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Abstract

For an equation’(t) = —x(t) + {f(x(t — h)), x € R, f/(0) = —1, ¢ > 0, with C3-
nonlinearity f which has a negative Schwarzian derivative and satisff&s) < 0 for
x # 0, we prove the convergence of all solutions to zero when lgoth1l > 0 and
h(¢ — 1)1/8 are less than some constant (independerit, @i. This result gives additional
insight to the conjecture about the equivalence between local and global asymptotical
stabilities in the Mackey—Glass type delay differential equations.
0 2002 Elsevier Science (USA). All rights reserved.
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1. Introduction and main results

In this note, we consider the delay differential equation

X'O)=—x®)+¢f(x(t —h), xeR, >0, Q)
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where f € C3(R, R) satisfies the following three basic properties (H):

(H1) xf(x) <Oforx #0andf'(0) = —1.

(H2) f is bounded below and there exists at most one poing R such that
f'(x*) = 0. Moreover, in this case* is a local extremum.

(H3) (Sf)(x) < O for all x # x*, whereSf = f” ()1 —3/2(f"H2(f)?is
the Schwarz derivative of .

We call such a delay equation the Mackey—Glass type equation.
The main purpose of this work is to give an additional insight to the following
conjecture:

(C) “Local asymptotic stability of the equilibriuen(z) = 0 of Eq. (1) implies
global asymptotic stability, that is, all solutions €f) converge to zero when
t tends to infinity’

This conjecture was first suggested by Smith (see [5,13]) for Nicholson’s
equation, while the above form (C) has been proposed in [11]. Moreover, the
celebrated Wright conjecture [7,9-12,15] can be viewed as a limit case of (C). It
should be noted here that the asymptotic stability of the linearized equation

xX(@)=—-x@)—tx@t—h), xekR, 2

is well studied (see [6] and Proposition 1 below), while there are only few results
about the global stability of (1) (e.g., see [5,11] for more references).

To formulate a criterion of asymptotical stability for Eq. (2), we define new
parameterg. =1/¢ > 0,v=exp(—h)/¢ > 0.

Proposition 1 [6]. Suppose that > 1, or u <1 and

®3)

— L arccos—
v > v1(u) = puex a % “))

NA .

Then Eq(2) is uniformly exponentially stable.
Next, the following global stability result was proved in [5]:

Proposition 2. Assume thay satisfies hypothesé¢ld). If > 1, or ©x < 1 and
w— p?
1+ u?

then the steady statgr) = 0 attracts all solutionsc(r) of Eq.(1): x(z) — 0 as
t — +4o0.

(4)

v o(p) =
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Fig. 1. Domains of global and local stability.

Remark 3. To our best knowledge, the global stability condition (4) (formulated
for the Mackey—Glass type Eq. (1)) seems to be the best result ever reported in
the literature.

The two solid lines in Fig. 1 represent the boundaries of local and global
stability regions described in Propositions 1 and 2:do¢ (0, 1), they are de-
termined by the functions = v1 () andv = va(u) (Whereva () > vi(uw)).

From Fig. 1, we observe that there is a rather good agreement between the
solid curves for sufficiently large (e.g., for¢ > 5 that corresponds ta < 0.2),
while considerable discrepancy occurs for valgetose tor = 1. This difference
in the behavior of these curves reaches its maximum at the gojmd = (1, 0),
where the boundary of the local stability domain given by (3) ¢fog 1) with
C®°-smoothness is continued by its other paet 0 (for > 1). Indeed, at the
same pointu, v) = (1, 0) the tangent line of the global stability curve undergoes
an abrupt change. Hence, surprisingly, in order to construct a counter-example to
(C), we should work out parameteus v close to(u, v) = (1, 0).

Moreover, there is another fact motivating the reconsideration of (C). To see
this, we first state the following result from [8]:

Proposition 4. Let x> 0and0 < v < v3(u) = IN[(1+ 1)/ (1 + 1?)]. Then there
exists a periodic functiom : R — [0, 2] such that the trivial solution to

x/(t)z—x(t)—i—g“f(x(t—t(t))), xeR, ¢ >0, (5)
is unstable. On the other handif> v3(w), then the steady stat€r) = 0 of the
equation

X)) =—-xO)+EO f(x(t —1()), x€eR, (6)

is uniformly exponentially stable for every continuous functioR — [0, 2] and
for everyé € L*°(R, Ry) with esssupp £(r) <¢.
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Remark 5. The graph of the functionz () is depicted in Fig. 1 by a dashed line
(notice thatg() = IN(L+ (1 — 1?) /(L4 p?) > (1 — 1?)/ (L + ) = va(w)).

Clearly, in view of the similarity of (1) and (5), Proposition 4 provides another
reason to reconsider the global asymptotical stability of (1yfervi(u) (at least
in the vicinity of u = 1).

Therefore, it is important to explain the difference in the behavior of solid
curves pictured in Fig. 1. We will show below that this difference is only due to
the insufficiently sharp form of the stability conditions given in Proposition 2.
Indeed, letD C Ri be the set of all parametets v for which Eq. (1) is globally
asymptotically stable, and definE: R, — [0,0.25] by I'(x) = inf{v > O:

{u} x (v, +00) C D}. The next theorem represents the main result of the present
note, and states that functiomsand " have the same slope at= 1.

Theorem 6. There exisk = ¢ > 0, K = Ky > 0 such that Eq(1) is globally
stable wheneved < ¢ — 1< € and

0<h<K(—-1718 (7)

As a consequence; is differentiable ajx = 1, and "' (1) = 0.

Remark 7.

(a) Notice thatI"'(u) =0 for u > 1 and O< I'(n) < vo(u) if w € (0,1).
Conjecture (C) states th@t(i) = v1(u); however, we are now even unable
to prove the continuity of” over the interval(0, 1), althoughI" is lower
semi-continuous thanks to the robustness of global attractivity.

(b) It should be noted that, in a small neighbourhoodiofv) = (1, 0), Eq. (1)
can be viewed as a singularly perturbed equation [6, Section 12.7]

ex'(t) = —x(0) +¢f(x(r— 1), e=h"".

It is known [6, Theorem 7.2] that assumptions (H) imply the existence
of § > 0 such that, for everyu,v) € {(n,v): 1—8<pu<1l1 O0<v<
v1(w)}, EQ. (1) has a unique slowly oscillating periodic solution with period
T(h,¢)=2h+2+ 0" 1+ ¢ —1)).

(c) It can be proved that the s&t is open (see [7,14]). If, moreover, one can
show thatD is closed in the metric spadéw, v) € (0, +00)% v > v1(1)
for © € (0, 1]}, the global stability conjecture will be established (compare
with [7, p. 65]). However, we do not even knowiif is simply connected (or
connected).

Theorem 6 will be obtained as an easy consequence of several asymptotic
estimations, one of which is stated below:
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Theorem 8. Letv(z, i) be the fundamental solution of the linear delay differential
equation

X)) =—x@) —x@t —h). (8)
Then, for every > 2, there existig = ho(«) > 0, ¢ = c(«) > 0 such that

2t
lo@t, )| <chexpl ——5 ), t>0, 9)
ahs
for all 2 > ho.
Remark 9.

(a) By definition,v(-, h):[—h, +00) — R is the solution of Eq. (8) satisfying
v(0,h) =1 andv(s, h) =0 foralls € [—h, 0).

(b) It is not difficult to show (see also Remark 14) that the faétot from the
exponent in the right-hand side of (9) is the best possible (asymptotically).
However, we can not say the same abaubefore the exponential (for
example, we do not know # could be replaced by In).

(c) We can take («) = ba (o — 2)~1, whereb > 0 does not depend an

Finally, we will also need the following simple statement, which is an im-
mediate consequence of Proposition 2 and the well-known results about period-
doubling bifurcation for one-dimensional dynamical systems defined by functions
with negative Schwarzian (e.g., see [2, p. 92]):

Theorem 10. There existe; = €1(f) > 0, K1 = K1(f) > 0 such that every
bounded solution : R — R of Eq.(1) satisfies the inequality

suplx ()] < Ka(¢ - D2 (10)
te
for0<¢s—1<er.

The paper is organized as follows. The proof of Theorem 8, which is the most
difficult ingredient of our note, can be found in the second section. In Section 3
we prove Theorem 10 and our main result (Theorem 6), and in the last section we
discuss some other aspects of the global stability conjecture (C).

2. Proof of Theorem 8
We will use the following representation of the fundamental solution

T
1 .
.y = lim — [(EREED 0 (11)
T— oo 270 p(c+is, h)
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wherep(z) = p(z, h) = z + 1+ exp(—zh) is the characteristic quasipolynomial
associated with Eq. (8) and> max{)ii: p(r,h) = 0} (see [6, Section 1.5]).
First we get an asymptotic estimate f@r(z, )| along the vertical lines defined
byA(s) =a+is,s eR:

Lemma 11. Let « > 2 and definef = (2« + 1)/(e — 2) > 0. There exists
h1=h1(x) > 0such that

72

Bh?

forall s € [0, 27/ h], a € [—72/(«h®), 0], h > h1.

|p(A(9))| = (12)

Proof. We prove the lemma by contradiction. Let us suppose that there exist
hi — +00, s € [0, 27/ hi] anday, € [—r2/(ah?), 0] such that

|p(ak + isk)| < nz/(ﬂhf). (13)
Without loss of generality, we can assume thak;, — ¢ < [0, 27] and
akhlf — ¥ € [-?/a, 0] ask — o0o. Since
lim sy = lim ar = lim agh, =0,
k— o0 k—o00 k— 00
we obtain from (13) that lin o | p(ax + isx)| = |1 + exp(—i¢)| = 0. Hence
¢ = andex = sghy — m — 0 whenk — oo.
Now, it is easy to see that the inequality (13) implies
2

T > ‘TL' + ex + exp(—arhy)hi sinek]
Bhi

and
22
— > |ay +1— exp(—ayhy) COSey|.
Bz |ak (—akhi) |

The first of these inequalities is possible foriabnly if hye; — —m ask — oo.
The second inequality can be written as

72/B > |axh? + hZ(1 — exp(—axh)) + hi (1 — cose) exp(—axhy)
and takes the following limit form (wheh— o0):
(@ — 2)7?
20

bl

72/B =\ +7%/2| > 722 — n?ja =

a contradiction, proving Lemma 11.0

Lemma 12. For @ > 2, there existdio = ho(«) > 0 such that for everyi > ho,
s >2mn/h,a =—m2%/(ah®) we have

maxs — 3,0} < v (1+a)2 + 52 — exp(—ah) < |p(A(s))| <s+3.  (14)
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Proof. We have, for > 0 and sufficiently largé > 0, that

|p(A(9))| = |a +is + 1+ exp(—ah) exp(—ish)|
<1+ |al+s+exp(—ah) <3+s.
On the other hand, by the triangular inequality,

|p(A())| = |a +is + 1+ exp(—ah) exp(—ish)|
> la+is+ 1| — |exp(—ah) exp(—ish)|

=+v A+ a)2+ 52 —exp(—ah),

the last part being positive far> 2/ h andh large enough. O

Corollary 13. We have, for eactw > 2 and all 4 > hi(«), that o(h) =
maxfr: p(r, h) =0} < —m2/(ah®).

Proof. Itis well known that Eq. (8) is uniformly stable for evely> 0 (see, e.g.,
[6, p. 154]), so thab (h) < 0. It suffices now to apply Lemmas 11 and 12 to
complete the proof. O

Remark 14. In fact, we claim that (k) ~ —72/(2h3) for h>> 1.
Indeed, we will establish below that the roatg) = a(h) £ ib(h), a(h) <O,
b(h) > 0 of p(r, h) = 0 have the following asymptotic representationgfop 1:

A (h) ~ —?(1+2k)%/(2h3) £ (1 + 2k)i/h, ke{0,1,2,...). (15)

Moreover, it is easy to prove that, far> 1, there exists a unique pair of conjugate
rootsA(h) such thaiI(A(h))|h < 7. Thus, from (15) we have that, for large
o (h) = R(A(h)) ~ —2/(2h3), proving our claim.

To establish (15), we observe that, due to the implicit function theokeém),
depends smoothly on the positive parameter 1. Therefore, rewriting the
characteristic equation in the form

a(h) + 1+ exp(—a(h)h) cogb(h)h) =0, (16)
b(h) = exp(—a(h)h) sin(b(h)h), (17)

and analyzing Eq. (17), we see that there eXistq0, 1, 2, .. .} such thab(h)h
[2nk, w + 27k] for all h > 1 (notice that the characteristic equation has no real
roots fors > 1). This means that ligL, » b(h) = 0, so that, by (17)b(h)h —

2wk orb(h)h — 7 + 27k whenh — oo. We claim thab(h)h — 7 +2rk. Indeed
b(h)h — 27k and Eq. (16) imply that (h) < —1 for largeh. This estimate allows

us to conclude, again due to (16), thatjin.» a(h) = —oo so that

lim_h=_lim_[a(n)|"In[|at) +1|/ cos(b (k)] =0.

h—+00
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a contradiction. Thu$(h)h = 7w (1 + 2k) + e(h), wheree(h) — 0 ash — oo.
Using this representation éf{4)h, we rewrite Egs. (16) and (17) as

a(h) +1=exp(—a(h)h) code(h)), (18)

7 (1+ 2k) + e(h) = — exp(—a(h)h)h sin(e(h)). (19)
Now, Eq. (18) implies that(h) = a(h)h — 0 for h — oco. Therefore, by (19),
we gete(h)h = —n(1+ 2k) + o(1/h). Finally, Eq. (18) gives(h)(1+ 0o(1)) =
—(€2(h)/2)(1+ o(1)), and therefore

=W —e%(h)  —m*(142k)?
A= 2h 213

Lemma 15. For eacha > 2, there existhg = ho(a) > 0 and K2 = Ko (a) > 0
such that, for everyt > ho, we have

T

< Koh. (20)

eist ds
lim / -
T—+oo ) p(—m2/(ah3)+is)

Proof. First notice that the value of the integral is a real number, so that we have
to consider only the real part of the integrasiti /¢ (s). Since this real part is an
even function, it suffices to prove that

27/ h

Ll = f R[e™/q(s)]ds| < K3h,
0

1

2l =| [ W[ fa)]ds| < Kah.

27/ h
and

+00

|I3] = /m[el’”/q(s)]ds < Ksh

1

for somek3, K4, K5 > 0 and sufficiently largé.
Now, by Lemma 11, we have that, fbr> hq,

21/ h
1l < / ()| s < @n/h)(x2/(BrD) "t = 28k /7 = Kah.
0

where = 2a + 1) /(a — 2).
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Next, by Lemma 12,

I ds <
|I2] < flq(s)| $ S /|\/W b(h)|

21 /h
wherea(h) = 1 — 72/(«h®) andb(h) = exp(r2/(ah?)). For sufficiently large:

ands € [27/ h, 1), we have

Va2(h) +s2 —b(h) > 0, 1/a(h) <1+m/h,
T it 24 by aty <3,

a(h)h = h
so that

1/a(h) 4
S

1
ds
e [ = _
= va“(h) +s4—b(h) 2 /() V1+4s4—b(h)/a(h)

147/h 1
ds ds

<
/«/1+s2—b(h)/a(h) ) V1H G+ /)2 = b /a(h)

n/h

:/ V1+(s+m/h)2+ b(h)/a(h)

1+ (s+7m/h)2— bz(h)/az(h)

3ds — R ()
(s +7/h)2+ (1 —b%(h)/a?(h)) .

Now, since

lim RWh L=

h—+00

3«/0{/2
/ (u+¢a/ 1= Keeke

we obtain thatlz| < (K + 1)h = Kah for sufficiently largeh.

Next,
cogs(r + h)) exp(m?/(ah?)) + codst) (—m 2/ (ah®) + oy

+
[ =
3 / 1g(s)12

1
+00

s sin(st)
ds = I+ Is.
/ g (s)]?
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Now, for larger,
+00 +00
14| <3 / lq(s)| ?ds <3 / (Vs2+0.75— 1.25) %ds < K7 €R,
1 1

so that we only have to evaluale We obtain that

ds =1+ I7,

+00 400
I :/ (s — g (s)]) sin(st) ds + sin(st)
g (s)1? J g (s)|

where, in virtue of (14),

+00
-2
161 <3 [ law)| Pds < K7
1

Finally, using Lemma 12 again, we get

+
b / Sln(st)

1

/ Is — g (s)IIsin(s?)] J
N
slq(s)]

_ 1
SS/S(S) 1ds<3/ ds
) s J s|va?(h) + 5% — b(h)|

+00

+00

sin(u)
/=

t

+o00
’ = = Ks,

3 / - ;<3 / & 5 < K7,
S [Va?(h) + 52 = b(h)| S (Vs?+0.75-1.25)
/ sin(st) ds| =
N

and since, foralt > 0,4 > 0,
+oo
Sin(u)
du| <su du
x>0 u
1 X

we have the necessary estimahg < Kg9. O

Proof of Theorem 8. Now we can end the proof of Theorem 8 noting that,
by (11),

exp(—m2t /(ah®))
27

o, h)| <

/ expist) J
To4oo | p(—m2/(@h®) +is, by

< f—;h exp(—n%t/(ah®)) = chexp(—7%t/(@h®). O
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3. Proof of Theorems6 and 10
In order to prove Theorem 10, we will need the following result:

Proposition 16. Assume thay satisfies hypothes¢Bl1), (H2)and setf; =¢f.
Then we have

(1) The setd; = f;"(’, fg (R) is global attractor of the map;; in particular,
A; = [Cl{, b{] andf;(A;) = A{.

(2) Every bounded solution:R — R to Eq. (1) satisfiesu; < x(z) < b, for all
teR.

(3) If A= {O}, thenlimgﬁl ar = ”mg*)]_ b{ =0.

(4) If f{/ (x) <Oforall x A;, thenf; (Cl{) = b; and f{ (b;) =dac.

Proof. For (1) and (3), see [7, Sections 2.4, 2.5]; (4) is an immediate consequence
of (1), and, finally, (2) was established in [5]0

Proof of Theorem 10. First, note that hypotheses (H1), (H2) imply the existence
of somes-neighbourhood’/ of x =0, wheref is strictly decreasingf{’(x) <0,

x € U, ¢ > 0. Next we claim thatd; = {0}. Indeed, since f2)’(0) = 1 and
(f2)”(0) = 0 we obtain, in view of the negativity a$f?2, that (f2)"(0) < 0.
Therefore zero is an asymptotically stable point ftf (see, for example, [3,
p. 25]), and hence fof. By [5, Proposition 7], these facts guarantee the global
stability of the fixed poink =0 to f, thatis,A; = {0}.

Next, by Proposition 16(3), there exists> 0 such thatA, Cc U for 0 <
¢ —1<o.Sincef is decreasing o/ we have, in view of Proposition 16(4),
that f; (ar) = be, fr (b)) = ag.

Now, by [2, Corollary 12.8], there exists a subdgf C U and a smooth
function £ :Ug — [1, +00), £(0) =1, £'(0) =0, £”(p) > 0 for all p € Uy,
such thatf3, (p) = p and fe»(p) # p. Thus, for; — 1*, we have that
¢ = &(p1) = &(p2) for some p1, p2 € Ug, p1 < 0 < po. Moreover, the nega-
tivity of SfZ and monotonicity off? inside U imply that p1 and p, are the
unique nonzero fixed points fg‘r{2 (in particular, f; (p1) = p2). Hence,p1 = a¢,
p2 = b, and, by Proposition 16(2), every bounded solutiofR — R to Eq. (1)
satisfies the inequality

p1<x()<p2, teR

Finally, using the relations(p;) = ¢, i = 1, 2, and the properties df, we obtain
(10) for¢ — 1 > 0 sufficiently small. O

Proof of Theorem 6. Letz:R — R be a bounded solution to Eq. (1). The@)
satisfies the following linear equation

x'(1) = —x(t) —x(t —h) + a(1), (21)
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wherea(t) = ¢ f(z(t — h)) + z(t — h). Take nowe; € (0, 1), K1 > 0 as indicated
in Theorem 10. Then for & ¢ — 1 < €1, we have that

la@)| < Kic —DY?  max |1+
lyI<K1(¢-DY/2

<Ki¢—-1  max [ DY+ 0]] <K@ -1,
lyI<K1(t—1Y2

whereK = K1(1+2K1maXy <k, | /).
Since Eq. (21) is asymptotically stable an@) is bounded and continuous, it
has a unique bounded solutie(r) = z(7) defined for allx € R. Moreover,

t
z(t) = / v(t — s, h)a(s)ds,

so that, using Theorem 8 for an arbitrarily fixed- 2, we get

t
|z <K& -1 / ot — s, )| ds

72(t —
<K(§ 1)/chexp( ¢ S)> s

Kca

(¢ — Dh* < (1/2) K¢ — D2,

for h > ho whenevem(g —1)Y8 < K = /7 (K1/(2Kca))Y/*. By repeating the
same argument, we can prove that)| < (1/2)"K1(¢; — 1)/2 for all r € R and
ne€N. Thusz(r) =0

Without loss of generality, we can assume that< K (¢ — 1)~1/8 for all
¢ €[1,1+ e1]. Hence we have shown above that Eq. (1) is globally stable for
ho <h < K( —1)~%8 and 0< ¢ — 1 < €1. Finally, Proposition 2 permits us
to find e2 > 0 such that 0< ¢ — 1 < ¢2 implies that (1) is globally stable for
0 < h < hg. Thus inequality (7) is proved choosiag= min{e1, €2}.

Now, (7) implies that, fos > 0 sufficiently small, 0< I'(1 —8) < F(1 — §),
whereF () = pexp{—K ((1/u) — 1)~ Y8},

Since limy_, o+ F(1—68)/8 = F/(17) =0, we can conclude thd@’'(1) =0. O

4. Remarksand discussion
It is easy to see that the study of global asymptotical stability of the unique

positive equilibrium to the following well-known (e.g., see [1,4,5,9,13]) delay
equations (with positive, a, x)
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ren ga" .
x'(t)=—x()+ PR ) n>1 (Mackey-Glass) (22)
x'(t) = —x(t) + ¢ exp(—ax(t — h)) (Lasota—Wazewska) (23)

can be reduced, via a simple change (a translation) of variable, to the investigation
of global attractivity of the trivial solution to Eg. (1). In some cases (e.g., when
is close to 1), the same observation is also valid for the equations

o ¢ax(t —h) .
x'(t)=—x()+ T —h ) n>1 (Mackey-Glass) (24)
x'(t) = —x(t) 4+ ¢x(t — h)exp(—ax(t —h)) (Nicholson) (25)

As mentioned before (see Propositions 1, 2 and [5]), in the dowain) € R2,
the decay dominance condition>1¢ (or u > 1) determines all parameters for
which Eg. (1) (and, in particular, (22)—(25)) is absolutely stable (we recall here
that “absolute stability” means “delay independent stability”).

Now let¢ > 1 and denote b¥.(¢) the global stability delay threshold.. (¢)
is the maximal positive number for which the inequality< h.(¢) implies
convergence of all solutions to the equilibrium. By the above comments, it is
natural to expect that.(¢) — +oo0 as¢ — 1+ (while the folklore statement:
“Small delays are harmlessmplies that 2. > 0). Indeed, by Proposition 2,
he(?) = Inc +¢H —In(¢ — 1) ~ —In(¢ — 1), so that for everys > 0 the
Mackey—Glass delay differential equation can be stabilized by chogsind
sufficiently close to 1. This means that even large delays are harmless near the
boundary of absolute stability. Moreover, Theorem 6 has improved the above
logarithmic estimation of:.(¢) near¢ = 1 saying that we have there, for some
K >0,e>0,

he@) =K@ -1 ifo<c—1<e. (26)

Now, let us indicate briefly some aspects of the considered problem which
could be studied in the future.

First, it seems that the exponent/8 in (26) can be significantly improved
(up to —1/2, if the global stability conjecture were true). Unfortunately, our
method (when we establish some estimates for the global attractivity domain
(Theorem 10) and then use the contractivity argument inside this domain (The-
orem 8)) does not allow this improvement at all. The best estimate within our
approach is-1/6, and it could be reached if we were able to show thaefore
the exponential in (9) is not necessary (or at least could be replaced witkde
also Remark 9).

Second, it will be very interesting to obtain sotkiee in (26) explicitly. Also,
in the statement of Theorem 6, both constants depend on the nonlinfavity
hope that this dependence can be discarded with a different approach.

Finally, we note that at the moment of the acceptance of this paper we already
proved that the inequality > v3(u), u € (0,1) (see Proposition 4) is also
sufficient for the global stability in (1) (see [12]).
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