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We deal with the existence of positive periodic solutions for functional differential equations
with periodic delay which appear in population models. Our technique is based on a fixed point
theorem on conical shells. We improve recent results in the literature.
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1. INTRODUCTION AND MAIN RESULT

The study of the existence of periodic solutions in delay differential equations was traditionally
motivated by the observance of periodic phenomena in population models. For autonomous equations,
one can find many results about periodic solutions in the literature, by using different methods (see,
for example, [2, 10]). However, sometimes it is more realistic to consider that the parameters
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involved in the model (including the delay parameter) are periodic rather than constant (see, e.g.,
[4]). Recently, Krasnoselskii—type theorems have become an effective tool in proving existence of
periodic solutions in delay differential equations with periodic coefficients [1, 8, 14, 15]. In this
paper, we improve some results from the above cited references by using a new fixed point theorem
for an integral operator defined in a Banach space. To prove this abstract result, we follow the ideas
introduced by Lan in [11] (see also [12] and references therein). Our approach allows us to deal
easily with different models recently investigated in the literature. First, let us consider the equation

u'(t) = —a(t)u(t) + A(t) f(u(t — (1)), (1)

whereX > 0,a,h € C(R,[0,00)) arew—periodic functions with[;” a(s) ds > 0, [y h(s)ds >
0,7 € C(R,R}) isw—periodic, andf € C([0, ), [0,0)) is positive foru > 0.

Equation (1) with constant coefficients was widely studied due to its applications in many fields
including population dynamics, neurophysiology, metabolic regulation, and agricultural commodity
markets (see, e.g., [7, p. 78]).

Cheng and Zhang [1] have obtained some existence results for Equation (1) depending on the
limits
fo=1tim 1= T @

T r—0o0 I

wherefy, fo € [0, cc]. In addition, similar results were stated in [14] for equation

u'(t) = a(t)u(t) — A(t) f(u(t — 7(1))), ®3)

under the same assumptions made for (1).
A more detailed study can be found in the recent paper by Wang [14], where the following
slightly more general form of (3) was investigated:

u'(t) = a(t)g(u(t))u(t) — A(t) f(ut — 7(t))), (4)

whereg € C([0,0),(0,00)), and there exist constantsL > 0 such thatg(u) € [I, L) for all
u > 0.

In Section 2, we show how our method allows to improve the range of values of the parameter
A (depending on the functions g, h and the limitsfy, f. defined in (2)) for which there exists at
least a positive periodic solution for equations (1) and (4), respectively. The proofs of these new
existence results are easily derived from an abstract result, stated below as Theorem 1, which gives
sufficient conditions to guarantee the existence of a positive fixed point for an integral operator from
a Banach space into itself. This abstract result is based on a well known fixed point theorem for
compact maps on conical shells, and, for convenience of the reader, its proof is presented in Section
3.



EXISTENCE OF PERIODIC SOLUTIONS FOR FUNCTIONAL EQUATIONS 3

Before stating the above mentioned Theorem 1, we need to introduce some notation and defini-
tions.

LetE, = {u e C(R,R) : u(t) = u(t+w)} be the vectorial space of theperiodic continuous
functions, which is a Banach space with the norm

[ull = sup [u(t).
te[0,w]

We define the integral operatét £,, — E,, by
t+w
[Su|(t) = / k(t,s)F(s,u(s —7(s)))ds, teR, (5)
t

wherer: R — R is a continuouss-periodic function,F": R? — [0, oo) is continuous and-periodic
in the first variable, an&: R? — R is a continuous function satisfying

E(t+w,s+w) = k(t,s) forall (ts) € R> (6)

Now, we are in a position to enunciate the announced fixed point theores$h for
Theoreml1 — Assume that
(D1) there exist a constante (0, 1] and a continuous functiod: [0, w] — [0, co) such that

c®(s) < k(t,s) < P(s) forall(t,s) € [0,w] x [0,w];

(D2) there exist a constant > 0 and a functionp: R — (0, o), continuous and-periodic,
such that
F(t,v) > cag(t) forall (t,v) € [0,w] X [ca, o,
and
inf k(t,s)o(s)ds > 1;
telow] Jo

(D3) there exist a constapt > 0 and a function): R — (0, o), continuous and—periodic,
such that

F(t,v) < py(t) forall (¢t,v) € [0,w] x [¢B, 1],
and

sup /Ow k(t,s)y(s)ds < 1.

te[0,w]

Then, the following results hold:
(a) if B < ca, then the operata$ has a positive fixed point which satisfies

B <|ul|] <a and ¢f < min u(t) < ca;
t€[0w]
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(b) if a < 3, then the operata$ has a positive fixed point which satisfies

ca < |ul] <4 and ca < n[lgn]u(t)

Remarkl : From the proof of Theorem 1 (see Section 3), it is clear that its conclusions remain
valid if the kernelk in (5) depends on, if we assume that = k(u) satisfies (6), (D1), (D2) and
(D3) with the same constantsa, 5 and functionsd, ¢, ¢ for all u € E,,. This remark will be
useful to apply Theorem 1 to equation (4).

2. POPULATION MODELSWITH PERIODIC DELAYS

This section is devoted to obtain some applications of Theorem 1 to the existence of positive periodic
solutions of equations (1) and (4).
Define F'(t,u) = Ah(t) f(u). Hence, (7) can be written as

' (t) = —a(t)u(t) + F(t,u(t — 7(t))). @)

Next, (see [1] for details), is aw—periodic solution of (7) if and only if. is a fixed point of the
integral operatol: E£,, — E,, defined by

t+w
[Sz](t) = G(t,s)F(s,u(s —7(s)))ds, t € R,
t
where
a(r)dr R
G(t,s) = L o=eo ddr 5
oc—1
Moreover, )
o
< t <
c—1 G(t,s) c—1

Hence, (D1) holds witle = o/(c — 1),c = o~ € (0,1).

Denote

—max/Gts —mln/Gts
te[0,w] te0,w]

We have the following consequence of Theorem 1, which improves Theorem 2.5 in [1].
Theorem2 — Assume thaffy, fo € (0, 00), and

1 1
Buax o oo}~ Amin{fo, fo] ®

Then equation (1) has a positive-periodic solution.

PROOF: We assume thafy < f.. The casefy > f is similarly addressed by using part (b)
in Theorem 1.
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Lete > 0 be such that .

1
<AL — 9
Blfw—2) =~ = Al +9) ©
By the definition off, there existsr > 0 such thatf (u) > (foo—¢)uforallu > ca. Choosing
B(t) = Mh(t)(fs — €), hypothesis (D2) clearly holds. Analogously, there exists (0, co) such

that f (u) < (fo+¢)uforallu < 3. Hence, (D3) is satisfied with(t) = Ah(t)(fo +¢). The result
now follows from Theorem 1 (a). 0

Now we consider equation (4). As it is shown in [14]¢ E,, is aw—periodic solution of (4) if
and only ifu is a fixed point of the integral operatst £, — E,, defined by

_ t+w
[Sz|(t) = /t Gyu(t,s)F(s,u(s —7(s)))ds, t € R,

where R
e~ ts a(r)g(u(r))dr

1— e o algu(r)dr’

Gy(t,s) =

RUJ
andF(t,u) = Mh(t) f(u). Leto = e~ o M4 ¢ (0,1). Since

L
I < Gults) € o
for allu € E,,, condition (D1) holds withe = ¢%(1 — o!)(1 — o¥)~1 € (0, 1).
Repeating the same arguments used in the proof of Theorem 2, and using Remark 1, we get the
following result, which improves Theorem 1.3 in [14]

Theorem3 — Assume thaffy, foc € (0, 00), and

1—ol 1 1—o 1
oL [T h(s)ds max o oo}~ 7 h(s)ds min{ fo, oo}

Then equation (4) has a positive-periodic solution.

We emphasize that Theorem 1 is very easy to apply; roughly speaking, it only requires an
integral representation of the considered equation and some bounds for the kernel of the equivalent
integral equation.

Examplel — Let us consider the following modification of the celebrated Nicholson’s blowflies
equation [6]:

(10)

W (1) = —u(t) + (1 + sin(2rt))u(t — 7(t)) (a n ﬁe—W<t—T<t>>) , (11)

wherea, (3,~, \ are positive constants, ands al-periodic delay.
In terms of our Theorem 2, we have

fw) = u(a+pBe ™) ; h(t) =1+sin(2nt)

fo = limf($)2a+6 i foo = lim —= = .

z—0 T r—00 I
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Next, sincea(t) = 1, G(t,s) = e~ (e — 1)~ 1. Denoting by
27
—t 1—- ==
/ Gt,5) ( 1+ 471'2> ’

A=g(0)~ 0844777 ; B =g(1) ~ 0.310776.

we easily get

Theorem 2 provides the existence of a positive 1-periodic solution of (11) for all valuemof

the interval
(1 1
 \(a+B3)B ad)’

For example, if we choose = 0.2,3 = 1.2, Theorem 2 ensures that (11) has a positive 1-
periodic solution for all € (2.3,5.9). We notice that Theorem 2.5 in [1] does not aply in this case,
since the required inequalities do not hold for any valug.of

Remark2 : It is easy to use Theorem 1 to obtain similar results when the lifpitg, in (2)
take values if0, oo]. In this way, the corresponding existence results in [1, 14] are also improved.

On the other hand, by using similar ideas to those in [3], the results in Section 2 can be extended
to a system of integral operators

t+w
[Siu;](t) = /t ki(t,s)Fi(s,u(s —7(s)))ds, t e R, i=1,2,...,n, (12)

where k;, F; are in the conditions given for (5). In this way, we can apply our scheme to the
nonautonomous—dimensional system considered in [15]

' (t) = —A(t)u(t) + NH () F (u(t — 7(t))),

where
A(t) = diaglai(t),...,an(t)],
H(t) = diag[hi(t),...,hn(t)],
Flu) = [fi(u),..., fa(uw)],

A, a;(t), hi(t) are in the conditions given fox, a(t), h(t) in equation (1), respectively, anf :
R? — [0, 00) is continuous withf;(u) > 0 for ||ul| > 0,i=1,...,n

PROOF OFTHEOREM 1

As it was indicated in the introduction, the proof of Theorem 1 is based on a fixed point theorem
for compact maps on conical shells. We recall the statement of this result below, after introducing
some definitions and notations.

Let(E, ||-||) be a Banach space, we say that_ E'is a cone ifitis closed, nonempti, # {0}
and whenevet,y € K and\, € Rwith A > 0, > 0thenlx + py € K. If D is a subset of7,
we write D = DN K anddx D = (0D) N K.
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As usual, we define a compact méipE — E as a continuous map such tHtF) is a compact
subset off. A mapS$ is said to be completely continuous if it is continuous &ffd") is a compact
subset ofF’ for each bounded subsetC FE. We are now in a position to state the above mentioned
fixed point theorem, whose proof is based on the properties of the fixed point index (see, e.g., [5]).

Theorem4 — AssumeQ!, 02 are open bounded sets wifhl, # 0,Qlx C Q%, and let

S: Q25 — K be a compact map such that either

e there existg € K \ {0} such that: # Su + Ae for all u € 9xQ? and all\ > 0, and

o ||Su|| < ||ul for all u € 9N
or

e there existg € K \ {0} such thatu # Su + Xe for all u € 9! and all\ > 0, and

o ||Su|| < ||ul for all u € O O2.

ThensS has a fixed point if22 \ Q.

Now, in order to apply Theorem 4 in the proof of Theorem 1, we need to choose an adequate
cone onk,, and to check that hypotheses in Theorem 1 guarantee that the cone is invasant by

We will consider the cone

K= {u € E,: min u(t) > c\uH} , (13)
te0,w]
wherec € (0, 1] was introduced in (D1). We have the following result:

Lemmal — Assume (D1) holds. Thefi mapsK into K and it is completely continuous.

PROOF: Using an standard reasoning (see for example [11]) one can shosighatcompletely
continuous operator. So, for simplicity, we omit the proof of that part. Moreover, the periodicity
properties of the functions, = andk guarantee that mapskE,, into E,,.

Next, to show thabt mapsK into K, letu € K andt € R. We have from (D1) that

t+w
Su(t)| :/t k(t, ) F (s, u(s — 7(s))) ds

IN

ttw
/t O(s)F(s,u(s —7(s))) ds.
Therefore,
t+w
|1Sul| < /t O(s)F(s,u(s —7(s)))ds. (14)

On the other hand, using (D1) again, we have for eaehK andt¢ € R that

t+w
Su(t) = /t k(t,s)F(s,u(s—7(s)))ds

t+w
> c/t B(s)F (s, u(s — 7(s))) ds > ¢ Su.
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Thus, H[lgn] Su(t) > c||Sul|, and therefores (K) C K. O
te|Ow

The following pieces that we need in order to apply Theorem 4 are suitable open sets. For each
r > 0 we write

AT:{UEEW: min u(t)<cr},
te|0,w]

and
B"={u€kE,:|u||<r}.

The sets defined above satisfy the following result, which is an adaptation of Lemma 2.5 in [11]
to the Banach spadg,,. Since the proof is essentially what appears in [11], we omit it.

Lemma2 — SetsA” and B" verify

(a) A% andBj, are open relative té.

(b) B C A% C B.

(c)u € O A" ifand only ifu € K and H[loin} u(t) = cr.
te|0,w

(d) If u € Og A™, thener < u(t) < rfor eacht € [0, w].

It is clear that setsl” are unbounded sets for each> 0, so we can not use Theorem 4 with
them. However we will be able to apply Theorem 4 taking into account that, for®ach, the
following relations hold:

TK = (AT N B(S)K and FK = (AT N B‘s)K.

The first equality follows immediately from Lemma 2 (b). For the second let A” . Then
from Lemma 2 (c) we have thafu|| < min,c(,ju(t) < er < ¢d sou € (A7 N B%) N K. Now,
sinceA” andB? are open sets we havd N B® C A” N BY and so

(AT N B%) g C (A" N Bd).

Thusu € (A" N BY) g, and therefored” x C (A" N BY) k. The reverse inclusion is trivial.
Now we are in position to prove Theorem 1.

PROOF OFTHEOREM 1 : Lemma 1 ensures that the restrictighsd®; — K andS: B8 —
K are well defined compact maps for eaghp € (0, 0o).

Next, we claim that:

(I) There existe € K \ {0} such that: # Su + Ae for u € 9x A% and\ > 0.

() || Sul| < [Jul| for all u € Ok BP.

We start with (I). Lete(t) = 1 for¢t € R. Thene € K \ {0}. Next, suppose that there exists
u € Og A® andX > 0 such thatt = Su + Ae. Then from Lemma 2 (d) we haver < u(t) < « for
t € [0, w]. From (D2) we have, for eache [0, w],

t+w
w(t) = Su(t)+ A :/t k(t, $)F (s, u(s — 7(s))) ds + A
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t+w
> ca/ E(t,s)p(s)ds + X > ca+ A (15)
t

Hence,min,¢(g, u(t) > ca + A > ca, contradicting the statement of Lemma 2 (c). This
contradiction proves part (1) of our claim.

Next, let us consider part (Il). i € dx B® then|ju|| = 8 and from (D3) we obtain, for each
t e R,

t+w
|Su(t)] < /t k(t,s)F(s,u(s —7(s)))ds

< ﬂ/tw k(t,s)(s)ds < 8 sup /w E(t,s)y(s)ds < .
t tel0,w] JO

Hence,||Su|| < ||u|| for eachu € dx B, and so (11) holds.

Now suppose tha8 < ca. Then one has from Lemma 2 th&3; C By c A%, and
therefore it follows from Theorem 4 tha has at least a fixed point € A%k \ Bi.. Hence
¢ < minggpg ) u(t) < ca andlul > 8 hold. On the other hand||u| < min,cp ) u(t) < ca,
and thereforglu|| < a.

Finally, if o < 3 one hasd® C BY , and then Theorem 4 guarantees the existence of at least
one fixed pointu € B8 \ A% of S. Hence we obtain the inequalities

ca < |lul| < B and ca < min u(t).
te[0,w]

Remark3 : The conclusions of Theorem 1 remain valid under more general hypotheges on
and k. For example, we can assume thfais a Caratkodory function with an explicit periodic
dependence of tim¢/(¢, z). In such a case, the limits in (2) are required to be uniform. Alszan
be assumed not continuous, but only measurable and satisfying the limit relation

w

7}im |k(t,s) — k(v,s)|ds =0,
—V 0
for everyv € [0,w]. The reader interested in these sharper conditions can consult.
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