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For a system of delayed neural networks of Hopfield type, we deal
with the study of global attractivity, multistability, and bifurcations.
In general, we do not assume monotonicity conditions in the
activation functions. For some architectures of the network and
for some families of activation functions, we get optimal results
on global attractivity. Our approach relies on a link between a
system of functional differential equations and a finite-dimensional
discrete dynamical system. For it, we introduce the notion of strong
attractor for a discrete dynamical system, which is more restrictive
than the usual concept of attractor when the dimension of the
system is higher than one. Our principal result shows that a strong
attractor of a discrete map gives a globally attractive equilibrium
of a corresponding system of delay differential equations. Our
abstract setting is not limited to applications in systems of neural
networks; we illustrate its use in an equation with distributed
delay motivated by biological models. We also obtain some results
for neural systems with variable coefficients.
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1. Introduction

In the last decades, there has been an increasing interest in the theory of artificial networks. One
of the most famous model is given by the system of delay differential equations

u′
i(t) = −ui(t) +

s∑

j=1

wij f j
(
u j(t − τi j)

)
, 1 � i � s, (1.1)
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where ui(t) represents the voltage on the input of neuron i at time t , τi j denote the synaptic delays
and f j : R → R are the neuron activation functions. The matrix W = (wij) measures the connection
strengths between the neurons. If the output from neuron j excites neuron i then wij � 0 and in
the case of inhibitory interaction wij � 0. System (1.1) without delays was first proposed by Hopfield
in [12,13] and later modified by Marcus and Westervelt in [26] incorporating time delays. Such time
delays arise from axonal conduction time, distance between the neurons, or finite switching speeds
of neurons.

The previous system has been applied in different areas such as classification, associative mem-
ory, pattern recognition, parallel computations, and optimization. When a neural circuit is used as
an associative memory, stable equilibria correspond with static memory (retrievable) and stable peri-
odic orbits are temporally patterned spike trains. In potential applications of storage and retrieval of
information, it is desirable for (1.1) to posses multiple stable patterns (multistability). Unfortunately,
most of the network architectures with the usual sigmoid activation functions present a low memory
capacity [27]. Motivated by this fact, Morita in [27] and Yoshizawa, Morita, and Amari in [44] have
proved that the introduction of a non-monotonic activation function in (1.1) considerably increases its
memory capacity. This improvement has deep practical implications in many real situations.

The main goal for system (1.1) is to understand the dynamical behaviors of all trajectories. Due to
its complexity, an analysis of bifurcation or stability is still a difficult problem. Moreover, it remains
poorly understood how the dynamical behavior depends on the network architecture since the tech-
nical difficulties in the study of (1.1) usually impose the restriction to networks of either small size
or simple connection architectures. These facts have inspired a large amount of papers; most of them
focus on the global convergence to an equilibrium by using Lyapunov functions, the effect of the
signal transmission delay, some interesting local phenomena, and multistability by using monotone
arguments.

The purpose of this paper is to provide an analytic study of global stability, multistability, and
bifurcation in Hopfield’s model without assuming monotonicity on f . Our strategy is to link some
dynamical behaviors of (1.1) with a discrete system in finite dimension. As we will see, some of our
criteria of multistability and global stability are optimal. On the other hand, with our approach we
derive criteria of bifurcation without using hard computations of characteristic values or center man-
ifolds. Note that we are dealing with non-monotone systems; comparing with the little progress of
the global dynamics in this setting, remarkable developments have been done in the case of mono-
tone networks where generic convergence is guaranteed by the theory of monotone systems [33]. It is
also important to recall that the connection of some dynamical behaviors of a discrete equation with
some properties of a scalar delay differential equation (DDE) is not new; a systematic approach was
initiated by early papers of Mallet-Paret and Nussbaum [24,25], and Ivanov and Sharkovsky [16]; for
further generalizations and applications, see, e.g., [11,15,21,22,30,42,43]. The novelty of our method is
the connection between systems of DDEs and discrete dynamical systems of dimension higher than
one, and the link of the latter with one-dimensional maps. For it, we introduce the notion of strong
attractor for a discrete dynamical system, which is more restrictive than the usual concept of attractor
when the dimension of the system is higher than one.

This paper is structured as follows. In Section 2, we present the general framework of this paper;
we recall some basic notions of discrete systems and show how to derive global convergence of the
solutions of (1.1) to an equilibrium from attraction properties of a finite-dimensional map. In Sec-
tion 3, we apply the results of the previous section to get sufficient conditions for absolute attraction
(independent of the size of the delays τi j) in system (1.1). We also discuss some properties of global
bifurcation in (1.1) for a ring of neurons with the activation function considered by Morita in [27].
As a consequence of this discussion, we are able to further describe some steady-state bifurcations
studied by Ma and Wu in [23]. Finally, in Section 4, we give an application of our approach to models
with distributed delay; we illustrate these results with a functional differential equation recently stud-
ied by Yuan and Zhao [45]. We show that it is possible to weaken the conditions for global stability
required in the main result of [45].
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2. Abstract framework

In this section we present the necessary framework for this paper. We split it into three subsec-
tions: in the first one, we introduce the notion of strong attractor for a discrete dynamical system;
then, in the second one we provide some useful examples. Finally, the last subsection is devoted to
show the link between a strong attractor of a map and an attracting equilibrium of a related system
of differential equations with delay.

2.1. Notion of strong attractor

We begin by recalling some notions of attraction in one dimension. Consider equation

x(N + 1) = f
(
x(N)

)
, N = 0,1, . . . , (2.1)

where f : I ⊂ R → f (I) ⊂ I is a continuous function defined on an open interval I . We say that an
equilibrium x∗ of (2.1) is an attractor in I if for every initial condition x(0) ∈ I the solution of (2.1)
starting at x(0) converges to x∗ . The notion of attraction in one dimension has deep implications;
below we comment two of them that are especially important for our purposes.

On the one hand, there are no unstable attractors (see, e.g., [4] or [5, Theorem 4.7, p. 182]). More-
over, if x∗ is an attractor for (2.1) in I then for every compact interval K ⊂ I ,

lim
n→∞ f n(K ) = {x∗} (2.2)

under the Hausdorff distance (see, e.g., [24, Proposition 1.2]). Remark 1.5 in [24] shows that this result
is no longer true in dimensions higher than one.

We need the following specific property of an attractor x∗ of (2.1):

(A) for each compact set K ⊂ I , it is possible to find a family of compact intervals { Jn}n∈N with the
following properties:
(A1) K ⊂ Int( J1) ⊂ I ,
(A2) f ( Jn) ⊂ Jn+1 ⊂ Int( Jn) for all n ∈ N,
(A3) x∗ ∈ Int( Jn) for all n ∈ N, and

⋂+∞
n=1 Jn = {x∗}.

Note that this property is more restrictive than those commonly used in the literature in regard to
the characterization of attraction via a nested family of invariant sets converging to the attractor. In
Appendix A, we prove that if x∗ is an attractor of (2.1) in I , then property (A) holds.

On the other hand, the global attraction of a fixed point x∗ can be characterized by excluding the
possibility of fixed points of f 2 = f ◦ f different from x∗ . This result goes back at least to a paper of
Coppel [2], and has been rediscovered many times. We shall use a formulation from Thieme’s book
[36, Section 9.3].

Proposition 2.1. Assume that the following condition holds:

(C) For b ∈ (0,∞], f : (0,b) → (0,b) is continuous, has a unique fixed point x∗ ∈ (0,b), and is bounded on
(0, x∗). Moreover, there exist x1 , x2 , 0 < x1 < x∗ < x2 < b, such that f (x1) > x1 and f (x2) < x2 .

Then:

(1) There is a compact interval [m,M] ⊂ (0,b) such that every solution of (2.1) enters [m,M] and remains
in it.

(2) x∗ is a global attractor of (2.1) in (0,b) if and only if there is no fixed point of f 2 different from x∗ .
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From this proposition it is possible to deduce many results on attraction in one dimension for
maps f satisfying assumption (C). See, for example, [3,18] and their references.

Next we introduce the notion of strong attractor for a discrete finite-dimensional system. Roughly
speaking, a strong attractor is an attractor satisfying property (A).

Definition 2.1. Let F : D ⊂ Rs → D be a continuous map defined on D = (a1,b1) × (a2,b2) × · · · ×
(as,bs). An equilibrium z∗ ∈ D of the system

x(N + 1) = F
(
x(N)

)
, N = 0,1, . . . , (2.3)

is a strong attractor in D if for every compact set K ⊂ D there exists a family of sets {In}n∈N , where
In is the product of s nonempty compact intervals, satisfying that

(B1) K ⊂ Int(I1) ⊂ D ,
(B2) F (In) ⊂ In+1 ⊂ Int(In) for all n ∈ N,
(B3) z∗ ∈ Int(In) for all n ∈ N, and

⋂∞
n=1 In = {z∗}.

A key feature of the notion of strong attractor is the geometry of the sets In . We stress that, for
all n, they are the product of s nonempty compact intervals. While for one-dimensional maps the
definitions of attractor, stable attractor and strong attractor coincide, in dimensions higher than one
the three concepts are different; in Appendix A we give an example showing that a 2-dimensional
map can have a stable attractor which is not a strong attractor in the sense of Definition 2.1.

2.2. Examples of strong attractors

The purpose of this subsection is to discuss several examples of strong attractors. These examples
are chosen by their applicability in Hopfield’s model (1.1).

Example 1. Let F = (F1, F2, . . . , Fs) : Rs → Rs be a map satisfying that F (0) = 0 and, for all i, j ∈
{1,2, . . . , s}, Fi is globally Lipschitz-continuous in the j-th coordinate with Lipschitz constant Li j .
An elementary argument shows that 0 is a strong attractor in Rs for the system associated with F
provided

s∑

j=1

Li j < 1

for all i = 1,2, . . . , s. Note that, for each set of the type [−a,a]s , we have that

F
(
[−a,a]s

)
⊂ [−La, La]s,

where L = max{∑s
j=1 Li j: i = 1,2, . . . , s}.

Example 2. Consider a map H : D ⊂ Rs → Rs defined by

H(x1, x2, . . . , xs) =
(

s∑

j=1

a1 j f1 j(x j), . . . ,

s∑

j=1

asj f sj(x j)

)

,

where aij ∈ R for all i, j ∈ {1,2, . . . , s}. We prove the following result:
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Proposition 2.2. Assume that, for each i, j ∈ {1,2, . . . , s}, f i j : R → R is continuous and odd (i.e. f i j(x) =
− f i j(−x) for all x ∈ R), and define

gij(x) =
(

s∑

k=1

|aik|
)

f i j(x).

If there is " ∈ (0,∞] such that 0 ∈ R is an attractor for the one-dimensional discrete system

x(N + 1) = gij
(
x(N)

)
, N = 0,1, . . . , (2.4)

in (−",") for every i, j ∈ {1, . . . , s}, then 0 ∈ Rs is a strong attractor for the dynamical system associated
with H in (−",")s .

Proof. Take a real number a ∈ (0,") and consider the interval [−a,a]. Our aim is to prove that for
I = [−a,a]s there exists a family of sets {In}n∈N such that In = [−an,an]s , where {an} is a strictly
decreasing sequence converging to zero, a1 = a, and H(In) ⊂ In+1 for all n ∈ N.

Take a pair (i, j) ∈ ({1,2, . . . , s})2. Since gij is odd, gij([−a,a]) is a compact interval centered
at 0. Moreover, using that 0 ∈ R is an attractor for (2.4) in (−","), we deduce from (2.2) that
gij([−a,a]) ⊂ (−a,a). Thus, there exists εi j ∈ (0,a] such that

gij
(
[−a,a]

)
= [−a + εi j,a − εi j].

After that we define

E1 = min
{
εi j: i, j ∈ {1,2, . . . , s}

}
.

Clearly E1 > 0 and, by its definition,

H
(
[−a,a]s

)
⊂

[
−a + E1,a − E1]s.

To prove this claim, observe that, for each i = 1,2, . . . , s,

max

{
s∑

j=1

aij f i j(x): x ∈ [−a,a]
}

�
(

s∑

k=1

|aik|
)

max
{
f i j(x): x ∈ [−a,a], j = 1,2, . . . , s

}

= max
{
gij(x): x ∈ [−a,a], j = 1, . . . , s

}
.

Here we have used that f i j is an odd function and [−a,a] is a symmetric interval to deduce that

max
{
f i j(x): x ∈ [−a,a], j = 1,2, . . . , s

}
� 0.

The special case E1 = a implies that H([−a,a]s) = {0} and thus the construction of a strictly de-
creasing sequence with the desired properties can be done taking an = a/n. If E1 < a then we define
a2 = a− E1. After that we repeat the same procedure with [−a2,a2]. Again we can have two possible
situations: either E2 = a2 or E2 < a2. In the first case, we have that H([−a2,a2]s) = {0} and the de-
sired sequence is an = a2/(n − 1), with n � 2. In the second case, define a3 = a2 − E2. In an inductive



Author's personal copy

E. Liz, A. Ruiz-Herrera / J. Differential Equations 255 (2013) 4244–4266 4249

way, we construct a strictly decreasing sequence {an}n∈N . Our aim is to prove that {an} converges to
zero. By contradiction, assume that {an} ↘ β > 0. In this case, arguing as before, we deduce that, for
each i, j ∈ {1,2, . . . ,n}, there exists δi j > 0 such that

gij
(
[−β,β]

)
= [−β + δi j, β − δi j].

Define Ẽ := min{δi j: i, j = 1,2, . . . , s} > 0. By continuity, there exists γ > 0 such that

gij
(
[−β − γ ,β + γ ]

)
⊂

[
−β + Ẽ

2
, β − Ẽ

2

]
. (2.5)

It follows from the definition of β that, for all n � N with N large,

[−an,an] ⊂ [−β − γ ,β + γ ]. (2.6)

On the other hand, using the construction of EN , there exist two indices i, j such that

gij
(
[−aN ,aN ]

)
=

[
−aN + EN ,aN − EN]

= [−aN+1,aN+1] ⊃ [−β,β],

a contradiction with (2.5) and (2.6). !

The previous result is not true when functions f i j are not odd. For instance we can consider

H(x, y) =
(
f1(y), f2(x)

)
,

where

f1(x) =
{ −x if x � 0,
0 if x < 0,

and

f2(x) =
{
0 if x � 0,
−x if x < 0.

Clearly, for i ∈ {1,2}, 0 ∈ R is an attractor for

x(N + 1) = f i
(
x(N)

)

in R. However, (−x0, x0) is a fixed point of H for all x0 � 0, and therefore (0,0) is not an attractor of
H in R2.

Example 3. Now we consider the map G : Rs → Rs defined by

G(x1, x2, . . . , xs) =
(

s∑

j=1

a1 j f (x j), . . . ,

s∑

j=1

asj f (x j)

)

,

where f : R → R. We have the following result:
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Proposition 2.3. Assume that

(i) f is continuous, and f ((0, β)) ⊂ (0, β) for some β ∈ (0,+∞],
(ii) all coefficients ai j are nonnegative and

s∑

j=1

aij = 1,

for all i ∈ {1,2, . . . , s}.

If x∗ ∈ (0, β) is an attractor for

x(N + 1) = f
(
x(N)

)
, N = 0,1, . . . , (2.7)

in (0, β), then (x∗, x∗, . . . , x∗) ∈ Rs is a strong attractor for the system associated with G in (0, β)s .

Proof. Given a compact set K ⊂ (0, β)s , take a compact interval K0 ⊂ (0, β) such that K ⊂ (K0)
s .

By using that x∗ is an attractor for (2.7) in (0, β), we can find a family of sets { Jn}n∈N satisfying
conditions (A1)–(A3) for K0. In a direct way we can check that the family {In}n∈N , with In = ( Jn)s ,
meets conditions (B1)–(B3) for the system associated with G . !

Remark 2.1. The case of a negative fixed point of (2.7) attracting an interval (−β,0) can be treated in
the same way.

Example 4. The aim of this example is to study properties of attraction when (2.7) has a cycle of
period two. For it, we consider the function T : R2s → R2s given by

T (x1, x2, . . . , x2s) =
(
f (x2), f (x3), . . . , f (x2s), f (x1)

)
.

Proposition 2.4. Assume that f : (a,b) → f ((a,b)) ⊂ (a,b) is a continuous function so that x∗ is an attractor
for

x(N + 1) = f 2
(
x(N)

)
, N = 0,1, . . . , (2.8)

in the interval (a,b) and f is strictly decreasing in this interval. Then

(
x∗, f (x∗), x∗, f (x∗), . . . , x∗, f (x∗)

)
∈ R2s

is a strong attractor for the system associated with T in the set

(
(a,b) × f

(
(a,b)

))s
.

Proof. Given a compact set K0 ⊂ ((a,b) × f ((a,b)))s , it is possible to find a compact interval K and
numbers ã, b̃ such that a < ã < b̃ < b, K ⊂ (ã, b̃) and

K0 ⊂
(
K × f (K )

)s
.

Clearly, we can find ε > 0 so that
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f 2
(
[ã, b̃]

)
⊂ [ã + ε, b̃ − ε] (2.9)

and

K ⊂ (ã + ε, b̃ − ε).

After that, we consider

I1 =
([

ã + ε

2
, b̃ − ε

2

]
× f

(
[ã, b̃]

))s

and In+1 = Tn(I1), ∀n � 1.
It is clear that T (In) = In+1. To prove that In+1 ⊂ Int(In), observe that

f 2
(
[ã, b̃]

)
⊂

(
ã + ε

2
, b̃ − ε

2

)
,

and, using that f is strictly decreasing,

f
([

ã + ε

2
, b̃ − ε

2

])
⊂ Int

(
f
(
[ã, b̃]

))
=

(
f (b̃), f (ã)

)
.

Finally, we notice that

I2n+1 ⊂
(
f 2n

(
[ã, b̃]

)
× f 2n+1([ã, b̃]

))s
,

and therefore

∞⋂

n=1

In =
{(
x∗, f (x∗), . . . , x∗, f (x∗)

)}
. !

2.3. Delay differential equations and strong attractors

In this subsection we consider the system of delay differential equations

x′
i(t) = −xi(t) + Fi

(
x1(t − τi1), x2(t − τi2), . . . , xs(t − τis)

)
, 1 � i � s, (2.10)

where Fi : Rs → R is locally Lipschitz-continuous and τi j � 0 for all i, j = 1,2, . . . , s. Our goal is to
deduce convergence properties in (2.10) via the notion of strong attractor for the discrete system

x(N + 1) = F
(
x(N)

)
, N = 0,1, . . . , (2.11)

where x(N) = (x1(N), x2(N), . . . , xs(N)) ∈ Rs and F = (F1, F2, . . . , Fs). The natural phase space for
(2.10) is X = C([−τ ,0],Rs), equipped with the max-norm

|φ|∞ = max
{∣∣φ(t)

∣∣: t ∈ [−τ ,0]
}
,

where φ(t) = (φ1(t), φ2(t), . . . , φs(t)), |φ(t)| = ‖φ(t)‖∞ = max{|φi(t)|: 1 � i � s}, and
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τ = max{τi j: i, j = 1, . . . , s}.

For each φ ∈ X , we employ the notation

x(t, φ) =
(
x1(t, φ), x2(t, φ), . . . , xs(t, φ)

)

for the solution of (2.10) with initial condition φ.

Theorem 2.5. Assume that F : D ⊂ Rs → D is a continuous map defined on D = (a1,b1) × · · · × (as,bs) and
z∗ ∈ Rs is a strong attractor for

x(N + 1) = F
(
x(N)

)
, N = 0,1, . . . , (2.12)

in D. Then, for each φ ∈ {x ∈ C([−τ ,0],Rs): x(t) ∈ D for all t ∈ [−τ ,0]}, limt→∞ x(t, φ) = z∗ .

Proof. Fix a function φ as in the statement of the theorem. By using that z∗ is a strong attractor for
(2.12) in D , we can obtain a family {In}n∈N satisfying conditions (B1)–(B3) for the compact set

K =
{
φ(t): t ∈ [−τ ,0]

}
.

First we prove that

x(t, φ) ∈ I1, ∀t � 0. (2.13)

Notice that x(t, φ) = φ(t) ∈ K ⊂ Int(I1) for all t ∈ [−τ ,0]. Assume, by contradiction, that I1 = [c1,d1]×
[c2,d2]× · · ·× [cs,ds] and there exists a first time t0 > 0 so that x(t0, φ) ∈ ∂ I1. This claim implies that
there is an index i so that xi(t0, φ) = di or xi(t0, φ) = ci . In the first case, x′

i(t0, φ) � 0 but, by the
i-th equation in (2.10) and the inclusion F (I1) ⊂ Int(I1), we deduce that x′

i(t0) < 0. The analogous
argument works when xi(t0, φ) = ci . Next we prove that there is a time t1 > 0 such that

x(t, φ) ∈ I2, ∀t � t1, (2.14)

where we suppose that

I2 = [c̃1, d̃1] × [c̃2, d̃2] × · · · × [c̃s, d̃s]. (2.15)

First we note that if there is an index j such that

x j(t2, φ) ∈ [c̃ j, d̃ j]

for some t2 > 0 then

x j(t, φ) ∈ [c̃ j, d̃ j]

for all t � t2. By contradiction, assume that there exist t∗ > t2 and δ > 0 satisfying that

x′
j(t∗, φ) > 0,

x j(t∗, φ) = d̃ j + δ.
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Using (2.13), the j-th equation in (2.10) and the inclusions

F (I1) ⊂ I2 ⊂ Int(I1) (2.16)

(see (B2)), we obtain the contradiction

0 < −(b̃ j + δ) + F j
(
x1(t∗ − τ j1, φ), . . . , xs(t∗ − τ js, φ)

)
� −δ.

An analogous argument works if

x′
j(t∗, φ) < 0,

x j(t∗, φ) = c̃ j − δ.

Finally, we prove that there is t1 > 0 such that (2.14) holds. To prove this claim we reason by
contradiction. By the previous argument, we can assume that there exists a family of indices P such
that

x j(t, φ) /∈ I2

for all t > 0 and j ∈ P . Then, either

x j(t, φ) > d̃ j

or

x j(t, φ) < c̃ j.

In the first case, x j(t, φ) is strictly decreasing and in the second one, strictly increasing (these proper-
ties follow easily from (2.13), (2.16) and the j-th equation in (2.10)). On the other hand, it is possible
to find a sequence {tn}n∈N so that x′

j(tn, φ) → 0. By this property together with (2.16) we can deduce

that x j(t, φ) → d̃ j (in the first case) or x j(t, φ) → c̃ j (in the second one). Collecting this informa-
tion, we have that given an index j ∈ P , x j(t, φ) converges to d̃ j or c̃ j , and given an index j /∈ P ,
x j(t, φ) ∈ [c̃ j, d̃ j] for all t � t j for a suitable t j . This is a contradiction since

F (I2) ⊂ Int(I2)

and given j ∈ P , taking the limit as t → ∞ in both sides of the j-th equation in (2.10), we obtain that

0 = −d̃ j + F j(x0)

or

0 = −c̃ j + F j(x0),

with x0 ∈ ∂ I2.
We can repeat the previous procedure replacing I1 and I2 with I2 and I3, respectively. An inductive

argument shows that, for each n � 1, there is a number tn > 0 such that x(t, φ) ∈ In for all t � tn .
Since, by (B3),

⋂∞
n=1 In = {z∗}, it follows that limt→∞ x(t, φ) = z∗ . !
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We can generalize Theorem 2.5 to systems with distributed delay. To illustrate this application,
and for the sake of simplicity, we study the following system:

u′
i(t) = −ui(t) +

s∑

j=1

wij

0∫

−∞
θi j(s) f

(
u j(t + s)

)
ds, 1 � i � s, (2.17)

where θi j : (−∞,0] → [0,+∞) are positive integrable functions satisfying that θi j(s) = 0 when s �
τi j ∈ (−∞,0), and

∫ 0
−∞ θi j(s)ds = 1.

In order to get some properties of global stability for system (2.17) via the discrete system

F (x1, x2, . . . , xs) =
(

s∑

j=1

w1 j f (x j), . . . ,

s∑

j=1

wsj f (x j)

)

,

we use the following elementary property:

(H) If k : R → (0,+∞) is a positive integrable function and g : R → R is a continuous function, then
for each interval [a,b] there is η ∈ [a,b] so that

g(η)

b∫

a

k(s)ds =
b∫

a

g(s)k(s)ds.

Theorem 2.6. Assume that f is continuous and z∗ ∈ Rs is a strong attractor for

x(N + 1) = F
(
x(N)

)
, N = 0,1, . . . , (2.18)

on D = (a1,b1) × · · · × (as,bs). Then, for each

φ ∈
{
x ∈ C

(
[−τ ,0],Rs): x(t) ∈ D for all t ∈ [−τ ,0]

}
,

the solution u(t, φ) of (2.17) with initial condition φ satisfies that

lim
t→∞

u(t, φ) = z∗.

Proof. The proof consists of adapting the arguments used for proving Theorem 2.5, having in mind
property (H). Indeed, for instance, if F (I1) ⊂ Int(I1) with I1 = [c1,d1] × [c2,d2] × · · · × [cs,ds] then,
for every initial condition in

φ ∈
{
x ∈ C

(
[−τ ,0],Rs): x(t) ∈ Int(I1) for all t ∈ [−τ ,0]

}

with τ = max{τi j}, the solution u(t, φ) of (2.17) satisfies that u(t, φ) ∈ Int(I1) for all t � 0. To prove
this property, assume, by contradiction, that there exists a first time t0 > 0 so that u(t0, φ) ∈ ∂ I1.
This claim implies that there is an index i so that ui(t0, φ) = di or ui(t0, φ) = ci . In the first case,
u′
i(t0, φ) � 0 but, by the i-th equation in (2.10) and the property (H), we find nonnegative numbers

mj � 0 so that

u′
i(t0, φ) = −ui(t0, φ) +

s∑

j=1

wij f
(
u j(t0 −mj, φ)

)
.
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Now, since F (I1) ⊂ Int(I1), we deduce that u′
i(t0, φ) < 0. It is easy to check that an analogous

argument works when ui(t0, φ) = ci , and the remainder steps of the proof of Theorem 2.5 can be
adapted in the same way. !

Remark 2.2. It is not difficult to verify that the arguments in the proofs of Theorems 2.5 and 2.6 can
also be adapted to consider systems of the type

x′
i(t) = −gi

(
xi(t)

)
+ Fi

(
x1(t − τi1), x2(t − τi2), . . . , xs(t − τis)

)
, 1 � i � s,

provided gi : R → R is a homeomorphism for every i = 1,2, . . . , s. In this case we have to assume
that z∗ is a strong attractor for the discrete system

x(N + 1) = G
(
x(N)

)
, N = 0,1, . . . ,

where G(x1, x2, . . . , xs) = (g−1
1 (F1(x1, x2, . . . , xs)), . . . , g−1

s (Fs(x1, x2, . . . , xs))).

3. Global results in Hopfield’s model

In this section we apply the results of Section 2 to system (1.1). First we present some results on
global attractivity independent of the delays, which is usually referred to as absolute global attractivity.
To find criteria of absolute global attractivity for (1.1) when 0 is the unique equilibrium is one of
the open problems suggested by J. Wu in [41, p. 98]. This problem has been approached in many
interesting papers; see, e.g., [28,32,35,37,38,46] and their references.

In a second section, we get some results of global bifurcation for (1.1) with a particular architecture
of the network.

3.1. Global attractivity results

For our first result, we assume that, for each j ∈ {1,2, . . . ,n}, f j : R → R is globally Lipschitz with
constant L j , that is,

∣∣ f j(u) − f j(v)
∣∣ � L j|u − v|, for all u, v ∈ R. (3.1)

A direct application of Theorem 2.5 and Example 1 in Section 2.2 provides the following result:

Theorem 3.1. If condition (3.1) holds and

max
1�i�s

{
s∑

j=1

|aij|L j

}

< 1, (3.2)

then every solution u(t) of (1.1) converges to 0, regardless the value of the delays.

Similar conditions to (3.2) have been used in the literature for proving global attraction in system
(1.1), using Lyapunov functions, when the activation functions satisfy (3.1); see, e.g., [9,38,41].

Next we list some properties that we will assume for the activation functions:

(Ac1) f is of class C1,
(Ac2) f (0) = 0 with f ′(0) > 0,
(Ac3) f is odd (i.e. f (x) = − f (−x)) and bounded.
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Most of the activation functions considered in the related literature meet these conditions (sometimes
after a simple change of variables); for example, the usual sigmoid functions (e.g., f (x) = tanh(x)), and
the non-monotone Morita’s activation function [23,27] given by

f (x) = 1− exp(−αx)
1+ exp(−αx)

× 1+ k exp(β(|x| − h))

1+ exp(β(|x| − h))
, (3.3)

where h,k,α,β are real parameters, α > 0, β > 0.
Our next result is based on Proposition 2.2, and provides a global attractivity result for a system

more general than (1.1); specifically, we consider system

x′
i(t) = −xi(t) +

s∑

j=1

aij(t) f i j
(
x j(t − τi j)

)
, 1 � i � s. (3.4)

Theorem 3.2. Suppose that functions fi j : R → R satisfy conditions (Ac1)–(Ac3) for all i, j ∈ {1,2, . . . , s},
and the coefficients ai j : R → R are continuous and bounded.

If, for every i, j ∈ {1,2, . . . , s}, 0 is an attractor in R for the discrete equation

y(N + 1) =
(

s∑

k=1

|aik|∞
)

f i j
(
y(N)

)
, N = 0,1, . . . , (3.5)

then all solutions x(t) of (3.4) satisfy that limt→∞ xi(t) = 0, for all i = 1,2, . . . , s.

Proof. The method of proof consists of combining the ideas of Proposition 2.2 and Theorem 2.5. First,
it follows from Proposition 2.2 that 0 ∈ Rs is a strong attractor for

x(N + 1) = F̃
(
x(N)

)
, N = 0,1, . . . , (3.6)

in Rs , where

F̃ (x1, x2, . . . , xs) =
(

s∑

j=1

|a1 j|∞ f1 j(x j), . . . ,

s∑

j=1

|asj|∞ f sj(x j)

)

.

In fact, by the proof of this result we know that for each set of the type [−a1,a1]s with a1 > 0, there
is a strictly decreasing sequence {an} ↘ 0 so that

F̃
(
[−an,an]s

)
⊂ [−an+1,an+1]s for all n � 1.

Now we take an initial condition φ ∈ C([−τ ,0],Rs), where τ = max{τi j: i, j = 1, . . . , s}. Fix a1 > 0 so
that

φ(t) ∈ (−a1,a1)s = Int(I1)

for all t ∈ [−τ ,0]. At this moment we have to repeat exactly the same arguments in the proof of
Theorem 2.5 with the family In = [−an,an]s . For the reader’s convenience, we prove, for instance, that

x(t, φ) ∈ [−a1,a1]s, for all t � 0.

By contradiction, assume that there is a first time t0 > 0 so that
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x(t0, φ) ∈ ∂
(
[−a1,a1]s

)
.

In this situation, there is an index j so that either

x j(t0, φ) = a1

or

x j(t0, φ) = −a1.

Assume that we are in the first case (the other case is analogous). In this setting, clearly

x′
j(t0, φ) � 0.

However,

x′
j(t0, φ) = −x j(t0, φ) +

s∑

k=1

a jk(t) f jk
(
xk(t0 − τ jk)

)

� −x j(t0, φ) +
s∑

k=1

|a jk|∞ max
{
f jk(x): x ∈ [−a1,a1]

}

= −x j(t0, φ) +max
{
F̃ j(x1, x2, . . . , xs): xi ∈ [−a1,a1]

}
< 0.

In these inequalities we use that f i j is an odd function to deduce that max{ f jk(x): x ∈
[−a1,a1]} � 0. !

The problem of global stability for neural systems of Hopfield type with variable coefficients has
been addressed in several papers, usually assuming some property of recurrence on the coefficients
aij(t), such as periodicity (e.g., [35]) or almost periodicity (e.g., [28]). Note that in Theorem 3.2 we do
not impose any property of recurrence on the coefficients.

In the remainder of this section, to get sharper results and motivated by the classical papers of
Hopfield and Marcus and Westervelt (see [26, p. 348]), we assume that the activation functions are
equal, and the connection matrix is normalized as

s∑

j=1

|wij| = 1 for 1 � i � s. (3.7)

Thus we consider the system

u′
i(t) = −ui(t) +

s∑

j=1

wij f
(
u j(t − τi j)

)
, 1 � i � s, (3.8)

and our target is to derive global stability criteria for (3.8) based on the dynamics of the one-
dimensional discrete equation

y(N + 1) = f
(
y(N)

)
, N = 0,1, . . . . (3.9)
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In the results below, we assume that f satisfies conditions (Ac1)–(Ac3), but in general we do not
require any monotonicity properties. We recall that y∗ ∈ R is an attractor for (3.9) in (a,b) if
f ((a,b)) ⊂ (a,b) and limN→∞ y(N) = y∗ , for all initial conditions y(0) ∈ (a,b).

Our first result for system (3.8) deals with the stability of the trivial equilibrium.

Theorem 3.3. Assume that 0 ∈ R is an attractor for (3.9) in (−",") for some " > 0. Then every solution of
(3.8) with initial condition in the set

{
φ ∈ C

(
[−τ ,0],Rs): φ(t) ∈ (−",")s for all −τ � t � 0

}

satisfies that limt→∞ xi(t, φ) = 0 for all i = 1,2, . . . , s.

Proof. This result is a direct consequence of Proposition 2.2 and Theorem 2.5. !

Theorem 3.3 is sharp in the following sense: assume that there is an interval (0,b) such that
f ((0,b)) ⊂ (0,b). If 0 is an attractor for f in (−b,b) then 0 is an attractor for (3.8) in (−b,b)s . If
0 does not attract (−b,b), then there must be at least two fixed points of f , namely x− and x+ ,
satisfying that −x+ = x− and

−b < x− < 0 < x+ < b.

If we assume excitatory connections in (3.8), that is, wij � 0 for all i, j = 1,2, . . . , s, then
(x+, x+, . . . , x+) and (x−, x−, . . . , x−) are nontrivial equilibria of (3.8) in (−b,b)s , and therefore 0
is not an attractor for (3.8) in (−b,b)s . In our next result, we state the stability properties of these
nontrivial equilibria.

Theorem 3.4. Assume excitatory connections in (3.8), that is wij � 0 for every index. If x∗ ∈ R is an attractor
for (3.9) in (0,b) with b ∈ (0,+∞], then every solution of (3.8) with initial condition in the set

{
φ ∈ C

(
[−τ ,0],Rs): φ(t) ∈ (0,b)s for all −τ � t � 0

}

satisfies that limt→∞ xi(t, φ) = x∗ for 1 � i � s.

Proof. This result is a direct consequence of Proposition 2.3 and Theorem 2.5. !

Assuming excitatory connections, Theorems 3.3 and 3.4 provide a sharp criterion of global attrac-
tion for (3.8) when f is a sigmoid function, satisfying the usual conditions of monotonicity ( f ′(x) > 0
for all x) and strong convexity (xf ′′(x) < 0 for all x .= 0). Indeed, in this case, either 0 is the only fixed
point of f , and then all solutions of (3.8) converge to zero, or there are two nontrivial fixed points
of f , x− < 0 < x+ , and then (x+, x+, . . . , x+) and (x−, x−, . . . , x−) are equilibria of (3.8) attracting
(0,∞)s and (−∞,0)s , respectively.

For more general activation functions, Theorem 3.4 is also sharp in some architectures of the
network, namely in the ring of an even number of neurons (see [1]). Indeed, consider the system

x′
i(t) = −xi(t) + f

(
xi+1(t − τi)

)
, 1 � i � 2s (3.10)

(with the convention mod (2s)). Assume that f satisfies assumption (C) in Proposition 2.1, and x∗ is
not an attractor of (3.9) in (0,b). Then, this proposition guarantees that there is a two cycle {y1, y2}
for (3.9) with y1 < x∗ < y2 = f (y1). This 2-cycle produces two equilibria of (3.10) different from
(x∗, x∗, . . . , x∗), namely, (y1, y2, . . . , y1, y2) and (y2, y1, . . . , y2, y1).

Our following result deals with their stability properties.
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Theorem 3.5. Assume that y1 ∈ R is an attractor for

y(N + 1) = f 2
(
y(N)

)
(3.11)

in (a,b) and f is strictly decreasing in this interval. Then every solution of (3.10) with initial condition in

{
φ ∈ C

(
[−τ ,0],Rs): φ(t) ∈

(
(a,b) × f

(
(a,b)

))s
for all −τ � t � 0

}

satisfies that limt→∞ x(t, φ) = (y1, f (y1), . . . , y1, f (y1)).

Proof. This result is a direct consequence of Proposition 2.4 and Theorem 2.5. !

We notice that it is difficult to apply our method to get global attractivity results based on Exam-
ples 3 and 4 when there is dependence on time, as in system (3.4). We plan to study this problem in
the future.

3.2. Global bifurcation results

Theorems 3.3–3.5 show how the changes in the dynamics of (3.9) lead to the creation of new
stable patterns in (3.10). In an easy way, these results can be used to provide criteria of global bi-
furcation. To illustrate this point of view, we consider system (3.10) with Morita’s activation function
(3.3). This example is motivated by the recent paper of Ma and Wu [23], which considers the system
(3.10) with s = 1 and f given by (3.3). Notice that for s = 1 the equilibria of (3.10) are completely
determined by the periodic points of f with periods 1 and 2.

First, we list some elementary properties of the function f defined by (3.3); see [23] for more
details.

• f is odd.
• If k > 0, then x0 = 0 is the only zero of f . If k < 0, then f has three zeros given by

x0 = 0, x+
0 = h + ln(−1

k )

β
, x−

0 = −h − ln(−1
k )

β
.

• When k < 0, there are two critical points x−
M ∈ (x−

0 ,0) and x+
M ∈ (0, x+

0 ). Moreover, f is strictly
decreasing in (−∞, x−

M) ∪ (x+
M ,+∞) and f is strictly increasing in (x−

M , x+
M) (see Fig. 1).

We consider the numerical example studied in [23], that corresponds to k = −0.8, h = 0.5, and
α = 7.5, and use β as the bifurcation parameter. The bifurcation diagram of (3.9) for β ∈ (0,5.4) is
shown in Fig. 2.

From this bifurcation diagram, we can study bifurcation properties for (3.10). Let β1 = 0.749387 be
the unique value of β for which f ′(0) = 1. For β ∈ (0, β1), f ′(0) < 1 and 0 is the unique solution of
equation f 2(x) = x. Therefore, by Proposition 2.1, 0 is a global attractor for (3.9) in R, and it follows
from Theorem 3.3 that 0 ∈ R2s is a global attractor of (3.10).

At β = β1, there is a pitchfork bifurcation in (3.9) producing two nontrivial fixed points x+ ∈
(0, x+

0 ) and x− ∈ (x−
0 ,0), while 0 becomes unstable.

We can check that f maps (0, x+
0 ) into itself for β ∈ (0,6.85562). Moreover, for this range of

values, the interval J = [ f 2(x+
M), f (x+

M)] is invariant and attracting. Recall that x+
M is the only local

maximum of f .
Next, define β2 = 4.12413 as the value of β for which f ′(x+) = −1. For β ∈ (β1, β2), there are

exactly three fixed points of f (namely, 0, x+ , x−), and no other 2-periodic point. Thus, x+ attracts
(0, x+

0 ), and Theorem 3.4 ensures that (x+, x+, . . . , x+) attracts all solutions of (3.10) with initial con-
dition in the set
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Fig. 1. Graph of the map f defined in (3.3) for k = −0.8, h = 0.5, α = 7.5, and β = 3. The equilibria are the intersections of the
solid curve y = f (x) and the dashed line y = x.

Fig. 2. Bifurcation diagram of (3.9), with f defined by (3.3) for k = −0.8, h = 0.5, and α = 7.5. For each value of β ∈ (0,5.4)
(with step 0.001), we produce 300 iterations of (3.9) with a random initial condition x0 ∈ [−1,1], and plot the last 50, to let
the transients die out. The dashed lines correspond to unstable equilibria. For the meaning of β1–β4, see the text.

{
φ ∈ C

(
[−τ ,0],R2s): φ(t) ∈

(
0, x+

0

)2s for all −τ � t � 0
}
.

An analogous result is obtained for the equilibrium (x−, x−, . . . , x−) with respect to the set of initial
data

{
φ ∈ C

(
[−τ ,0],R2s): φ(t) ∈

(
x−
0 ,0

)2s for all −τ � t � 0
}
.

At β = β2, the fixed points x+ and x− of (3.9) lose their stability in a period-doubling bifurcation,
giving rise to a pair of cycles of period 2, which we denote by {y+

1 , y+
2 } and {y−

1 , y−
2 }. They satisfy

the inequalities
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y−
2 < x− < y−

1 < 0 < y+
1 < x+ < y+

2 .

We can verify that f is decreasing in the invariant interval J if β ∈ (β2, β3), where β3 = 4.69233.
For β ∈ (β2, β3), let us consider the 2-periodic orbit {y+

1 , y+
2 }. The point y+

1 is an attractor of f 2 in
( f 2(x+

M), x+), y+
2 is an attractor of f 2 in (x+, f (x+

M)), and f is decreasing in both intervals. Then,
Theorem 3.5 applies to establish that the equilibrium (y+

1 , y+
2 , . . . , y+

1 , y+
2 ) attracts all solutions of

(3.10) with initial condition in

{
φ ∈ C

(
[−τ ,0],R2s): φ(t) ∈

(
f 2

(
x+
M

)
, x+

)s ×
(
x+, f 3

(
x+
M

))s for all −τ � t � 0
}
,

and the equilibrium (y+
2 , y+

1 , . . . , y+
2 , y+

1 ) attracts all solutions of (3.10) with initial condition in

{
φ ∈ C

(
[−τ ,0],R2s): φ(t) ∈

(
x+, f

(
x+
M

))s ×
(
f 2

(
x+
M

)
, x+

)s for all −τ � t � 0
}
.

Note that if the number of neurons in (3.10) is 4s with s ∈ N, then the period-doubling bifurcation
of a 2-cycle also produces a pitchfork bifurcation in (3.10) since if z1 is a fixed point of f 4 then

(
f 3(z1), f 2(z1), f (z1), z1, . . . , f 3(z1), f 2(z1), f (z1), z1

)

is an equilibrium of (3.10). In our example, the second period-doubling bifurcation occurs for β =
β4 = 5.2286 (see Fig. 2). Actually, a typical route of period-doubling bifurcations to chaos is observed
for larger values of β , which would lead to a series of pitchfork bifurcations in system (3.10) with a
number of (2ns) neurons, where n, s ∈ N, n large.

The problem of bifurcation in system (1.1) has been extensively studied and several tools such
as the theory of equivariant bifurcations [8], or some reductions to a center manifold [7] have been
employed in interesting papers; see, e.g., [6,10,14,29,39,40]. In connection with these works, our ap-
proach has mainly two advantages: its simplicity and its global character. As the previous example
shows, without involving hard computations, we can derive criteria of bifurcation providing a good
knowledge of the bases of attraction of the stable equilibria. A drawback of our approach is that it is
not possible to study bifurcations different from the pitchfork one.

4. Models with distributed delay

In some biological neural networks, the time delays in propagation processes are not fixed. This
can be caused, for instance, by diffusion processes across the synapses and along the dendrites. Hence,
biologically realistic models (see [34,41]) can be represented as a system of type (3.8) with distributed
delay, specifically

u′
i(t) = −ui(t) +

s∑

j=1

wij

0∫

−∞
θi j(s) f

(
u j(t + s)

)
ds, 1 � i � s, (4.1)

where, for each i, j ∈ {1,2, . . . , s}, θi j : (−∞,0] → [0,+∞) is a positive integrable function with∫ 0
−∞ θi j(s)ds = 1, and θi j(s) = 0 when s � τi j ∈ (−∞,0).
As a direct consequence of Proposition 2.3 and Theorem 2.6, we get the following result:

Theorem 4.1. Assume that wij � 0 for every index, and the normalization condition (3.7) holds. If x∗ ∈ R is
an attractor for

x(N + 1) = f
(
x(N)

)
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in (0,b) with b ∈ (0,+∞], then every solution of (4.1) with initial condition in the set

{
φ ∈ C

(
[−τ ,0],Rs): φ(t) ∈ (0,b)s for all −τ � t � 0

}

satisfies that limt→∞ ui(t, φ) = x∗ for 1 � i � s.

Next we show that our approach can be used to deduce some results of absolute attractivity for
other mathematical models. We consider the following equation recently studied in [45]:

u′(t) = −αu(t) + f1
(
u(t)

)
+

τ1∫

τ0

k̂(s) f2
(
u(t − s)

)
ds, (4.2)

where α > 0, and k̂(s) � 0 is an integrable function so that k̂(s) = 0 when s � τ0 or s � τ1. If f1(u) = 0
and k̂(s) = δ(s− τ ) (Dirac’s delta), Eq. (4.2) corresponds to well-known models with an instantaneous
destruction rate, and a delayed production function, such as the celebrated Nicholson’s blowflies and
Mackey–Glass equations; see, e.g., [25,31] and references therein. Some global stability results for the
case of f1 ≡ 0 with a general distributed delay term can be found in [19,20].

An application of Theorem 2.6, combined with Remark 2.2, leads to the following result for
Eq. (4.2):

Theorem 4.2. Assume that g(x) = αx − f1(x) is strictly increasing in (0,M) for some M > 0, and x∗ > 0 is
an attractor for

x(N + 1) = h
(
x(N)

)
(4.3)

in (0,M), where h(x) = g−1(k∗ f2(x)) and k∗ =
∫ τ1
τ0

k̂(s)ds. Then

lim
t→∞

u(t, φ) = x∗

for all solutions u(t, φ) of (4.2) with initial condition φ in the set

{
φ ∈ C

(
[−τ ,0],R

)
: φ(t) ∈ (0,M) for all −τ � t � 0

}
.

Proposition 2.1 ensures that x∗ is an attractor for (4.3) in (0,M) if the following conditions hold:

(a) h((0,M)) ⊂ (0,M),
(b) x∗ is the unique fixed point of h2 in (0,M),
(c) there are two points x1, x2, 0 < x1 < x∗ < x2 � M , such that h(x1) > x1 and h(x2) < x2.

Next we show that Theorem 4.2 allows us to remove some conditions from Theorem 2.3 in [45].
For convenience of the reader, we list the assumptions required in [45, Theorem 2.3].

(H1) f1 and f2 are Lipschitz-continuous with f1(0) + k∗ f2(0) = 0 and f ′
2(0) > 0, k∗ =

∫ τ1
τ0

k̂(s)ds > 0.
(H2) f2(u) � f2(0) for all u � 0 and there exists a number M > 0 such that f1(u) + k∗ ×

maxv∈[0,u] f2(v) < αu for all u > M .
(H3) f ′

1(0) + k∗ f ′
2(0) > α and there exists a unique steady state u∗ such that −αu∗ + f1(u∗) +

k∗ f2(u∗) = 0.
(H4) αu− f1(u) is strictly increasing, f1(u)+k∗ f2(u)

u is strictly decreasing in u ∈ (0,M] and both f1 and
f2 have the following property:



Author's personal copy

E. Liz, A. Ruiz-Herrera / J. Differential Equations 255 (2013) 4244–4266 4263

(P) For any v, w ∈ (0,M] with v � u∗ � w , if f1(v)+k∗ f2(w) � αv and f1(w)+k∗ f2(v) � αw ,
then v = w .

Assumptions (H1) and (H2) have been used in [45] to guarantee that the solution u(t) of system (4.2)
is positive whenever u(0) > 0, and ultimately bounded by M .

To apply our method we have to impose that f2(u) > f2(0) for all u ∈ (0,M]. First, by this property
and using that g is strictly increasing (see the first part of (H4)), we deduce that h((0,M)) ⊂ (0,+∞).
Condition (H2) and the monotony of αu − f1(u) imply (a).

Next, it is easy to check that the inequality f ′
1(0) + k∗ f ′

2(0) > α from (H3) implies that

h′(0) > 1. (4.4)

It is clear that property (c) follows from (4.4) and (H2).
Observe that (H4) is more restrictive than (b) because we do not use that f1(u)+k∗ f2(u)

u is strictly
decreasing in u ∈ (0,M], and (b) is weaker than property (P).
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Appendix A

In this appendix, we prove that every attractor of a one-dimensional map is a strong attractor, that
is, it meets property (A) in Section 2.1. Then we give an example showing that this property is not
true in general for stable attractors in dimension higher than one.

A.1. Strong attractors in one dimension

We prove the following result:

Proposition A.1. Assume that f : I → I is a continuous function defined on an open interval and x∗ is an
attractor in I of the discrete dynamical system

x(N + 1) = f
(
x(N)

)
, N = 0,1, . . . . (A.1)

Then condition (A) holds.

The key property to deduce Proposition A.1 is given in the following result.

Lemma A.2. Consider J = [a,b] a compact interval invariant under (A.1). Then for every ε > 0, there exist
0 < ε1, ε2 < ε such that

f
(
[a − ε1,b + ε2]

)
⊂ (a − ε1,b + ε2).

Proof. It is not restrictive to assume that x∗ does not belong to the border of J ; otherwise we work
with J ′ = J ∪ U , with U an arbitrary small compact and invariant neighborhood of x∗ (the existence
of this interval is guaranteed by Lemma 2.3 in [17]). On the other hand, if a < f (a), f (b) < b, then
our lemma is trivial. By using that x∗ is an attractor, we observe that it is not possible that f (a) = b
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and f (b) = a simultaneously. Then, we have just to consider the case f (a) = b and f (b) < a (the case
f (b) = a and f (a) > b can be treated in the same way). Clearly, we can take ε2 small enough so that
f ([b,b + ε2]) ⊂ (a,b) and then ε1 small enough so that f ([a − ε1,a]) ⊂ (a,b + ε2). !

Proof of Proposition A.1. By property (i) of Lemma 2.3 in [17], there is a compact and invariant in-
terval J1 such that K ⊂ Int( J1). In fact, by Lemma A.2, we can assume that f ( J1) ⊂ Int( J1). Applying
again this lemma with J = f ( J1), we can find J2 such that f ( J1) ⊂ J2 ⊂ Int( J1) and f ( J2) ⊂ Int( J2).
Reasoning by induction, we obtain a sequence { Jn}n∈N . Note that x∗ ∈ Int( Jn) for all n ∈ N and

+∞⋂

n=1

Jn = {x∗}.

To see this last claim, we argue as follows. To avoid trivial cases, we can assume that f ( Jn) .= {x∗} for
all n. We notice that our construction allows us to suppose that if Jn = [an,bn] then f ( Jn) contains
an interval of the type [an+1 − εn+1,bn+1 + εn+1], with limn→∞ εn = 0. Therefore

+∞⋂

n=1

Jn =
+∞⋂

n=1

f ( Jn) = L.

Note that L is a compact interval satisfying that f (L) = L. To guarantee this property, we observe that
if x ∈ f (L) then there are yn ∈ Jn such that f (yn) = x; if y is an accumulation point of {yn}n∈N then
it is clear that y ∈ L and so f (y) = x. Finally, we obtain from (2.2) that L = {x∗}. !

A.2. Stable attraction does not imply strong attraction in dimensions higher than one

To show that the notion of strong attractor is more restrictive than the definition of stable attractor
in a general discrete dynamical system, we give an example in R2.

Let us consider the rotation of angle π
4 with center at the origin R π

4
:R2 → R2, and the map

G : [0,+∞) × R → [0,+∞) × R given in polar coordinates by

G(ρ, θ) =
{

(ρ, θ) if θ ∈ [−π
2 ,π ] + 2πZ,

( f (θ)ρ, θ) if θ ∈ [−π, −π
2 ] + 2πZ,

if ρ > 0, and G(0,0) = 0. Here f : [−π, −π
2 ] → R is defined by

f (θ) =
{ −2

π θ − 1 if θ ∈ [−π, −3π
4 ],

2
π θ + 2 if θ ∈ [−3π

4 , −π
2 ].

Define the map F : R2 → R2 by F = G ◦ R π
4
. The geometric behavior of the map F is as follows:

we rotate π
4 and after that we compress the modulus in the third quadrant. Observe that under F ,

the angular coordinate is periodic with period 8 and the radial coordinate is nonincreasing. Moreover,
given (x, y) = (ρ cos θ,ρ sin θ) .= (0,0), it is easy to see that F 8(ρ cos θ,ρ sin θ) = k0(ρ cos θ,ρ sin θ)

with 0 < k0 � 9
16 . It follows from these properties that (0,0) is an asymptotically stable attractor for

the system associated with the map F . On the other hand, we note that (0,0) is not a strong attractor.
Indeed, given any set I = [a1,a2] × [b1,b2] with a1 < 0 < a2 and b1 < 0 < b2 then, for

c = min{|a1|, |a2|, |b1|, |b2|},

we have that (−c, c), (c, c), (c,−c), (−c,−c) ∈ I and, by the definition of F ,
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F (−c, c) = (−
√
2c,0); F (c, c) = (0,

√
2c);

F (c,−c) = (
√
2c,0); F (−c,−c) = (0,−

√
2c).

Therefore, if F (I) ⊂ [ã1, ã2] × [b̃1, b̃2] then

B := [−
√
2c,

√
2c] × [−

√
2c,

√
2c] ⊂ [ã1, ã2] × [b̃1, b̃2].

It is clear that B .⊂ Int(I) and therefore (0,0) is not a strong attractor for F .
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