, the outcomes that people value extend over time. Thus,
evaluation of experienced utility must include evaluation of past episodes, which leads to the
concept of remembered utility. The model of evaluation by moments (or snapshot model) [14]
is based on the principle that people evaluate the utility of an episode by retrieving a repres-
entative moment and by evaluating the utility of that moment. The peak-end rule establishes
that two moments can determine the global evaluation of an entire episode: the moment of
most extreme affect experienced during the episode (peak) and the affect experienced at the
end. For further reading, we refer to the nice reviews by Fredrickson [13] and Kahneman and
Tversky [29, chapters 37 and 38]. In particular, they include some discussions on empirical
evidence, robustness, and applications of the peak-end rule.

The aforementioned seminal paper [28] also proposed a complex research agenda for the
theoretical and empirical studies of experienced utility. The first part of this agenda concerns
relations between stream of outcomes and instant utility, one of the related questions being
‘What are the dynamics of experienced utility?’ Note that a continuous utility profile can be
constructed from the momentary good-bad ratings, assigning to each moment 7 the scalar value
of its instant utility u(). Thus, the design of a suitable dynamic model for the time evolution of
u(t) is of clear applied interest. By [28, p 381], ‘the system that forms and stores evaluations
of situations is not designed to optimize experienced utility’, a key observation indicating that
every appropriate evolution model should have relatively complex dynamics. For instance, it
cannot be given by a scalar autonomous ordinary differential equation. Having in mind that
decisions about the future are made based on present and past affective experience, the above
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comments together suggest that the general evolution model leading to an adequate dynamic
realization of the peak-end rule is given by the differential equation with maxima

u'(t) = F(Lu(t), max u(s)) , (1)
SE[t—h,1]

where F: [0,00) x R? — R is a continuous map and the delay / is chosen so as it captures
a temporal episode of suitable length. One consequence of the peak-end rule is that the dur-
ation of affective episodes is largely neglected (duration neglect principle) [13]. This allows
us for certain flexibility, and in particular we can work with a constant delay 4. Equation (1)
is generally nonautonomous, and the dependence on ¢ usually comes in the form of external
stimuli.

The simplest choice of (1) would be the linear autonomous map F(t,x,y) = ax + by, with
constant real coefficients a, b, leading to equation

u'(f) = au(t) +b max u(s). 2)
SE[1—h,1]

The consideration of constant external stimuli in (2) yields

u'(f) =au(t)+b max u(s)+ec, 3)
SE€[t—h,1]

with ¢ € R, which can be reduced to (2) by a simple change of variables. Some implications
of equation (3) in the context of utility theory have been discussed in [37].

However, it is more realistic to assume that exogenous stimuli are not constant in time.
As a first approximation for their mode of variation, having in mind periodic repetition of an
established daily or weekly routine in a person’s life, it is quite natural to consider a choice of
equation (1) with the right-hand side depending periodically on the time variable ¢. Accord-
ingly, the simplest mathematical model for time evolution of the experienced utility function
u = u(t) can be given by the scalar differential equation

u'(£) = au(t) +b max u(s)+£(1), 4

sE€[t—h,1]

where f represents the action of periodically changing exogenous stimuli, />0 is the maximal
duration of the experience, and a,b are some real coefficients. The determination of qualitat-
ively plausible psychological parameters f, a, b seems to be a rather difficult task which we do
not address here. For simplicity, we start considering the case when the 7-periodic continuous
function f has sine-like shape (see definition 1 below), assuming that the rate of change of the
utility u(z) is affected by linear decay (with coefficient o> 0) and is proportional (with coeffi-
cient 5> 0) to the difference between its instant value and its peak on the precedent fixed time
interval:

u' (1) = —au(t) + Bu(t) — YEI%tla)}i . u(s)) +1(1). 5)
The first two terms in the right-hand side of (5) provide a feedback loop, which is in accordance
with the concept of hedonic adaptation. Indeed, the first term just represents a linear decay of
happiness (see, e.g. [19]); the second one comes from a comparison with a recent peak. Thus,
our model agrees with the principles of Brickman et al [6], which establish that adaptation
level theory offers two general mechanisms to explain the decay of happiness after a salient
experience: habituation and contrast.

Similar evolutionary rules, with the term u(7 — h) instead of max{u(s) : s € [t — h, ]}, can be
found in other related models: see, for instance, the celebrated Kalecki difference-differential
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equation describing a macroeconomic model of business cycles [12, 30, 32] or the mathemat-
ical model of emotional balance dynamics proposed in [47]. The works [7, 10, 17] show how
the psychology of agents trading the foreign currency generates a similar dynamical mechan-
ism expressed by the equation

W' () = =blu(®)|u(t) + a(u(t) —u(t—1)), a,b>0.

Comparing (4) and (5), we obtain that a = 8 — o, b = — . In this way, the situation when
b < 0and a+ b < 0 may appear as more appealing from the applied point of view, and, as we
manifest in the present paper, it is certainly more interesting by its mathematical implications.
In particular, we will show that for a range of parameters a,b,h and a periodic term f, the
dynamics of (4) can exhibit chaotic behaviour. Since ‘happiness’ [18] is one of the possible
interpretations of the experienced utility and, from own individual experience [23], everyone
knows that happiness can be unpredictable, we thus obtain an additional theoretical evidence
in favour of the analysis based on the ‘peak-end’ rule. Accordingly, our phenomenological
model (5) could be considered as another attempt to use mathematics to understand the beha-
viour of happiness, a topic that goes back at least to Edgeworth’s calculus of pleasure or ‘hedo-
nimetry’ [9].

A side effect of our studies is the elaboration of a satisfactory mathematical framework
to deal with the quasilinear functional differential equation (4). As far as we know, the first
article dedicated to equations with maxima appeared in 1964 [42]. In his survey on the the-
ory of functional differential equations, Myshkis [39, section 12] highlighted systems with
maxima as differential equations with deviating argument of complex structure. He also noted
that ‘the specific character of these equations is not sufficiently clear yet’ [39, p 199]. Let
C[—h,0] be the set of continuous functions from [—h,0] to R. Equation (4) can be writ-
ten in the form u’(¢) = F(t,u,), where u,(s) = u(t +s), for all s € [—h,0], and the functional
F:R x C[—h,0] — R defined by F(t,¢) = a$(0) + bmax{¢(s) : s € [h,0]} +f(¢) is glob-
ally Lipshitzian in ¢, which guarantees the existence, uniqueness, global continuation and
continuous dependence on initial data of the solutions to (4). However, this functional is
not differentiable in ¢. By using a representation max{¢(s),s € [—h,0]} = ¢(—7(¢)) with
some 7(¢) € [0, h], we see that (4) can be considered as a functional differential equation with
state-dependent delay. Independently of the choice of the value 7(¢) € [0, 4] for a given ¢ €
C[—h,0], the function 7 : C[—h,0] — [0, 4] is clearly discontinuous at each constant element.

We will call (4) the Magomedov equation, honouring the mathematician who introduced
this model in the late 70s and since then has analysed several particular cases of it with periodic
forcing term f(7) [1, 3, 38, 44, 45]. On pages 4—7 of his monograph [38], Magomedov explains
how the periodic equation (4) can be used for modelling automatic control of voltage in a
generator of constant current.

Besides the above mentioned applications, the periodic equation (4) plays an important role
in the stability theory for the functional differential equation

u' () = au(t) + bf (t,u),
where a,b < 0, and the continuous functional f: R x C[—h,0] — R satisfies either the follow-
ing (sublinear) Yorke condition [50]

7561??}50](7(;5(5‘)) <f(tv ¢) < serflf}f(o] ¢(S)7 t= 07 ¢ € C[*h,O],

s

or its nonlinear version introduced in [35]. In this context, model (4) was used as a key test
equation whose analysis determines the optimal stability regions for equations satisfying one
of the aforementioned Yorke conditions. For instance, in the simplest situation when a =0,
equation (4) has a uniformly asymptotically stable periodic solution for every periodic function
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f(@) if and only if 0 < —bh < 3/2 (that constitutes a variant of the so-called Myshkis—Wright—
Yorke 3/2-stability criterion [11, 34, 36, 43]).

Among other mathematical objects closely related to equation (4), we would like to mention
the Hausrath equation u’(t) = b(max{|u(s)| : s € [t — h,1]} —u(z)), analysed in [22, pp 73—
74], and the Halanay inequality u’(7) < au(t) + bmax{u(s) : s € [t — h, ]}, which became an
important tool in the stability theory of functional differential equations [2, 3, 21, 25].

The present work extends previous studies [3, 43] where, in particular, the existence of
multiple periodic solutions to equation (4) was established by using Krasnoselsky’s rotation
number and introducing a substitute of the variational equation for the non-smooth model (4).
Our approach here is cardinally different, its workhorse is an associated selfmap R of an
interval called ‘the return map’ in the paper. This function allows to reproduce the sequence of
consecutive ‘qualified peaks’ p; = u(q;,p) of each solution u(t,p) to (4) with initial condition
u(s,p) =p, s € [q— h,q|, where g will be chosen in a suitable way. By a qualified peak we
mean a local maximum of u(-, p) satisfying u(q;,p) = max,c(y,—n,q -+, 4(s,p) for some g; > 0.
Specifically, we define R by R(p) = u(qi,p). As we will show, the information stored in R
is sufficient to describe the dynamics in (4). Now, analysing the dependence of the ‘qualified’
peak u(qy,p) on p, one can observe that at some specific values of p this peak disappears due to
a cusp catastrophe. Accordingly, the return map R has a discontinuity at each such point so that
important efforts in section 2 are focused on the studies of the continuity and differentiability
properties of R.

Next, in section 3 we show that, in spite of the uniqueness of T-periodic solution to (4) for
all sufficiently small and large values of AT~!, in general equation (4) can exhibit complex
dynamics. Indeed, in section 3.2, we show that the restriction of the map R to an appropriate
compact subset of its continuity domain can have a generalized horseshoe. This fact implies
the existence of an infinite number of different periodic solutions to (4) as well as sensit-
ive dependence on the initial values (chosen in some subset of continuous functions). Our
example in section 3.2 extends a relatively small set of delay differential equations coming
from applications where the existence of ‘chaotic’ behaviour has been proved analytically, cf
[49] and its references. As usual, this requires elementary but laborious evaluations of some
auxiliary smooth functions on compact sets. To make the paper more readable, this work and
the proofs of some results are realized in three Appendices. Finally, in section 4 we discuss
some qualitative features of our model, such as its adequacy, versatility and robustness, and
emphasize the potential impacts of our results on hedonic utility studies.

2. Associated one-dimensional dynamics

Let us recall that an initial value problem for the functional differential equation (4) at the
moment T with the initial function (initial history) ¢ € C := C[—h,0] has the form u(s + 1) =
¢(s), s € [—h,0]. As we have mentioned, the solution u(z,7, ¢) of this problem exists for all
t > 7. The set C of initial functions forms the state space for the T-periodic equation (4),
and the first recurrence map II: C — C defined by I1(¢)(s) := u(T +5,0,¢), s € [—h,0],is a
standard tool to study the dynamics of (4). An obvious complication in the use of this instru-
ment is that II acts on an infinite-dimensional space. Nevertheless, as we will show in this
section, the dynamics generated by equation (4) is essentially one-dimensional. In particular,
the detailed analysis of the solutions of (4) realized in section 2.1 shows that we can find an
alternative scalar first recurrence map adapted to the particular situation of equation (4). Such
an interval map, constructed in section 2.2 and denoted as R, can be regarded as the quint-
essence of the evolution system (4). In section 3, we show on two particular examples that the
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dynamical properties of R depend strongly on the system parameters, so that their satisfactory
description constitutes a separate task for each quartet (a, b, h,f(¢)). In any case, the basic ana-
lytical properties of R should first be considered: we do this work in section 2.3 (continuity
of R) and section 2.4 (differentiability of R). In theorem 17 of section 2.4, we also give some
dynamically relevant information about the general geometric structure of R.

2.1 Some properties of the solutions to (4)
We will consider sine-like T-periodic functions in the sense of the following definition:

Definition 1. We say that a T-periodic continuous function f: R — R has sine-like shape if
there exist fy,#; such that 0 < 7, — 7y < T, f is strictly monotone on [fo,#;] and on [t;, % + 7],
and 7, is a turning point of f.

Our main aim in this section consists of defining a one-dimensional map that allows us
to study some important aspects of the dynamics of (4). Roughly speaking, the iterates of the
map for a given initial condition correspond to the sequence of qualified peaks of an associated
solution of (4). The concept of qualified peak is established in the following definition:

Definition 2. Let u : [fp,00) — R be a solution of (4). If there exists a point v > fo + & such
that u(v) = max{u(s) : s € [v — h,v + €]} for some € >0, then we say that u(v) is a qualified
peak of u.

The following result is a consequence of lemmas 22 and 23 in appendix A, and plays a key
role in the definition of the return map associated to (4):

Theorem 3. [ff has sine-like shape and either of the following conditions holds:
ah <1 and b+a<0, or ah>1 and bh < —exp(ah—1), 6)

then all solutions of (4) are bounded. Moreover, for each solution u : [ty,50) — R of (4) there
exist v >ty +h and € >0 such that u(v) = max{u(s) :s € [v — h,v +¢|}, that is, u(v) is a
qualified peak of u.

We notice that (6) provides the necessary and sufficient conditions for which the trivial
solution of the delay equation (2) is uniformly asymptotically stable [48].

It was shown in [3, 25, 43] that if a + b # 0, then equation (4) has at least one T-periodic
solution. Moreover, there is a unique globally attracting periodic solution if a +5 < 0 and
one of the following four conditions is satisfied: (a) b > 0; (b) b< 0, a>0and (a —b)h < 1;
(¢) b<0, a=0 and —bh <3/2; (iv) <0, a<0 and (a/b)e”" > In((b* + ab)/(b* +a?)).
However, as it was proved in [43] (see also section 3.1 below), equation (4) can have several
periodic solutions for other parameter values. Moreover, in section 3.2 of the paper we will
show that (4) can even possess an infinite set of periodic solutions as well as some solutions
with ‘chaotic’ behaviour.

In the sequel, we assume that 0 < i < T, f is T-periodic with sine-like shape, and either of
the two conditions in (6) holds. In particular, this implies that a + b < 0. Indeed, if ah>1 and
bh < —e®"=1 then, since ¢* > 1 + x for all x>0:

(a+b)h=ah+bh < (ah—1)+1— =D <.
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2.2. Construction of the return map

We introduce the function

2o @) Q)
fl) = a+b la+b|

)

After a change of variables u — v + mintemf(t) and ¢ — s + const, without loss of generality,
we can also assume the following condition:

(H) f is a continuous T—periodic function, strictly decreasing on the interval /; = [0, 3] and
strictly increasing on I, = 3, T], with min,cg f(z) = 0.

Clearly, if p € f(I;) then p = f(q) for aunique g € I,. Let u(-,p) : [¢, +00) — R be the solu-
tion of the initial value problem u(s,p) = p, s € [q — h, q|, for equation (4). By theorem 3, there
exist v = v(g) > ¢ and £ >0 such that

u(v,p)=max  u(r,p). 8)
relv—h,v+e)

Let v* be the smallest v > ¢ satisfying (8) and set R(p) = u(v*,p). We refer the reader
to figure 1 below for an illustration of the definition of R and some characteristic points
involved in our results. The next statement says that R(f([0, 3])) C £([0, 3)), in other words,
that R(p) > 0 for each p € £([0, 3]) and the application

R :£([0,8]) = f([0,8]) (€
is well defined.

Lemma 4. Let u: [—h,+00) — R be a solution of (4), and let T > 0 be a point of local max-
imum for u; moreover, assume that, for some € >0, u(t) > u(t) for all t € [T — h,7 +€). Then
u(t) =f(r)/la+b|and 7 :=7 (mod T) € [0, ).

Proof. The first conclusion of the lemma is evident. We prove the second one by contradiction.
Suppose that 7* ¢ [0, §). Then there exists an interval E = (0,¢), 0 < & < h, such that f(s +

T)—f(r)>0and M = Flax ]u(r) > u(s+7) for all s € E. This implies that the function
re[r—h,T

d(s) = u(s+7) — u(7) satisfies the equation

d'(s) = ad(s) +f(s + ) —£(7)

for all s € E. Using the variation of constants formula and the equality d(0) = 0, we get

0> d(s)exp(—as) = /OS exp(—ar)(f(r+7) —f(1))dr> 0,

for all s € E. This contradiction proves that actually 7* € [0, 5). O

Note that a partial converse of lemma 4 is also true:
Lemma 5. let u: [—h,+00) — R be a solution of (4). If u(t) =f(1) = fnax ]u(s), where
s€[r—h,T
7" =7 (mod T) € [0,5), then u strictly decreases on I, := (1,7 +r), where r = min{h, § —
7*} > 0. In particular, T > 0 is a point of local maximum for u.

Proof. Indeed, consider the initial value problem v(7) = f(7) for the equation v’ (¢) = av(¢) +
bv(7) +f(¢). The difference m(t) = v(r) — v(7) satisfies the equation

m' (1) = am(t) +f(t) = f(7), m(r) =0.
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ql w—nh qJ;lz MIV* q W qg+h vt

Figure 1. Schematic representation of two U-shaped solutions and their character-
istic points. On the left, A(¢) = g+ h; on the right, A(¢) = 11(g) and therefore I, =)
(see definition 7). The graph of the map fis given by the dashed curve in red colour.

Thus, by the variation of constants formula, for all 7 € I,,

t

V(1) — v(r)) exp(—at) = / exp(—as)(f(s) — f(7))ds < 0,

T

proving that 7>0 is a point of local maximum for v and therefore u(r) = v(¢) for all 7 € I,.
The same computation shows that u(f;) = v(t;) > v(t;) = u(fy) if t,,6, € I, and £, < , and
therefore u is strictly decreasing on /,. O

The first recurrence map R plays the same role as the Poincaré map in the case of periodic
differential equations. The following evident statement summarizes the relations between the
delay differential equation (4) and the one-dimensional dynamical system defined by (9).

Lemma 6. For a given solution u of equation (4), the set of all points at which a qualified
peak is reached (in the sense of definition 2) forms a strictly increasing unbounded sequence
{7,j € N}. Furthermore, u(7,+;) = R/ (u(7,)) for all j > 0 and n > 1.

Clearly, there is a correspondence between the periodic solutions of (4) and the set of peri-
odic points of R. In particular, by [3], R has at least one fixed point.

The following definition plays a key role in the study of the regularity properties of the map
R.

Definition 7. We will say that the solution u(¢,p) is U-shaped if on the interval 0, = (¢,v*(q))
it has only one critical point, in which it reaches its minimal value, and if in some left-side
neighbourhood of v*, u(t,p) = max{u(s,p),s € [t — h,q]} =: U(,p).

If u(t,p) is U-shaped, then the interval {2, can be represented as the disjoint union of the
subintervals I} = (¢, A\(q)], I = (A(¢),1(q)] and Is = (u(q),v*(q)), where either \(q) = g+
h,or AM(q) = u(q) and I, = 0, such that U(t,p) =p on Iy, U(t,p) = u(t — h,p) on I, U(t,p) =
u(t,p) on Is.
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2.3. Continuity of the return map

Set K =f([0, 3]). The goal of this subsection is to describe the continuity properties of the
map R : K — K. The proofs and some auxiliary results can be found in appendix B. We first
state an assumption that will guarantee good continuity properties of R and admits practical
verification:

(M) For a given p € K, it holds that u(s,p) < u(v*,p) forall s € [v* — h,v*).

Note that the last assumption needs to be checked only for those p satisfying R(p) < p
because of the following simple result:

Lemma 8. Suppose that R(p) > p for some p € K. Then (M) is satisfied.

Proof. If R(p) > p, the result is a consequence of the definition of R. Assume that R(p) = p,
p =f(q), and (M,) does not hold. Consequently, for some § € [v* — h,v*), it holds u(3,p) =
u(v*,p)and u(s,p) <u(s,p), s € [§ — h,v*]. The latter two properties show that § should coin-
cide with v* unless § € [g — h,¢|. Since § < v*, this means that v* — g < v* —§ < h. On the
otherhand, R(p) = u(v*,p) = u(g,p) = p and thus lemma 4 ensures that v* — g = jT > h with
some integer j, a contradiction. O

Assuming that (M,) holds for some p=f(q) €K, in lemma 25 of appendix B, we
will establish the existence of a maximal non-empty interval (u(g),v*) such that u(t,p) >
u(s,p),s € [t—h,t) forallr € (u(q),v*). Note that, in the special case of a U-shaped solution,
this interval coincides with the interval /5 defined in the paragraph below definition 7.

Theorem 9. Let py = f(qo) be a point of discontinuity for R and (My,) hold. If B < h then
u(B+jT,po) = 0 for some 8 +jT € [1(qo),v* (o)) with j € N. Furthermore,

R(po) =R(0), liminfR(p)=0.
P—Po
Theorem 9 allows us to find sufficient conditions for the continuity of R in some subsets of

its domain K. We address this task in the next corollaries. For the proof of theorem 9 and
corollaries 11-13, see appendix B.

Corollary 10. Ifh € (3,T), R(po) = po, and R(po) # R(0), then R is continuous at py.

Proof. By lemma 8, (M,,,) is satisfied. Since R(po) # R(0), theorem 9 implies the continuity
of R at py. O

Corollary 11. Suppose that h € (8, T), and let p = f(q) € K. If the following inequality holds:

h
/0 e (f(g+h—s) —f(q))ds >0, (10)

then R is continuous at p, R(p) > p,andv*(q) € (T, T+ ). Moreover, there exists r € (q,q +
h] such that u(r,p) = p, u’(r,p) > 0, and u(t,p) < p for all t € (q,r).

Corollary 12. Suppose that h € (8,T), b < 0. Then R is continuous at the point p, if

h
R(p) #R(0) and /O e*(f(v*(q) —s) —f(v"(¢)))ds < 0. (11

Corollary 13. Assume that either of the stability conditions in (6) holds and suppose that
h € (B,T). Then there are § > 0 and p* such that R(p*) = p* and R(p) > pforallp € [0,p*).
Furthermore, R is continuous on [0,p* + 0). If, in addition, (My) is satisfied for all p € K and
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[0,¢) C K is the maximal half-open interval where R is continuous then either [0,c] = K and

infR(K) > 0o0r R(c—) =0, R(c) =R(0) > 0.

Corollary 13 provides an alternative proof of the existence of at least one T—periodic solu-
tion for equation (4) with sine-like T-periodic continuous function (7). In [3] this result was
obtained by using the topological degree method.

2.4. Differentiability of the return map

In this subsection, we assume that § < h < T, f is T-periodic with sine-like shape, and either
of the two conditions in (6) holds. It is not difficult to prove the differentiability (possibly,
one-side differentiability) of the return map R in the case when the graph of u = u(z,p) on the
interval (q,v*(g)) is U-shaped in the sense of definition 7.

Due to theorem 9, R is continuous at p if u(¢,p) is U-shaped and its graph does not intersect
the set {(B+kT,0),k > 1} C R%. Assuming u(t,p) is U-shaped, we introduce the following
variational equation along u(z,p):

aw(r) +bw(q), if g <1< Ag),
w/(t) = aw(t) +bw(t—h), if Mq) <1< ulq), (12)
(a+b)w(1), if ulg) <1<v*(q),

where A(q) € {q+h,11(q)}.
Let v(t), t > 0, denote the solution of the initial value problem

u'(t) = au(r) + bu(t — h), (13)

u(s) =0, s € [—h,0), u(0)=1. (14)

Such v(?) is called the fundamental solution of the linear delay-differential equation (13), see
[22, section 1.5]. If w(¢) satisfies the variational equation (12), we obtain (see [22, chapter 1,
theorem 6.1]) that w(v*(q)) = A(q)w(q), where

at@) = (v +o /

To simplify and shorten our proofs, hereafter we make the additional assumption

(T) f is a C'-smooth T-periodic function having exactly two critical points on each half-
open interval of length 7. Moreover, a>0,a+b <0and h € (3,7).

For instance, (T) is fulfilled in the example considered in section 3.2.

Using (T), we can easily establish that u(¢,p) has at most one critical point on the time
interval (¢,7] N (g,q+ h). If p=0, this fact follows from corollary 27 in appendix B. Next,
lemma 5 shows that u(z,p) with p>0 decreases on some maximal non-empty interval I D
(g,min{q+h,5}). In fact, if g > j is the leftmost point satisfying f(§) = p, then

u'(t,p) = au(t,p) + bp +f(1) < (a+b)p+£(q) =0,

for all t € (¢, min{q + h,g}].

If u(z, p) has a leftmost critical point #,, € (g,q+ h) then 0 < u'’(t,,) = f'(t,,) implying that
B <ty <Tand0<u''(t,) if t,, < T. In particular, u(z,p) can have at most one critical point
on (g, T). Now, suppose that u’(T,p) = 0and t,, < T < g+ h. Then u(t,p) < p forall ¢ € (q,T)
so that v(r) = u'(t,p) satisfies v/(¢) = av(t) +f'(¢), v(T) =0, in some small neighbourhood
of T. Since f'(¢) is changing its sign at T from positive to negative, v(¢) is negative in some
small punctured vicinity of 7. Thus u(z,p) should have an additional local maximum point

n—q i
v(s)ds) elath) (v —p)
—q—h
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between #,, and T, a contradiction. In this way, u(¢,p) can have at most one critical point on
(¢.7T1N(q,q +h).

The above reasoning is useful in proving the following result (graphically presented on the
right frame of figure 1):

Lemma 14. Let (T) and (10) hold. Then the graph of u = u(t,p) is U-shaped.

Proof. With the notations of corollary 11 and the above comments, it suffices to establish that
t,, is the unique critical point of u(¢, p) on the interval (g, r). Indeed, if u(¢, p) has another critical
point £, > t,,, then t, € (T,r) C (T, B+ T) where u''(t.,p) =1 (t.) <0 (recall that /() <0
for t € (T, 3 + T)). Therefore t, is the unique critical point of u(z,p) on (T, r) where a local
maximum is reached. Thus u’(r,p) < 0, which is impossible by corollary 11. O

By the same arguments, if ¢+ h > T then u(t,p) can have at most one additional crit-
ical point on (7,q+ h] where a local maximum is reached. Clearly, this can happen only
when u(t,p) < p for t € (q,q + h]. Furthermore, suppose that there exists the leftmost point
r € (q,q + h] such that u(r,p) = p. We claim that then the inequality (10) is necessarily satis-
fied. Indeed, otherwise the solution u, () of the initial value problem u'(¢) = au(t) + bp + f(1),
u,(q) = p satisfies u,(q + ) < p (observe that the inequality u,(q + &) > p amounts to (10),
see computations in (B.2)). Thus u,(#) reaches its absolute maximum on [r,g+ h] at some
point * € (T,q + h]. Since h < T this implies that f(r*) > f(g) and, consequently, 0 = u, (t*) =
au(r*) +bp +f(t*) > ap + bp + f(*) = f(t*) — f(q) > 0, a contradiction.

Hence, under the assumptions of lemma 14, ;(g) < g + h if and only if the inequality (10)
holds. For simplicity, it is convenient to consider the following assumption:

(C) The set of all g € [0, 8) satisfying inequality (10) is a nonempty interval S =[5y, 3).

For example, condition (C) holds for equation (19) considered in section 3.2, with 3; =~
0.39289.

By the implicit function theorem, if (10) and (C) hold then the equation u(z,p(q)) =
p(q), where we denote p = f(q) = p(q), has a unique solution r = \(¢) € (g,q + h], smoothly
depending on g € [31,3). Also A(q) = u(q) if g € [81,8) and A\(q) =g+ h, if ¢ < B.

Next, if g € (81, 3), then

Aq)
p=eM0=9p 4 / A=) (bp + f(s))ds, (15)
q
so that
b\ ara@)-gq) _ D
L= (pla+b) +f(\@))) 9pAlg) + { 1+ | e H070 ==,

a

where J,\(g) denotes the partial derivation with respect to p of the composite function A o
q(p). Next, if g € (81, ), then maxye,—p, q u(s,p) = u(t,p) for t € [\(¢),v*(q)] and therefore

*

@
R(p) = u(v*(g),p) = pelatD " @-X@) +/ ? @0 @9 p(5)ds.
Aq)

Here v* is C'-smooth function of g as the solution of the equation F(v,q) = 0,where
F(v,q) = au(v,p(q)) + bp(q) +f(v), OuF(v.p) = au’(v,p) +f'(v) =f'(v) <O. A straight-
forward computation shows that

R/(P) = ”/(V* (q)7p)81,u* (q) + et (@0=Aa) _
pla+ b)e(a+b)(u*(q)f/\(q))ap)\(q) _ e(a+b)(u*(q)f/\(q))f()\(q) 8p)\(q) —
aD) (V" (D) =A(9) _ ,(at+b)(v"(9)—(q)) (p(a+b) +1(A(q))) B,\(q) =
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a

D) (" (@ =A@) ((1 n b) SO@-a) _ b) — Alg(p)).
a
As a consequence, we have the following result:

Theorem 15. Assume (T) and (C) hold, and let g € (81, 3). Then u(q) = M(q) and
. b b
1) = @t @—n(@) (142 patu@-a) _PY _ A _ |
R(p) =e ((1+2) 2) =), a0

Therefore, b > a/(e~" — 1) implies that R’ (p) > 0 for all p € (0,f(51)) C (0,p*). On the
other hand, if b < a/(e~" — 1) and the only root of equation

_b_
atb

fir)+ b/oﬂ e “flu+7)du=0 a7

is T = qo € (B1,B), then R’ (p) > 0 for p € (0,f(qo)) and R'(p) < O for p € (f(q0).f(51))-

Proof. Since A(q) — g < h for all g € (31,5), it follows that A(g) > 0 for all ¢ € (5, 0) if
h<(1/a)ln(b/(b+ a)). Note that, because of a + b < 0 < a, the latter inequality is equivalent
tob>a/(e”™ —1).

On the other hand, if & > (1/a)In(b/(b + a)), then by the intermediate value theorem, there
is qo € (B1,B) such that

1 b
—an— 1
e e

and therefore R’(p(qo)) = 0. Furthermore, recalling that py =f(qo) and using the above
expression for A\(qg) — ¢o, we obtain from (15) that g satisfies (17), which proves the unique-
ness of go (under our assumptions). Hence,

1 b
)\(q) —q< ;hl (b—.—a) ; for qc (qo,,@),

1 b
)\(q)fq> Eln (bﬂl) s fOrqe (ﬂ],qo),

which finalizes the proof. O

Example 16. For equation (19) in section 3.2, we get 5 =0.57, b < a/(e*ah —1), and we
numerically find §; ~ 0.39289, f(51) ~ 0.90754, gy~ 1.18459422, f(go) ~ 0.10831425.
Thus, the return map R is C'-smooth on the interval [0,0.9], where it has a unique critical
point po :f(qo). Moreover, R reaches its absolute maximum at p, (see figure 3).

It is quite remarkable that the expression for R’(p) in (16) does not depend on the derivat-
ives 9,1 (¢) and O, 4(g). As one can see in the proof of our next result, it is due to the following
three circumstances: a) that u(s,p) = p for all s € [g — h, q| (this plays a key role in eliminat-
ing the dependence on 0,4:(g)); b) that u’(v*(g),p) = 0 (this eliminates the dependence on
0,v*(q)); and c) that the graph of u(z,p) is U-shaped.

The next result can be viewed as a natural extension of theorem 15 for ¢ < 3;. The proof is
given in appendix B.

Theorem 17. Suppose that assumptions (T) and (C) are satisfied, equation (17) has a unique
root qo € (B1,8), and there is o € (0, 3) such that the solutions u(t,p(q)) of equation (4) are
U-shaped for all q € (o, B). If A(q) < 0 for q € (a, 81], then there is an increasing sequence
(either finite or infinite) of real numbers p;, with O <J~‘(q0) <pr < L<pp< <]~‘(a), such
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that R is differentiable on the intervals D = [0,p1),...,D;j = [pj—1,pj),.. ., strictly increasing

on the interval (0,£(qo)), and strictly decreasing on the interval (f(qo),p1) and on every D;, j >
1. Moreover, R(p) is right continuous at p; and R(pj—) =0, R(0) = R(p;). Finally, R' is
continuous on every D; and R’ (p) = A(q(p)), R’ (pj—) < R'(pj+).

The following corollary provides additional information on the number and periods of the
periodic solutions of (4). The case m = 2 is illustrated in figure 3.

Corollary 18. Let D; be the intervals defined in the statement of theorem 17. Suppose that
R(0) € D,, for some m > 1. Then equation (4) has m sine-like periodic solutions p;(t) with
minimal periods jT and such that (; := maxg p;j(f) < maxg pi(1) for each pair of indices j < k.

Proof. If R(0) € D,, then R has exactly m fixed points (; € D;, i =1,...,m. O

Remark 19. Let v denote the fundamental solution of (13), and consider the function

V(t) = v(t) + b/lth v(s)ds, t>0.

Note that V(0) = 1. Suppose that V() > O for ¢ € [0,) and V(¢) < Ofor s € (v, Bx). Assume
that all conditions of theorem 15 hold, and let each u(z,p) be U-shaped. Then the inequalities
o, < p(q) — g < B clearly guarantee that A(g) < 0.

As an application, consider equation (19) in section 3.2, for which o, = 1.2, 8, ~ 12.11.
Since u(g) —g > 1.57 > o, for g < qo, and p(qg) —q < 12.11 if p(q) < 1.57, ¢ = —0.5m,
we can conclude that R’ (p) < 0 for all p € (f(qo),p1) (in appendix C, we will prove that the
corresponding solutions u(t,p) are U-shaped).

3. Two examples

In this section, we give two applications of our results.

3.1. Equation with multiple attracting solutions

The equation

"(f) = — 1), 18
u(r) sG[trIl3a71)'(/2,t]u(S) +1() (18)
with f(£) = —sint 4 max;_3, »<r<;c0osT was studied in [43]. The function u; () = cost is an

evident solution of (18) and the existence of another 87-periodic solution u; was established
in the cited work. However, the full description of the dynamics of (18) was not provided in
[43]. This can be easily done by analysing the return map R for (18), whose graph is presen-
ted in figure 2. We see that, in fact, the minimal period of u, is 4. Moreover, u;, u, and
u3(t) = up(z 4 27) exhaust the set of all periodic solutions to (18), and u,, u3 attract all solu-
tions to (18) (clearly, excepting u;). Set ¢ = 7 /2 so that, for this particular value of ¢ and
f(t) =f(t—7/2), we have R(1) =1 =f(n/2), v* = 5n /4, ;=97 /4. Since v(s) = 1.57 +
1—s, s €[1.57,37), we easily find that R'(1) = (1 — 77 /4 + 7% /32)exp(—m/4) ~ —1.91,
which coincides with the unique non-zero characteristic multiplier determined by the vari-
ational equation along u; () = cost (see [43, theorem 1.2] for more details).
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Return map R The Second‘iteralion of the v‘eturn map R
T T T T T T T

R(p)
R(R(p))

0 0.2 0.4 0.6 08 1 12 14 16 1.8

Figure 2. Return map R for equation (18) (on the left) and its second iteration R? (on
the right). The dashed horizontal line corresponds to R(0). Note that R? and R share
one point of discontinuity (not appreciable on the right frame).

3.2. Chaotic behaviour in the Magomedov equation

Our main example is given by the equation

() = 0.32u(t) — 1 —sint. 19
u'(r) u(r) t_;}}gg@u(s) + 1 —sin (19)

The forcing term f(¢) in (18) is close to the function g(r) = 1 — sint. In fact, the replace-
ment of f(¢) with 1 —sint in (18) produces dynamically insignificant changes in the return
map so that the modified system has simple dynamics. However, by adding the linear term
0.32u(t) to (18), the behaviour of the solutions changes dramatically. Indeed, as we show
below, equation (19) exhibits chaotic behaviour.

We note that the specific choice of the parameters a =0.32 and b = —1 is mostly motiv-
ated by some advantages in the graphical representation of the solutions and in establish-
ing the continuity properties of the return map R : K — K, K =[0,2(a +b) "] =[0,2.94.. ],
shown in figure 3. In particular, our numerical simulations show that if we fix b = —1 and
let a € [0.32,0.54], for which the admissibility condition (6) holds, the map R has turbulent
trajectories. However, they can coexist with an attracting cycle possessing a large basin of
attraction. The latter possibility is excluded by choosing @ =0.32. In such a case, the right-
most continuous branch of the graph of R does not intersect the diagonal, compare with the
left part of figure 2.

Since the second condition in (6) holds and f =7 < h=1.57 < T=2m, we can apply
corollaries 11 and 12 to conclude that R is continuous on the interval [0,0.90...] C
K, where R(p)>p (by corollary 11) and R is continuous at each point of the set
R1([1.43...,2.94...]\ R(0)) (by corollary 12). Note that, after integrating, inequalities (10)
and (11) take the form Asing + Bcosg > 0 with some real coefficients A, B. Thus the above
numerical values (like 0.90...) can be found in closed form: e.g. 0.90... = (1 —singy)/0.68,
where cotgg = ((e?" —1)/a+1—a)(a+e™)~", a=0.32, h = 1.57. The graph of the return
map for equation (19) is numerically plotted in figure 3. Corollary 13 shows that the graph in
this figure is a continuous curve at least until its first intersection with the diagonal. Theorem 20
below describes in more detail the main continuity properties of the return map for (19). For
its proof, see appendix C.
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Figure 3. Graph of the return map R for equation (19) (discontinuous red solid curve).
The upper dashed horizontal line corresponds to R(0). The closed subintervals I
(brown), I (green), I3 (yellow) of K have pairwise disjoint interiors and satisfy the
relations I, U3 C 'R(h ), I, C R(Iz) , LUl C R(h)

Theorem 20. The return map R : K — K for (19) has exactly two points of discontinuity p| ~
1.2 and p; = 2.61 on the interval [0,p;] D R(K), where

R(p1) =R(p2) =R(0) ~2.23, R(pi—)=R(p—)=0.

Furthermore, R is differentiable on [0,1.316]\ {p1} and has a unique critical point py =~
0.108 on this interval, where it reaches its absolute maximum. Finally, R'(p1—) < R'(p1+),
R(p) > pforallp € [0,0.9] and R(R(0)) < 0.9.

This theorem implies the existence of a leftmost fixed point a € (0.9,p;) for R. Let py €
(0,p1) be defined by R(po) = R(0) and let x € («,p;) be sufficiently close to p; to satisfy
R (k) < po. Consider the following closed subintervals of K with pairwise disjoint interiors

I = LUO»a]v L= [aa’f}a L= [plvR(O)]'

These intervals are shown in figure 3. Clearly, the return map is continuous on each of these
intervals and

LU C R(]]), I C R(]z), LU C R(I3).
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Writing the inclusion I; C R(l,) in the form I, — I}, and similarly the others, we obtain the
following directed Markov graph associated with the collection I, 1, I3:

L

The adjacency matrix A = {a;;} of the graph is defined as follows: a; =1 if and only if
there is an edge from vertex I; to vertex I;; otherwise, a;; = 0. Thus:

01 1
A= 1 0 0
01 1

Consider the space Qi{ of all one-sided paths on the above Markov graph (for example,
w=(l,5,,11,I,1,,15,...)) provided with the metrizable topology of component-wise con-
vergence. It is easy to realize that le is a closed perfect subspace of the product space
{11,12,13}N so that it is a Cantor set. Let o : le — Qj denote the one-sided shift defined
by U({Ink}) = {Ink+1} (eg 0'(13,13,12711,12,11,13, .. ) = (13,12,11,12,11,13, ce. )) Since all ele-
ments of the matrix A3 are positive (hence, the matrix A is transitive [31, definition 1.9.6]),
the dynamical system o : Qi{ — Qj is topologically mixing and its periodic points are dense
in Qj\, see [31, proposition 1.9.9]. Then, an application of theorem 15.1.5, corollaries 1.9.5,
15.1.6, 15.1.8, and proposition 3.2.5 in [31] yields the following result (notice that the greatest
eigenvalue of A is A% = (v/5 +1)/2).

Theorem 21. There is a closed subset J C Iy U1, U Is and a continuous surjection h : J — Q;
such that R(J) C J and the following diagram is commutative.

J
h l l b
g
o 0

Moreover, to each periodic orbit w € Q; corresponds at least one periodic point of the
same period in h='(w) so that R : J — J has an infinite set of periodic solutions. In fact, the
number of different n-periodic orbits of R is bigger than or equal to the trace TrA", and the
topological entropy of R : J — J is at least log((v/5 +1)/2) > 0.

In this way, equation (19) has an infinite set of periodic solutions. In particular, figure 3
shows that it has a 27-periodic solution u; with & = max,cg i1 (¢) & 1.037, and a 47-periodic
solution uy with v = max,cp 2 (¢) ~ 1.65. The graph of the second iteration R? restricted to the
interval [v,7] suggests that R has an infinite set of unstable periodic solutions. In figure 4, we
represent two particular solutions of equation (19): the curve (¢, u(t)) of the solution u = u(z, 1),
£ < 350, and the projection of the solution u = u(#,0) on the plane (u(t),u(t — h)).
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Figure 4. On the left, we represent the solution u = u(t,1) of (19); on the right, the
projection of the solution u = u(#,0) of (19) on the plane (u(z,0),u(t — h,0)).

4. Discussion

Scalar delay differential equations proved to be particularly useful for understanding the
dynamics of key indicators for complex ‘non-mechanistic’ systems whose evolution at each
instant is determined not only by their current state but also by some specific states in their
immediate pre-history. Hutchinson’s equation [24] and Nicholson’s blowflies equations [20]
in ecology, the Mackey—Glass equations in physiology [49], and the Kalecki equation in
economics [30] are outstanding examples of such applications. Even if the action of recent
history is incorporated in the mentioned equations by means of very simple mechanisms, they
allowed to explain qualitative and, in some cases, quantitative dynamical characteristics of the
respective systems.

In this work, we show that the framework of the experienced utility theory, with its con-
cepts of instant and remembered utilities, and the peak-end rule suggesting the mechanism
of delayed action, is ideally adapted to the use of delay differential equations in the particular
form (1) of differential equations with maxima. Recall that the peak-end rule is a psychological
theory that states that two moments can serve as a proxy to evaluate and make decisions based
on certain types of past affective episodes: the moment of peak affect intensity and the end-
ing. Applying this theory to model the dynamics of experienced utility, we see that a suitable
mathematical evolution equation must take into account the peak and the end of each episode.
We assume here that one person’s life consists of a continuum of episodes.

Now, the studies [20, 49] also show that the actions of present and past states combine bet-
ter in an additive form (and not in a multiplicative form as in [24]). The latter consideration,
together with the hedonic adaptation principle, leads to the more specific form (5) of quasilin-
ear equation with maxima. Equation (5) is non-autonomous and it is natural to assume that in
general the action f(¢) of external stimuli is changing randomly. As an approximation for f(t),
we take in this work its periodic non-random component, which can be imposed by certain
repeated life routine.

Our studies of the periodic model (4), which considers only a linear combination of the
peak and the end states, show its robustness and versatility. Indeed, the return map R, that
keeps all essential information about the dynamics of the solutions, depends continuously on
parameters a,b,f (). On the other hand, equation (4) can generate not only globally stable
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periodic dynamics as in the example of section 3.1 (note there the period duplication effect)
but also turbulent behaviour as in the example of section 3.2.

Importantly, the proposed approach to equation (4) can be extended to general dissipat-
ive periodic equations with maxima (1) once the algebraic equation F(f,u,u) =0 admits a
unique continuous periodic solution u = f(r). Moreover, the sine-like shape of f(z) assumed
in this paper can be replaced by the less restrictive condition of its piece-wise monotonicity.
Certainly, such generalizations have significant computational, technical and expository costs;
e.g. the compact interval K in R : K — K should be replaced by a disjoint union of compact
segments. At the same time, the more simple model (4) already has a sufficiently representative
character. The mathematical method of this paper can be also useful in the case of aperiodic
piece-wise monotone continuous functions f(t) In such a case, the return map R: K — K
should be replaced by an appropriate non-autonomous discrete dynamical system [33].

To close this section, we would like to emphasize the importance of the measurement of
the hedonic experienced utility (‘happiness’), which constitutes not only a crucial issue in
psychological research, but also a great advance for economics [16]; moreover, ‘happiness
research represents a case of a productive cross—fertilization of two otherwise isolated fields:
economics and psychology’ [15]. But happiness is itself valuable without having to contribute
to anything else [41], and therefore it is an important objective to try to explain its behaviour,
not only with empirical studies [8], but also constructing and analysing mathematical models
[19, 46, 47]. Our model represents one step more in this direction and connects some theoret-
ical conclusions and experimentally observed dynamics of happiness. For instance, it gives a
purely mathematical argument in favour of the possibility of unpredictable behaviour of hap-
piness within a well-established life’s routine. Note also that the U-shape of the utility profile
represented in figure 1 is usually observed in empirical research [5, 19].
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Appendix A. Properties of the solutions of the equation with periodic external
stimuli

First we prove two important results concerning the monotonicity and boundedness properties
of the solutions to (4).

Lemma 22. Assume that h<T, a+ b # 0 and the T-periodic continuous function f has sine-
like shape. Let u : [o,+00) — R be a solution to (4). Then at least one of the following options
is satisfied:

(a) there exists T > « such that u strictly increases on [T,+00) and u(t) — +00 as t — +00;
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(b) there exists 7\ > a+ h such that U(t) := n[lax ]u(s) decreases on [11,+00) and u(t) —
sE[t—h,t

—0o0 as t — +00;

(c) there exist ) > a+hand e >0 such that ~ max  u(s) = u(m).
sE€[m—h,m+¢]

Proof. Consider the function U: (a+ h,+00) — R defined in (b). We have the following
three alternatives:

(a) U is decreasing on some interval (o,4o00). If, in addition U(400) = —o0, then the
second option of the lemma is satisfied. So, suppose that U(+o0) = U, is finite. Then u satis-
fies the differential equation

W' (t) = au(t) + bU, + bg(t) +£(1),

where g(1) ;== U(t) — U, = 0 fort > o, g(+00) =0.
If, in addition, @ =0, then b # 0 and

a0y =ule) + [ () ~Fias b [ (U4 T gls)s,

(e
- T
=T f(s)ds.
0
Evidently, U, 4+ b~ 'f= 0 (otherwise u(+00) exists and is infinite) so that

u(t) =pi(t) +&(1), t > o, (A.T)

where

t 1

@) =C+b [ 50)ts, piln=u(e)~C+ [ (7))
o o
C is some constant and g; is a monotone function, which is bounded because u and p; are
bounded. We set C = —b f:_oo g(s)ds, implying g (+00) = 0. Moreover,

pi(t) =f(r) = f(8), minf(s) < f(0) < maxf(s),

for some fixed 6 € [0, 7], so that p; has exactly two critical points on each half-closed interval
of length T. Thus p is a sine-like T-periodic function. However, since & < T, this implies that
U(t) cannot be monotone, a contradiction.

Consider now the case when a # 0. Similarly, we find that representation (A.1) is true in
this situation, with g; (+00) = 0 and p; being the unique T—periodic solution of the equation

X)) =ax(t) +£1(t), fi(t) :=bU,+£(2). (A2)

This will produce again a contradiction once it is established that the T—periodic function
p1 is sine-like. So, set f1(T1) = maxgfi(s), fi(T2) = mingfi(s) for some T} < T, < Ty +T.
First consider a < 0, then

_ 1(T2) :/ €a(tis)f1(T2)dS <pi(t) :/ ea(z—s)fl (s)ds < _fl (Zl).

a —o0

Therefore the graph of the solution x(¢), T} <t < Ty + T, belongs to the rectangle
[T1, Ty + T x (—a” fi(T2), —a” 'fi(T1))
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Tosi T s T +T ¢

Figure A1. Schematic representation of the zero isocline for (A.2) (black curve) and its
unique periodic solution p; (red curve).

of the extended phase plane, see figure Al. The zero isocline for (A.2) is given by the graph
of x=—a"'fi(1).

In the open region below this isocline, the solutions of (A.2) are increasing, while they
are decreasing above the nullcline. Take any point Py = (s,—a~'fi(s)) for s € (T}, T»); it is
easy to see that each trajectory of (A.2) through P; is strictly decreasing in the backward
direction and therefore has a unique intersection with the zero isocline on [T}, s]. This proves
that x = p; () has a unique intersection with x = —a~!f; (¢) on the interval [T, T] (say, at some
points, € (T1,T7)), itis strictly increasing on [T}, s, ] and strictly decreasing on some maximal
interval [s.,s*], where s* € (T>,T1 +T) and p;(s*) = —a~'fi(s*). By the same argument as
before, we obtain that x(¢) = p; () cannot cross the zero isocline for 7 € (s*,T) + T] a second
time and therefore p, is strictly increasing on [s*, Ty + T]. This means that p; has sine-like
form.

To complete the analysis of the first alternative, we should consider a>0. This case can
be easily reduced to the previous one since the periodic function ¢(¢) := p,(—t) satisfies the
equation ¢’ (f) = —aq(t) — f1(—1) so that ¢ has sine-like shape.

(b) Next, we consider the alternative when U is increasing on some interval (o,+00).
Evidently, if U is eventually strictly increasing, then U(¢) = u(t) for all sufficiently large
values of 7. This implies that u satisfies the equation u’(r) = (a+ b)u(t) +f(r) possessing
a unique T—periodic solution p(f) (as we have established in (a), p(¢) is sine-like). There-
fore u(t) = ce!**?)" 4 p(t) for some ¢ € R so that u() increases only if a4+ b > 0, ¢>0, with
u(t) — +oo. This is the first option in the statement of lemma 22.

So assume that U is increasing on (o, +00) and there exists a sequence of maximal intervals
[4j,b)], a; < bj < aj4+1, lima; = 400, such that U is constant on each of them. Then clearly the
third option of the lemma is satisfied for each 7, = a;.

(c) Finally, if U is not eventually monotone then there exist o + 2h < 51 < s, < s3 such that
U(s1) < U(sz) > U(s3). If § is the leftmost point where the absolute maximum of u(¢) on the
interval [sy, s3] is attained, then § € (s;,s3) and the third option of the lemma is satisfied with
T = 3‘

This completes the proof of lemma 22. O

Lemma 23. Assume that the trivial solution of the delay equation

u'(f) = au(t) +b max u(s) (A3)
SE[1—h,1]
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is uniformly asymptotically stable, that is, either of the following conditions holds:
ah<1 and b+a<0 or ah>1 and bh < —exp(ah—1). (A4)
Then every solution of (4) is bounded on each interval [r,+00) belonging to its domain.

Proof. First, we notice that, by [43, theorem 2.1], every non-trivial solution of (A.3) is eventu-
ally strictly monotone. This implies that the zero solution to (A.3) is uniformly exponentially
stable if and only if the characteristic function z —a — be~? associated to the linear delay-
differential equation (13) does not have nonnegative real zeros (hence, the exponential stability
of equation (13) implies the uniform exponential stability of (A.3)). It can be proved that this
property holds if and only if either of conditions in (A.4) holds, a stability result established
in [48].

In the following, we assume that equation (A.3) is uniformly exponentially stable. Then,
for every solution v: Ry — R of (A.3) there is a real number p such that > 2k >0 and
(il < 0.5||vanl], where ||¢|| = max{|¢(s)| : s € [=h,0]}, va(s) =v(d+s),s € [—h,0].

Assume that there is an unbounded solution u of (4). Then there exists a sequence #, — +00

such that |u(f, + p)| = [ma)i | |u(r)| — oo as n — oo. The sequence
re|tn,tat+ 1
(n) 1) = M te 0
Y max |u(s)|’ 0.,
SE [ty b+ 1]

is relatively compact in C[0, ], therefore it has a subsequence {v(")} uniformly converging to

an element v € C[0, iz]. Finally, v satisfies equation (A.3) on the interval [h, u] and 1 = |v(u)| =

[vull = n%ax] [v(r)| = ||van||, a contradiction with the definition of . O
rel0,p

Appendix B. Auxiliary results for the regularity of R

We begin by considering the initial value problem u(7) = f(7) for the ordinary differential
equation

u' (1) = (a+b)u(t) +£(1). (B.1)

Clearly, there exists some ¢ >0 such that () — f(7) does not change sign on each of the open
intervals (7 — 0,7), (7,0 + 7). A straightforward computation shows that the solution u of the
mentioned initial value problem satisfies, for all 0 < |[r — 7| < 4,

MO ) ) =

t—T1 t—T1

/ @D (£(1) _ £())(F(s) — f(r))ds > O.

This relation implies the following result:

Lemma24. If1 € (0,03) [respectively, T € (3,T)] then the solution u of the initial value prob-
lem u(t) = f(7) for (B.1) has a strict local maximum [respectively, strict local minimum] at
T. Moreover, T is the unique critical point of u in some open neighbourhood of . If T = 3,
then u'(t) > 0 for all t in some punctured neighbourhood of 5. If T =T, then u’(t) < 0 for all
t in some punctured neighbourhood of T.

Proof. Suppose, for example, that 7 = 8. Then u(7) =0 and u(r) < 0 forz € (7 — 9, 7). Since
a+ b < 0 this implies that u’(¢) > 0 for ¢t € (7 — 0, 7). Similarly, u(¢) > 0 for t € (7,6 + 7). If
we suppose that u’(sg) = 0 for some so € (7,0 + 7) then u(r) is strictly decreasing on (3, s0)
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(since f(¢) is strictly increasing on the same interval), a contradiction. The other cases can be
established in a similar fashion. O

Next, we will analyse the trajectory of the solution u(s,p) on the interval (g,v*) (see
section 2.2 and figure 1 for the notation related to the definition of R).

Lemma 25. Assume that (My) holds for some p =f(q) € K. Then there exists a maximal non-
empty interval (u(q),v*) such that u(t,p) > u(s,p),s € [t — h,t) for all t € (u(q),v™*). In par-
ticular, u'(t,p) > 0 (possibly, except for one point s = 3 + jT where u(s,p) = u’(s,p) = 0) and
u(t,p) satisfies (B.1) on (u(q),v*).

Proof. Indeed, otherwise there exists an increasing sequence f, < v*, t, — v* such that
u(t,) < u(s,) := max{u(s),s € [t, — h,t,]}. Since u(v* —h) < u(v*), we conclude that there
is v> 0 such that u(s,) = max{u(s),s € [v* —h —~,1,]} for all large n. Furthermore, s, — v*:
indeed, if s,, — o € [v* —h,v*) for some subsequence s,,, then u(c) = u(v*) that is not
allowed by (Mp). Thus u(s,) = max{u(s),s € [s, — h,1,]}.Since s, < t,, this contradicts the
definition of v*.

As a consequence, u(t,p) satisfies (B.1) on (u(g),v*). By lemma 24, u’(s,p) = 0 if and

only if s = 8 4 jT for some integer j and u(s,p) = f(5) = 0. O
Corollary 26. For each p € K, the inequality R(p) < max{f(r), t € R} holds.

Proof. Indeed, if R(p) = max{f(z), r € R} > p for some p € K, lemmas 8 and 25 imply that
u(t,p) satisfies (B.1) and increases on some left-hand side neighbourhood of v* =0 (mod T).
However, this contradicts the last assertion of lemma 24. O

Corollary 27. With the notations of lemma 25, 11(3) = B.

Proof. Lemma 24 implies that the solution of the initial problem u(/3,0) = 0 increases on
some right-hand side neighbourhood of /3. Therefore the graph of u(z,0) increases until its
first intersection at some point (z,R(0)), z € (3,8 + T), with the decreasing part of the graph
of the function f: [T, 3 4 T) — (0,400). For better visualization of this situation, see the graph
of the solution u = u(t, pg) with pg = 0 on the left frame of figure C1. [

Now we are in a condition to prove the main results in sections 2.3 and 2.4.

Proof of theorem 9. Due to the continuous dependence of solutions on the initial values,
u’(t,p) converges uniformly to u’(z,pg) on [u(q0),v*(q0)] as p — po. By lemma 4 and corol-
lary 26, v*(qo) € (joT.joT + B) for some jo. Set p.(qo) = max{joT,1(qgo)}. Then lemma
25 and corollary 27 assure that for every fixed small §>0 it holds that u'(¢,p) > 0 for all
1 € [ (qo) + 0,v*(qo) — 0) if p is sufficiently close to pg. This implies that u(t,p) > u(s,p),
s € [t—h,t), for t € (pu«(qo) + ,v*(go) — ) and therefore u(t,p) has a local maximum point
v(p) such that o(p) — v*(po) as p — po. In addition, u(z,p) is strictly monotone in some left
and in some right neighbourhoods of 7(p) and u(2(p),p) = max{u(s,p), s € [0(p) — h,0(p)]}.

Now, since § < h, by lemma 5, ©(p) is the absolute maximum point of u(z,p) on the
interval (j,T, /3 +joT) containing v*(go). Therefore, if we suppose that R has a discontinu-
ity at po, it should exist a sequence p; = f(qx) — po =f(go) and a positive integer j; < jo
such that v*(gx) € [jiT, 8 +j1T) and v*(q) — p* # v*(qo0) (mod T). Since u(v*(qi),pr) =
max{u(s,pr), s € [v*(qx) — h,v*(gx)]}. in view of the continuous dependence of u(t, p) on the
initial data, we conclude that

u(p*,po) = max{u(s,po), s € [u* — h,u*}.
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Now, if u* < 8+ T (i.e. u(n*,po) # 0), then by lemma 5, u(p*, po) = max{u(s,po), s €
[ —h,f+iT}and [iT,B+jiT) > p* =v*(qo) € [joT, B +,joT), a contradiction.
Therefore u* = 8+ T,

max{u(s,po), s € [* —h, "]} = u(p*,po) = u(B+j1T,po) =0,
so that R(po) = R(0) and R(pr) = u(v*(qx),px) = u(p*,po) = u(B+ jiT,po) = 0. O

Proof of corollary 11. Note that, for p =0, all conclusions of corollary 11 follow easily from
corollary 27 and theorem 9. Thus it suffices to take p >0. Consider the solution u(¢,p) on the
interval I, = (q,q + h]. If u(z,p) < p for all ¢ € I, and (10) holds, we obtain

q+h
u(q+h,p) = e"p+ / eI [bp + f(s)]ds =
q

b h
:e“hp—i-pa(e"h—l)—i-/ e“f(q+h—s)ds >p. (B.2)
0

This shows that u(r,p) = p at some leftmost point r € (¢,q +h] where u'(r,p) > 0. If

u'(r,p) =0, then p = u(r,p) = f(r), so that r € (8, T). Now, since u’(t,p) = au(t,p) +bp +
S () for t € [q, 1], the difference m(r) = u(t,p) — p satisfies the equation

m'(t) = am(t) +f(t) —f(r), m(r) =0, t€]q,r]

Thus, by the variation of constants formula, for all ¢ € (g, r),

(u(t,p) — p)exp(—ar) = / exp(—as)(f(s) — £(r))ds > 0,

proving that u(z,p) > p fort € (g, r), a contradiction. Thus u’(r,p) > 0 so that u(z,p) is increas-
ing on the non-empty interval (r,v*(q)), r = u(q), and R(p) > p. Clearly, v*(q) € (T,5+T)
(recall that h<T and u(f,p) >p >0 on (r,v*(q))) so that graph of the solution u(z,p),
t € [q,v*(gq)] does not intersect the set {(5 +,T,0) :j > 1}. Hence, by theorem 9, R is con-
tinuous at p if (10) holds. [

Proof of corollary 12. We claim that u(s,p) < u(v*,p) for all s € [v* — h,v*). Indeed, other-
wise max{u(s,p),s € [t — h,f]} > R(p) for all € [v* — h,v*] so that

v*

R(p) = ™ u(v® —h.p) + / I max ulw.p) +F(5))ds
v*—h weE([s—h,s

*

<EMR(p) + / T e IR (p) + f(5)]ds

v*—h
h
= e¢"R(p) —|—/ e“IbR(p) +f(v" —s)]lds < R(p),
0
a contradiction. Thus condition (M,) is satisfied and theorem 9 implies the continuity of R at
p once R(p) #R(0). O

Proof of corollary 13. In view of corollary 27, the graph of u(z,0) increases until its first
intersection at some point (z,R(0)), z € (T, 8+ T) with the decreasing part of the graph I'
of f: (T,8+T) — (0,400) (note that z>7 due to corollary 26)). Since u(r,0) has a strict
maximum at z, it follows that

u(z,0) > u(s,0), forall s € [z —h,z+ €]\ {z},
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for all small £ >0, and hence we conclude that for p>0 close to 0 the solutions u(z,p) have
also strict maxima at some points close to z. Therefore the continuous dependence of u(t,p)
on the variables (z, p) implies that the point (v*(g), R(p)) changes continuously belonging to
I" while R(p) > p. By the continuity of u(z,p), our argument still works when p belongs to
some right-hand neighbourhood of the least fixed point p*.

Finally, if (M) holds for all p € K, then condition R(p) > p can be omitted in the above
argumentation and R has a continuous graph until the first intersection of its closure with the
real axis at some point ¢, where R(c—) =0, R(c) = R(0) > 0.

O

Proof of theorem 17. By theorem 9, R is continuous at p if u(z,p) is U-shaped and if the
graph of u(t,p) does not intersect the set {(5 + k7,0) : k € N, k > 1} on the interval (¢,v*(q)).
Suppose that R is continuous at a point p = p(g), with g < 8;. We claim that R’ (p) = A(g).
Indeed, since g < 31, we have that A\(g) = g+ h < 11(g) and therefore, for all p close to p, it
holds

. v*(q) .
R(p) = u(v*(q),p) = u(ji(q), p)e @)@ @) 4 / D@D =)f (),
1u(q)

where, for brevity, we preserve the notations v*(g), +(q) for the composite functions v* o g(p)
and p o g(p). As we have mentioned, the equality ' (v*(g),p) = 0 eliminates the dependence
of R'(p) on 0,v*(q) and leads to the following expression:

R (p) = et @O=1D) (9, (u(1(q),p))) — ((a+b)u((q),p) +(1(9)Dpp(q))

Now, we have to calculate the partial derivative d,(u(1(q),p)). A key observation here is that,
since u(t,p) is U-shaped, it satisfies the following delay differential equation on [g, 1(g)]:

u' (1) = au(t) +bu(t — h) +£(1), t € [q,1u(q)], u(s) =p, s€[g—h,q].

Thus, using the above mentioned fundamental solution v and taking into account the initial
condition u(s,p) =p, s € [q — h,q], from [22, section 1.6] we obtain that

q 1(q)
ulpla).p) = v(uta) ~ g +bp [ viuta) =s—ds+ [ lule) oy

As a consequence, since u((q),p) = u(u(q) —h,p), v'(t) = av(t) + bv(t — h), t>0, we find
that

Oy(u(a).0)) = (1(a)-P)yla) + ) =) +0 [ lala) s s

+ (= (1(q) — g)p —v(u(q) — 9)f (q)
+bpv(u(q) —q —h) —bpv(i(q) — q))0pq

(@) )Op) + (1) ~ )+ [ vlula) =5 s
=[(a+b)u(u(q),r) +1(1(q))] Opri(q) +v(1(q) — q)
+ b/_h v(u(g) —s — h)ds.
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In this way,

—h
— Ag). (B3)

R (p) = @) (@) |:V(N(Q) Lo+ b/q V(u(q) — s — B)ds

Next, integrating equation (12) we find that A(g) is a combination of some elementary func-
tions depending on a, b, h, A(q), 11(q) and v*(q). The continuous dependence of A(q), u(q)
and v*(g) on g belonging to some small neighbourhood O of g implies the continuity of
R'(p) =A(q) in O.

Observe also that the sign of R’(p) is completely defined by the factor given in brackets
in (B.3). In view of the U-shaped form of u(z,p), the function p(g) is C'-smooth so that the
aforementioned factor depends continuously on p. Differently, v*(g) is discontinuous at the
pre images of the discontinuity points p; = f(g;) of R. Assuming that there exist R’ (p;+) and
R'(pj—), we find immediately that

R (pjt) = R (pj=)el T D=0 < R (p;—).

By corollary 13, either R is continuous on K or there exists a leftmost discontinuity point
p1. In the first case, R has a unique critical point f(7) on K and v*(g) < T+ 3 for all ¢. In the
second case, R is continuous and strictly decreasing on [f(7),p1), with R(p;—) = 0, R(0) =
R(p1).

Next, we claim that v*(g) > S+ T for p > p,. Indeed, if v*(g§) < 8+ T for some p =
£(@) > p1. then the negativity of R’ (p) = A(q) for q € [¢,qo], yields R(p) > R(p) > 0 for
all p € [f(qo),p]. Since p; € [f(qo),p), this contradicts the property R(p;—) = 0. Therefore,
considering the U-shaped form of u(t,p) and the inequality R’(p) < 0, we conclude that the
graph of u(t,p) does not contain the point (8 + T,0) for p > p;. This allows us to repeat the
argumentation of corollary 13 for the case when v*(g) € (2T, 8 + 2T). In particular, we obtain
that R is continuous and strictly decreasing on some maximal open right neighbourhood O
of p; and that, if p, := sup O, is an interior point of K, then R(p,—) =0, R(0) = R(p>).

By applying repeatedly the above procedure, we construct the sequence {p;} with the prop-
erties mentioned in the statement of the theorem. O

Appendix C. Proof of theorem 20

Here, we present a proof of theorem 20 based on the analysis of the explicit formulae for the
solutions of the initial value problem

u'(t) = au(t) —u(t—h) + 1 —sint, u(s) =p
= (1—sing)/d, s € [qg—h,q], (C.1)

where a=0.32, h=37/2, d=0.68 and g € [-0.57,0.4] (note that, by example 16, §; ~
0.39289 < 0.4). For our purposes, it suffices to integrate (C.1) on two steps: [¢,q + h] and
[g + h,q + 2h]. Equation (C.1) is linear inhomogeneous so that the following simple observa-
tion will be used repeatedly in the sequel: the unique periodic solution p(f) of the ordinary
differential equation u’ () = au(t) + ksin(¢ + ) has the form

k
u(t) = — sin(t+ ¢ + 6y), where 6, := arcsin

1
var+1 aZ+1
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Using this observation and integrating (C.1) on [g,q + h], we easily find that
1
a*+1

u(t) = Cosin(t+09) + Cy + Coe®=D where Co — ¢ = ‘%1, (C2)

Co=p—C, —Cysin(g+6y).

Hence, solving (C.1) on [g + h,q + 2h] amounts to the integration of the linear inhomogeneous
ordinary differential equation

u' (1) = au(t) — (Cosin(t — h+ 0y) 4+ Cy 4+ C2e*0~"=9) 41 —siny, (C.3)
subject to the initial condition
u(q+h) = —Cocos(q+0y) + Cy + Cre™ =: Cs. (C.4)
The solution of (C.3) and (C.4) is given by
u(t) = Ccos(1426p) 4 Cosin(r 4 6y) + Ct — Co(t — h — g)e® =9
+ G4, (C.5)

where
1
R
This implies that the first derivative u’(¢) is an analytic function of the variables g €
[-0.57,0.4] and 7 € [q + h,q + 2h]:
u' (1) = —C§sin(t+ 26p) + Cocos(t+0p) + [—Caa(t —h — q)
+(Cia— Cy)] =),

C—1

Gy C = — C; = C3 — Cjsin(q +26y) + Cycos(q + 0y) — C7.

Note also that
u(q+2h) —u(q+h) = —Cj cos(q +2600) — Cosin(q + 0p) + C; — Cohe™
+ Cie — Cs.
Lemma 28. For all g € [0.105,0.4], t € [q+ h,q + 2h), it holds that u’(t) > 0. Furthermore,
u(q+2h) —u(qg+h) > 0 forall g € [-0.12,0.4].
Proof. It is convenient to introduce the new variable s =t —q —h € [0,h] = [0, 1.57]. Then
we have to evaluate the elementary function

U(s,q) = Cosin(s + g+ 6p) + Cycos(s + g+ 260) + [—Cras + (Cra — Cp)] ¥

on the rectangle IT = [0, 1.57] x [0.105,0.4]. Since min{¥ (s, q), (s,q) € II} =0.0086..., the
first assertion of the lemma is proved. Similarly, the second conclusion follows from the com-
putation of min{u(g +2h) —u(g+h), g € [-0.12,0.4]} =~ 0.02057. O

Since [0,1.316] C [0,£(0.105)] and the inequality u’(r) > 0, t € [q + h,q + 2h], guarantees
that the only critical point of u(f) on the interval [g, g + 4] is a minimum point and that u(g) <
v*(g), we obtain the following result:

Corollary 29. for all p € [0,1.316], the solution u(t,p) is U-shaped on the interval (q,v*(q))
(see figure C1). Moreover, u(q) —q < 3 so that, by remark 19, it holds R'(p+) < 0 for all
p € (f(qo),1.316], where qo =~ 1.1845 is computed in example 16.

Lemma 30. The graph of u(t,p) does not contain the point (2.57,0) and condition (Mp) is
satisfied whenever p € T = [1.26,2/0.68].
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20

25 1

2 L L L L L L L 30

Figure C1. Graphs of solutions u = u(t,p;) on t € [gj, v (g;)] together with the sine-
like function f. On the left: p; = f(g;) = 0.125/1000j, j =0, ..., 10. On the right: p; =
Flg) =140.125v/15i, i=1,...11.

Proof. First, note that u(z,p) = u(t), t € [q,q+ 1.57], for all p € Z. In particular, u(f) has a
unique critical point (global minimum point) on the interval (¢,q + 1.57] so that u(f) < 0 on
[m,q+ 1.57] if u(w) < 0 and u(g+ 1.57) = C3 < 0. It is easy to check that these inequalities
hold for all g € [-0.57,0.15].

Next, for all ¢ € [g + 1.57, g + 37], we find that

u'(1,p) = 0.32u(t,p) — U(t,p) + 1 —sint < 0.32u(t,p) — u(t — h,p) + 1 — sinz.

Thus a standard comparison argument shows that u(z,p) < u(), r € [g+ 1.57,q + 37], where
u(t) is given by (C.5). Now, setting s =t — g — h € [0,h] = [0, 1.57], we present u(z) as

O(s,q) = Cysin(s + g +26p) — Cocos(s + g+ 6p) + Cf + [—Cas + C3] e®.

Then the inequality u(¢) < 0, 7 € [g + 1.57,2.57], holds for all g € [—0.57,0.15] if ®(s,q) <
0 on the set IT, = {(s,q) : s +¢ < 7,9 € [-0.57,0.15],5 > 0}. Now, we find that

max{®(s,q), (s,q) € L} = —0.0615... <O0.

Thus u(t,p) < 0 for all ¢ € [7,2.57] whenever g € [—0.57,0.15]. This proves the first asser-
tion of the lemma. Finally, since R(p) >0, condition (M) is satisfied for each p €
[7(0.15),f(—7/2)] = [1.25...,2/0.68). O

Now we are in a position to prove theorem 20.

Proof of theorem 20. Since the computation of R(p) for each given p = f(g) € K amounts
to the explicit integration of some first order inhomogeneous linear differential equations with
constant coefficients on a finite interval [g,v*(g)], and finding zeros of simple elementary
functions on the same interval, we will assume that the value of R(p) can be found with the
required accuracy. For example, the value of R(0) ~ 2.2 can be found by solving the equation
u(t) = f(r) on the interval [1.5,2.57], where u() is given by (C.2). In a similar way, we can
compute the value of R(R(0)) ~ 0.45.

Next, corollary 29 and remark 19 allow to apply theorem 17 on the g-interval (o, 8] =

t
(0.105,0.57]. In order to prove that the associated p-interval [z(b’)f(a)) =1[0,1.3...) con-
tains one point p; of discontinuity, it suffices to take g such that f(q) = 1.25 and to check that

533



Nonlinearity 36 (2023) 507 O Trofymchuk et al

v*(q) € (3.5m,4.57) (such g corresponds to g in the left frame of figure C1). This estab-
lishes all stated properties of R on the interval [0, 1.316]. Concerning the computation of the
approximate value of p;, note that p; € (a;,a) C [0,1.316] if R(a;) < R(az) (particularly,
we obtain immediately that p; € (0.9,1.25) while a more accurate similar estimate implies
that p; ~ 1.1).

Finally, lemma 30 shows that condition (M) is satisfied for all p € 7 = [1.26,2/0.68].
Then theorem 9 and the proof of corollary 13 imply that the restriction R : [p1,p2) — K
has continuous graph until the first eventual intersection of its closure with the real axis at
some point py, where R(p2—) =0, R(p2) = R(0) > 0. In order to establish the existence of
such p, and find its approximate value, it is enough to take p; :j‘(qi*) =1+0.125V15k €
{2.53...,2.60...}, with k=10, 11, and to note, after standard numerical-analytical estim-
ations, that v*(q7,) € (5.57,6.57) while v*(qj,) € (3.5m,4.57). See the right frame of
figure C1. O
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