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(Dedicated to Professor István Győri on the occasion of his 60th birthday)

(Communicated by Hans-Otto Walther)

Abstract. For a scalar delayed differential equation ẋ(t) = f(t, xt), we give suf-
ficient conditions for the global attractivity of its zero solution. Some technical
assumptions are imposed to insure boundedness of solutions and attractivity of non-
oscillatory solutions. For controlling the behaviour of oscillatory solutions, we require
a very general condition of Yorke type, together with a 3/2-condition. The results
are particularly interesting when applied to scalar differential equations with delays
which have served as models in populations dynamics, and can be written in the
general form ẋ(t) = (1+ x(t))F (t, xt). Applications to several models are presented,
improving known results in the literature.

1. Introduction. Let C := C([−h, 0];R) be the space of continuous functions
from [−h, 0] to R, h > 0, equipped with the sup norm ‖ϕ‖ = max−h≤θ≤0 |ϕ(θ)|. In
the present work, we consider scalar functional differential equations (FDEs)

ẋ(t) = f(t, xt), t ≥ 0, (1.1)

where f : [0,∞) × C → R is continuous. As usual, xt denotes the function in C
defined by xt(θ) = x(t + θ),−h ≤ θ ≤ 0. Clearly, the requirement of f continuous
can be weakened (see [5, Chapter 2]); however, existence and continuity of solutions
for (1.1) must be assumed.

Our research is mainly motivated by the applications of the so-called 3/2 stability
results (see e.g. [6, Section 4.5]) to scalar population models which can be written
in the form

ẋ(t) = (1 + x(t))F (t, xt), t ≥ 0. (1.2)
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Recently, the global attractivity of the zero solution of (1.2) was investigated in
[1] assuming that F satisfies the following generalization of the well-known Yorke
condition ([15], [6, p. 141]):

−λ(t)M(ϕ) ≤ F (t, ϕ) ≤ λ(t)M(−ϕ), for t ≥ 0, ϕ ∈ C, (1.3)

where λ : [0,∞) → [0,∞) is a piecewise continuous function, and the functional
M(ϕ) := max {0, supθ∈[−h,0] ϕ(θ)} was introduced by Yorke [15]. We remark that
condition (1.3) with λ(t) ≡ a > 0 was first introduced in [15], not in the setting of
equation (1.2), but to study the stability of the zero solution of (1.1), for F = f ;
later, Yoneyama [13] generalized Yorke’s hypothesis by replacing the constant a
with a continuous function λ(t) ≥ 0.

Connecting and unifying the approaches in [1] and [7] (in which another gen-
eralization of the Yorke condition was introduced, see Theorem 1.1 below), in the
present paper we improve the results in the referred works: we establish a global
attractivity result for (1.1), from which the global attractivity of (1.2) is obtained
under a Yorke condition (see assumption (A3) in Section 3) more general than the
ones considered in both [1] for (1.2) and [7] for (1.1). Our result is easy to apply,
and allows us to improve some results in the literature for a number of concrete
examples.

We set some notation. If x(t) is defined for t ≥ 0, we say that x(t) is oscillatory
if it is not eventually zero and it has arbitrarily large zeros; otherwise, it is called
non-oscillatory. An equilibrium E∗ of (1.1) is said to be globally attractive if all
solutions of the equation tend to E∗ as t →∞. In C, we consider the usual partial
order

ϕ ≥ ψ if and only if ϕ(θ) ≥ ψ(θ), θ ∈ [−h, 0];
in particular, for ϕ ∈ C and c ∈ R, ϕ ≥ c (respectively ϕ ≤ c) means that ϕ(θ) ≥ c
(respectively ϕ(θ) ≤ c) for all θ ∈ [−h, 0]. Analogously, for ϕ, ψ ∈ C we define
ϕ > ψ if and only if ϕ(θ) > ψ(θ), θ ∈ [−h, 0].

In the following, the next hypotheses will be considered for f as in (1.1):
(H1) there exists a piecewise continuous function β : [0,∞) → [0,∞) for which

β0 := sup
t≥0

∫ t

t−h

β(s)ds < ∞,

and such that for each q ∈ R there is η(q) ∈ R such that for t ≥ 0 and
ϕ ∈ C, ϕ ≥ q, then

f(t, ϕ) ≤ β(t)η(q);

(H2) if w : [−h,∞) → R is continuous and there is limt→∞ w(t) = w∗ 6= 0, then∫∞
0

f(s, ws) ds diverges;

(H3) there are a piecewise continuous function λ : [0,∞) → [0,∞) and a constant

b ≥ 0 such that, for r(x) :=
−x

1 + bx
, x > −1/b,

λ(t)r(M(ϕ)) ≤ f(t, ϕ) ≤ λ(t)r(−M(−ϕ)), for t ≥ 0, (1.4)

where the first inequality holds for all ϕ ∈ C and the second one for ϕ ∈ C
such that ϕ > −1/b ∈ [−∞, 0), and M(ϕ) is the Yorke functional

M(ϕ) := max {0, sup
θ∈[−h,0]

ϕ(θ)};
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(H4) for λ(t) as in (H3), there is T ≥ h such that, for

α := α(T ) = sup
t≥T

∫ t

t−h

λ(s)ds,

α ≤ 3/2 if b > 0, and α < 3/2 if b = 0.
Without loss of generality, by a time scaling, we may assume h = 1. Also, if

b > 0, for b as in (H3), the scaling x 7→ bx allows us to consider b = 1. By the
change of variables x 7→ y = −x, we may as well consider a function f(t, ϕ) such
that g(t, ϕ) = −f(t,−ϕ) satisfies (H1)–(H4).

In [7] the following result was proven:

Theorem 1.1. [7] Assume (H1)–(H4) with β(t) ≡ 1 and λ(t) ≡ a, a being a
positive constant. Then, all solutions of (1.1) are defined on [0,∞), and converge
to zero as t →∞.

Our first purpose is to prove Theorem 1.1 under hypotheses (H1)–(H4) with
general β(t), λ(t). Actually, by a change of variables introduced in [7] (see (2.2)–
(2.3) below), it turns out that the framework in (H3) can be reduced to the situation
of (H3) with λ(t) ≡ a > 0, if the additional condition λ(t) > 0 for large t is imposed
(cf. Lemma 2.3). As we shall show in Section 3, the application of this result
to general delayed scalar population models (1.2) provides a generalization of the
criterion for global attractivity established in [1] (see Theorem 3.1 below). In
Section 4, some particular models that have been considered in the literature are
addressed within the present framework, and weaker sufficient conditions for the
global attractivity of equilibria or periodic solutions of such models are obtained.
Also some open problems and counter-examples will be presented.

2. Global stability for (1.1). We start this section with some preliminary lem-
mas.

Lemma 2.1. Assume (H1)–(H3) with b > 0, and

α0 = sup
t≥0

∫ t

t−h

λ(s)ds < ∞ . (2.1)

Then, every solution x(t) = x(ϕ)(t) of (1.1) with initial condition x0 = ϕ ∈ C
is defined and bounded on [0,∞). Furthermore, if x(t) is non-oscillatory, then
x(t) → 0 as t →∞.

Proof. Assume h = 1 and b = 1, and consider x(t) a solution of (1.1). From (H3),
f(t, ϕ) ≥ −λ(t) for all t ≥ 0, ϕ ∈ C, hence x(t) ≥ x(0)− ∫ t

0
λ(s)ds is bounded from

below on each interval [0, a), a > 0. Fix any a > 0, and let x(t) ≥ q on [−1, a).
From (H1),

f(t, xt) ≤ β(t)η(q), t ∈ [0, a),

for some η(q) ≥ 0. This implies that

x(t) ≤ x(0) + η(q)
∫ t

0

β(s)ds, t ∈ [0, a),

and x(t) is bounded from above on [0, a). On the other hand, conditions (H1) and
(H3) imply that f maps bounded sets of [0,∞) × C into bounded sets of R. This
shows that x(t) is extensible to [0,∞).
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We now prove that x(t) is bounded on [0,∞). (For a similar proof, see [1,
Theorem 3.3].) First, we observe that from (H3) we have, for t ≥ 0, ϕ ∈ C,

f(t, ϕ) ≤ 0 if ϕ ≥ 0 and f(t, ϕ) ≥ 0 if ϕ ≤ 0.

Let x(t) be a non-oscillatory solution of (1.1). If x(t) is eventually positive, then
f(t, xt) ≤ 0 for t large, and x(t) is eventually non-increasing, thus x(t) is bounded.
Analogously, if x(t) is eventually negative, then ẋ(t) ≥ 0 for t large, and x(t) is
bounded.

Now consider the case of x(t) oscillatory. Let t0 be a local minimum point of
x(t), x(t0) < 0. We may assume that x(t) > x(t0) for t0 − t > 0 small. Then (cf.
[7, Remark 3] and [1, Lemma 3.2]) there is ξ0 ∈ [t0 − 1, t0) such that x(ξ0) = 0.
Otherwise, since x(t) is continuous, then x(t) < 0 on [t0 − 1 − δ, t0], hence ẋ(t) =
f(t, xt) ≥ 0 for t ∈ [t0 − δ, t0], contradicting the definition of t0. From (H3), we
obtain

x(t0) =
∫ t0

ξ0

f(t, xt) dt ≥ −
∫ t0

t0−1

λ(t) dt ≥ −α0.

We therefore deduce that x(t) is bounded from below on [0,∞).
Let q ∈ R be such that x(t) ≥ q, t ≥ 0. If t1 is a local maximum point of x(t)

with 0 < x(t) < x(t1) for t1− t > 0 small, in a similar fashion we deduce that there
is ξ1 ∈ [t1 − 1, t1) such that x(ξ1) = 0. From (H1), there is η = η(q) ≥ 0 such that

x(t1) =
∫ t1

ξ1

f(t, xt) dt ≤ η

∫ t1

t1−1

β(t) dt ≤ ηβ0 .

Then there is an upper bound of x(t). The proof of the boundedness of x(t) is
complete.

If x(t) is a non-oscillatory solution of (1.1), we have already shown that x(t) is
eventually monotone, therefore there is limt→∞ x(t) := c. If c 6= 0, from (H2) we
obtain a contradiction, thus x(t) → 0 as t →∞. ut

Remark 2.2. If b = 0, clearly (H3) and (2.1) imply (H1) with β(t) = λ(t). Note
that if b = 0 the inequality

f(t, ϕ) ≥ −λ(t), t ≥ 0, ϕ ∈ C

does not hold, and we cannot deduce the boundedness of all solutions of (1.1).
However, for the situation b = 0 Yoneyama [14] proved that all solutions of (1.1)
converge to zero as t → ∞ under hypotheses (H2), (H3) and (H4). On the other
hand, for b > 0, in the above proof hypothesis (H1) was used only to prove that
all solutions of (1.1) are bounded from above on [0,∞). Note that if b > 0 this
result does not follow from (H3), since the second inequality in (H3) holds solely
for ϕ ∈ C such that ϕ > −1/b.

Lemma 2.3. Assume (H1)–(H4). If λ(t) > 0 for t ≥ 0 large, then the zero solution
of (1.1) is globally attractive.

Proof. Set h = 1. Under (H1)–(H4) and b = 0 in (H3), the result follows from [14],
so we assume b = 1. We first observe that (H2), (H3) imply that

∫∞
0

λ(t) dt = ∞.
In fact, choose w ∈ (−1/b, 0). From (H2), (H3), 0 ≤ f(t, w) ≤ λ(t)r(w), with∫∞
0

f(t, w) dt = ∞, thus also
∫∞
0

λ(t) dt = ∞.
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Suppose that λ(t) > 0 for t ≥ T0, and let t0 = max{T, T0}, where T is as in
(H4). Similarly to what was done in [7], we define s : [t0,∞) → [s(t0),∞),

s(t) =
1
α

∫ t

0

λ(u) du, t ≥ t0, (2.2)

for α as in (H4). The function s(t) is one-to-one and onto. Denote by t = t(s) its
inverse, and consider the change of variables

y(s) = x(t(s)), s ≥ s0 := s(t0). (2.3)

For s ≥ s0, Eq. (1.1) is transformed into

ẏ(s) = g(s, ys), (2.4)

where
g(s, ϕ) =

α

λ(t(s))
f
(
t(s), ϕ(−σ(s, ·))),

and

σ(s, θ) =
1
α

∫ t(s)

t(s)+θ

λ(τ) dτ, θ ∈ [−1, 0].

(Note that ϕ(−σ(s, ·)) ∈ C if ϕ ∈ C.) From (H3), it is easy to verify that the
function g in (2.4) satisfies

αr(M(ϕ)) ≤ g(s, ϕ) ≤ αr(−M(−ϕ)), for s ≥ s0,

where the first inequality holds for all ϕ ∈ C and the second one for ϕ ∈ C such
that ϕ > −1/b ∈ [−∞, 0). Thus, g(s, ϕ) satisfies (H3)–(H4) with λ(s) ≡ α. In
order to apply Theorem 1.1, condition (H1) of [7], i.e., condition (H1) above with
β(s) ≡ 1, and (H2) should be fulfilled. However, it is clear that g may not satisfy
condition (H1) of [7], nor (H2). On the other hand, conditions (H1) of [7] and (H2)
above were used only to prove, respectively, that all solutions of (2.4) are defined
and bounded on [0,∞), and that non-oscillatory solutions go to zero as t →∞. For
the present situation, the existence and boundedness of all solutions of (2.4) follow
from Lemma 2.1. Therefore, invoking Theorem 1.1, we deduce that y(s) → 0 as
t → ∞, for all oscillatory solutions y(s) of (2.4). Since s(t) → ∞ as t → ∞, then
all oscillatory solutions x(t) of (1.1) satisfy x(t) → 0 as t →∞. For non-oscillatory
solutions, the same is true from Lemma 2.1. ut

Note that the change of variables (2.3) (cf. [7]) is very powerful, since it allows
to reduce Eq. (1.1), with f satisfying (H3)–(H4), to Eq. (2.4), with g satisfying
(H3)–(H4) for λ(s) ≡ a > 0.

Lemma 2.4. Assume (H1)–(H4) with α < 3/2, for α defined as in (H4). Then
the zero solution of (1.1) is globally attractive.

Proof. If (H4) holds with α < 3/2, we can find ε > 0 such that (H3) and (H4)
are fulfilled with λ(t) replaced by λ1(t) := λ(t) + ε. The result follows now from
Lemma 2.3. ut

We are now in position to state the following improvement of Theorem 1.1.

Theorem 2.5. Assume (H1)–(H4). If b > 0, assume in addition that either λ(t) >
0 for t large, or α := α(T ) < 3/2 for some T ≥ h. Then the zero solution of (1.1)
is globally attractive.

Proof. The result follows immediately from Lemmas 2.3 and 2.4. ut
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Remark 2.6. For the case b = 0, it was proven in [8] that, for the particular case of
equation

ẋ(t) = λ(t)g(x(t− h)),
Theorem 2.5 is valid if we have the equality α = 3/2 in (H4), and (H3) holds with
the strict inequality for ϕ(−h) 6= 0. Therefore, an interesting open question is
whether Theorem 2.5 is still valid if in the case b = 0 we assume (H1)–(H3), allow
α = 3/2 in (H4), and further impose

−λ(t)M(ϕ) < f(t, ϕ) < λ(t)M(−ϕ)

for all t ≥ 0 and ϕ ∈ C with ϕ(θ) 6= 0, θ ∈ [−h, 0]. For the general case of
distributed delays, some additional conditions on the behaviour of f(t, ϕ) might be
required.

Another interesting question is whether it is possible to replace (H3) in Theorem
2.5 by the following weaker condition:
(H3’) there is a piecewise continuous function λ : [0,∞) → [0,∞) and there are

constants b1, b2 ≥ 0, b1 ≤ b2, such that, for ri(x) :=
−x

1 + bix
,

λ(t)r1(M(ϕ)) ≤ f(t, ϕ) ≤ λ(t)r2(−M(−ϕ)), for t ≥ 0, (2.5)

where the first inequality holds for all ϕ ∈ C and the second one for ϕ ∈ C
such that ϕ > −1/b2 ∈ [−∞, 0), and M(ϕ) = max {0, supθ∈[−h,0] ϕ(θ)}.

Note that the case b1 ≥ b2 in (2.5) is not of interest, in the sense that it reduces
(2.5) to (1.4). In fact, if b1 ≥ b2 we have r1(x) ≥ r2(x) for all x > −1/b1; thus,
condition (2.5) implies (1.4) with r(x) = r2(x).

The following result shows that, under additional restrictions on (H4) and on
the size of b1/b2, we can replace (H3) by (H3’) in Theorem 2.5.

Theorem 2.7. Assume (H1), (H2), (H3’) and that, for λ(t) as in (H3’), there is
T ≥ h such that

α := α(T ) = sup
t≥T

∫ t

t−h

λ(s)ds ≤ 3
√

2. (2.6)

Assume also that
α2

2 + α
<

b1

b2
. (2.7)

Then all solutions x(t) of (1.1) satisfy x(t) → 0 as t →∞.

Proof. As already mentioned, we may consider h = 1. Arguing as in the proof
of Lemma 2.1, one deduces that all solutions of (1.1) are defined and bounded on
[0,∞), and that non-oscillatory solutions of (1.1) go to zero as t →∞. Hence, only
oscillatory solutions x(t) will be considered.

Define λ0(t) = α−1λ(t) and Ri(x) = αri(x), for ri(x), i = 1, 2, as in (H3’). Recall
that ri(x), hence also Ri(x), i = 1, 2, are decreasing functions on their domains.
We now apply (H3’), and argue by adapting the proofs in [7, Lemma 4] and [1,
Lemma 3.5]. Some details are omitted.

Let x(t) be an oscillatory solution of (1.1), and define

u = lim sup
t→∞

x(t), −v = lim inf
t→∞

x(t).

Fix ε > 0, and for T as in (2.6) choose T0 ≥ T such that

−(v + ε) ≤ x(t) ≤ u + ε, t ≥ T0 − 2.
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Now consider a sequence (x(sn)) of local minima, x(sn) < 0, sn → ∞, sn − 2 ≥
T0, x(sn) → −v as n → ∞. As in [7, Remark 3] and [1, Lemma 3.2], we deduce
that, if sn are chosen so that x(t) > x(sn) for sn − t > 0 small, then there exists
ηn ∈ [sn − 1, sn) such that x(ηn) = 0 and x(t) < 0 for t ∈ (ηn, sn].

For t ∈ [T0, ηn], then xt ≤ u + ε and

−x(t) =
∫ ηn

t

f(s, xs)ds ≥
∫ ηn

t

λ0(s)R1(M(xs)) ≥ R1(u + ε)
∫ ηn

t

λ0(s)ds.

Thus, for t ∈ [ηn, sn], we have xt ≤ −R1(u + ε)
∫ ηn

t−1
λ0(s)ds. Hence,

x(sn) =
∫ sn

ηn

f(t, xt)dt

≥
∫ sn

ηn

λ0(t)R1

(
−R1(u + ε)

∫ ηn

t−1

λ0(s)ds
)
dt

≥
∫ sn

ηn

λ0(t)R1

(
−R1(u + ε)[1−

∫ t

ηn

λ0(s)ds]
)
dt

= − 1
R1(u + ε)

∫ ψ(ηn)

ψ(sn)

R1(x) dx,

where ψ(t) = −R1(u + ε)[1− ∫ t

ηn
λ0(s)ds]. Since ψ(sn) ≥ 0 and R1(x) is a convex

function, from Jensen’s inequality we have

x(sn) ≥ − 1
R1(u + ε)

∫ −R1(u+ε)

0

R1(x) dx

≥ R1

(
− 1

R1(u + ε)

∫ −R1(u+ε)

0

x dx
)

= R1

(
− R1(u + ε)

2

)
.

By letting n →∞ and ε → 0+, we obtain

−v ≥ R1(−R1(u)/2). (2.8)

From (2.6) and (2.7), we have R1(−R1(u)/2) = −α2u
2+(2+α)b1u > −1/b2, and the

estimate above implies that −v > −1/b2, thus R2(−v) and R2 ◦R1(−R1(u)/2) are
well defined.

Consider now a sequence (x(tn)) of local maxima, x(tn) > 0, tn → ∞, tn − 2 ≥
T0, x(tn) → u as n → ∞. We may assume that x(t) < x(tn) for tn − t > 0 but
small. In a similar way, we deduce that there exists ξn ∈ [tn − 1, tn) such that
x(ξn) = 0 and x(t) > 0 for t ∈ (ξn, tn]. For t ∈ [T0, ξn], then xt ≥ −(v + ε), hence
M(−xt) ≤ v + ε and, for ε small such that −(v + ε) > −1/b2,

x(tn) =
∫ tn

ξn

f(t, xt) dt ≤
∫ tn

ξn

λ0(t)R2(−M(−xt)) dt

≤ R2(−(v + ε))
∫ tn

tn−1

λ0(t) dt ≤ R2(−(v + ε)).

By letting n →∞ and ε → 0+, we obtain

u ≤ R2(−v). (2.9)

From (2.8) and (2.9), we get

u ≤ R2 ◦R1

(
− R1(u)

2

)
,
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i.e., u ≤ α3u
2+(2b1+αb1−b2α2)u , and (2.7) implies that 2b1 + αb1 − b2α

2 > 0 for α ∈
(0, 3
√

2]. If u > 0, for α ∈ (0, 3
√

2] we obtain a contradiction. Thus, u = 0. From
(2.8), it follows that also v = 0. ut

From the above proof, it is easy to see that the result holds if, instead of (2.6)
and (2.7), we have

α <
3
√

2 and
α2

2 + α
≤ b1

b2
.

We remark that the above framework is valid for equations (1.1) with time-
dependent bounded delays h(t) (h(t) ≤ h for t ≥ 0), provided existence and
smoothness of solutions are assumed, since the arguments used here or in [1, 7]
can be adapted to this situation (cf. [1, Remark 3.11] and Remark 3.6 below).

Remark 2.8. As the next example shows, it is impossible to extend the result in
Theorem 2.7 up to α = 3/2 even if b1/b2 > 1− δ, for δ > 0 arbitrarily small.

Let us consider the following T (M)–periodic delay differential equation

x′(t) = f(x(t− h(t))), (2.10)

where, for a ∈ (−3/2,−1), b > 0 and β ∈ (−1/b, 0), f : R → R is a continuous
function defined by

f(x) =





r1(x) = ax
1+x if x ≥ 0,

r2(x) = ax
1+bx if x ∈ (β, 0),

r2(β) if x ≤ β.

Clearly, (H3’) is satisfied with λ(t) ≡ −a, b1 = 1 and b2 = b. For an arbitrary b > 1,
the ratio b1/b2 is arbitrarily close to 1.

On the other hand, for M ∈ (0,−a− 1), let h(t) be the positive piecewise linear
T (M)-periodic function, defined on the period interval [0, T ] as

h(t) =





t if t ∈ (0, 1],
1 if t ∈ [1, λ(M)],
t− λ(M) if t ∈ (λ(M), λ(M) + 1],
1 if t ∈ [1 + λ(M), T (M)],

and then extended over all R in a periodic way. Here,

λ(M) = 1− 1 + M

a
∈ (1, 2), (2.11)

and T (M) will be defined in the proof of the next theorem, which, for convenience
of the reader, will be presented in Appendix A at the end of the paper.

Theorem 2.9. For every real number b > 1, there exists δ > 0 such that for each
a ∈ (−3/2,−3/2+ δ) there is M = M(a) > 0, such that Eq. (2.10) has at least one
T (M)–periodic solution x(t) with maxR x(t) = M .

3. Scalar population models. We apply now Theorem 2.5 to scalar population
models that can be written in the form

ẋ(t) = (1 + x(t))F (t, xt), t ≥ 0, (3.1)

where F : [0,∞) × C → R is a continuous function. Due to biological reasons (cf.
Section 4), we only consider admissible initial conditions

x0 = ϕ, ϕ ∈ C−1, (3.2)
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where C−1 := {ϕ ∈ C : ϕ(θ) ≥ −1 for θ ∈ [−h, 0) and ϕ(0) > −1}. Solutions of
the initial value problem (IVP) (3.1)–(3.2) are denoted by x(t) = x(ϕ)(t) or simply
x(t), and are supposed to be defined on their maximal interval of existence.

In this section, the following hypotheses will be considered:
(A1) there exists a piecewise continuous function β : [0,∞) → [0,∞) for which

β0 := sup
t≥0

∫ t

t−h

β(s)ds < ∞,

and such that for each q ≥ −1 there is η(q) ∈ R such that for t ≥ 0 and
ϕ ∈ C−1, ϕ ≥ q, then

F (t, ϕ) ≤ β(t)η(q);

(A2) if w : [−h,∞) → R is continuous and there is limt→∞ w(t) = w∗ > −1, w∗ 6=
0, then

∫∞
0

F (s, ws) ds diverges;

(A3) there are a piecewise continuous function λ : [0,∞) → [0,∞) and a constant

b ≥ 0 such that, for r(x) :=
−x

1 + bx
, x > −1/b,

λ(t)r(M(ϕ)) ≤ F (t, ϕ) ≤ λ(t)r(−M(−ϕ)), for t ≥ 0,

where the first inequality holds for all ϕ ∈ C−1 and the second one for ϕ ∈ C
such that ϕ > max{−1/b,−1}, and M(ϕ) = max {0, supθ∈[−h,0] ϕ(θ)};

(A4) for λ(t) as in (A3), there is T ≥ h such that, for

α := α(T ) = sup
t≥T

∫ t

t−h

λ(s) ds,

α ≤ 3/2 if b 6= 1/2, and α < 3/2 if b = 1/2.
As in Section 2, we again remark that, for case b = 0, (A3) and (A4) imply (A1).
Clearly, hypothesis (A2) is imposed to force non-oscillatory solutions to go to

zero, as t goes to infinity. The case b = 0 was studied in [1], where a hypothesis
(conditions (H1)–(H2) in [1]) slightly stronger than (A2) was assumed. However,
it was noticed that conditions (H1)–(H2) in [1] could be replaced by the above
assumption (A2), similarly to what was considered in [12] for Eq. (1.1), hence the
following result follows from [1].

Theorem 3.1. [1] Assume (A2)–(A4) with b = 0. Then all solutions x(t) of (3.1)
with admissible initial conditions (3.2) are defined on [0,∞) and satisfy x(t) → 0
as t →∞.

Under (A1)-(A4), we now prove that the statement in Theorem 3.1 is still true
for any b > 0, where an additional condition similar to the one in Theorem 2.5 may
be required.

Theorem 3.2. Assume (A1)–(A4). If b 6= 1/2, assume in addition that either
λ(t) > 0 for t large, or α < 3/2 for some T ≥ h and α := α(T ) as in (A4). Then
all solutions x(t) of (3.1) with admissible initial conditions (3.2) satisfy x(t) → 0
as t →∞.

Proof. The case b = 0 was addressed in Theorem 3.1, so we assume b > 0. From
[1], it follows that all solutions x(t) of (3.1) with admissible initial conditions (3.2)
are defined, bounded and bounded below away from −1 on [0,∞).
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The change of variables y(t) = log(1 + x(t)), t ≥ 0, transforms (3.1) into

ẏ(t) = f(t, yt), (3.3)

where f(t, ϕ) = F (t, eϕ− 1). For ϕ ∈ C, then ψ = eϕ− 1 ∈ C−1, and from (A3) we
have

f(t, ϕ) ≥ λ(t)r(M(eϕ − 1)), t ≥ 0, ϕ ∈ C

f(t, ϕ) ≤ λ(t)r(−M(−eϕ + 1)), t ≥ 0, ϕ ∈ C with ϕ > −1/b.
(3.4)

On the other hand, clearly

M(eϕ − 1) = eM(ϕ) − 1, M(−eϕ + 1) = −e−M(−ϕ) + 1, for all ϕ ∈ C.

We first consider the case b ≥ 1/2. Define

r1(x) :=
−x

1 + (b− 1/2)x
, x > −1/(b− 1/2).

We deduce that

r1(x) ≤ r(ex − 1) for all x ≥ 0, (3.5)

r1(x) ≥ r(ex − 1) for all x ∈ (−1/(b− 1/2), 0]. (3.6)

In fact, (3.5) is equivalent to the inequality w(x) := 1+ 1
2x+ex

(
1
2x−1

) ≥ 0, x ≥ 0,
which can be proven easily by studying the signs of w′(x) and w′′(x). Analogously,
we prove (3.6). From (3.4), (3.5) and (3.6), we obtain for t ≥ 0

λ(t)r1(M(ϕ)) ≤ f(t, ϕ) ≤ λ(t)r1(−M(−ϕ)),

where the first inequality holds for every ϕ ∈ C and the second one for ϕ ∈ C such
that ϕ > −1/(b− 1/2). Thus, the function f in (3.3) satisfies (H3) with b replaced
by b−1/2. Assumptions (A1), (A2) and (A4) imply that (H1), (H2) and (H4) hold
for f . Consequently, the result follows from Theorem 2.5.

If 0 < b < 1/2, we effect the change of variables z(t) = − log(1 + x(t)), and Eq.
(3.1) becomes

ż(t) = g(t, zt),

for g(t, ϕ) = −F (t, e−ϕ − 1). We can check that hypotheses (H1)–(H4) hold for g,

with r(x) replaced by r2(x) :=
−x

1 + (1/2− b)x
, x > −1/(1/2− b). Again, the result

follows from Theorem 2.5. ut

The next result follows immediately from Theorem 2.7 and the proof of Theorem
3.2.

Corollary 3.3. Assume (A1), (A2). Moreover, assume that:
(i) there is a piecewise continuous function λ : [0,∞) → [0,∞) and there are

constants b1, b2 ≥ 0, b1 ≤ b2, such that, for ri(x) :=
−x

1 + bix
,

λ(t)r1(M(ϕ)) ≤ F (t, ϕ) ≤ λ(t)r2(−M(−ϕ)), for t ≥ 0,

where the first inequality holds for all ϕ ∈ C−1 and the second one for ϕ ∈ C
such that ϕ > max{−1/b2,−1};

(ii) either b1 > 1/2 or b2 < 1/2;
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(iii) for λ(t) as in (i), there is T ≥ h such that

α := α(T ) = sup
t≥T

∫ t

t−h

λ(s)ds ≤ 3
√

2; (3.7)

(iv) the constants b1, b2 satisfy

α2

2 + α
<

b1 − 1/2
b2 − 1/2

; (3.8)

Then all solutions x(t) of (3.1) satisfy x(t) → 0 as t →∞.

Remark 3.4. By the translation x 7→ 1+x, the scalar FDE (7) in [7] can be seen as
a particular case of Eq. (3.1). Thus, Theorem 3 in [7] is a consequence of Theorem
3.2 above. Condition λ(t) > 0 for all t ≥ 0 in [7] can be weakened according to the
statement in Theorem 3.2. On the other hand, it seems that, in the statement of
[7, Theorem 3], the authors have forgotten to include a hypothesis similar to (A1)
(or (H1)), to assure that all solutions are bounded on [0,∞). That is, for model (7)
in [7], if b > 1, it seems necessary to further impose that, for all q ∈ (−1, 0), there
is η(q) ∈ R such that f(t, x + 1) ≤ η(q) for all t ≥ 0, x ∈ [q, 0).

Remark 3.5. For the case b = 1/2, Remark 2.6 suggests that Theorem 3.2 should
be true under (A1)–(A3), (A4) with α ≤ 3/2, and if the strict inequality in (A3) is
required for ϕ ∈ C−1 such that ϕ(θ) 6= 0 for θ ∈ [−h, 0], i.e., if it is further assumed

that for r(x) :=
−x

1 + x/2
, x > −2,

λ(t)r(M(ϕ)) < F (t, ϕ) < λ(t)r(−M(−ϕ)), for t ≥ 0,

where the first inequality holds for all ϕ ∈ C−1 and ϕ(θ) 6= 0, θ ∈ [−h, 0], and the
second one for ϕ ∈ C such that ϕ(θ) 6= 0, θ ∈ [−h, 0], and ϕ > −1.

Remark 3.6. As remarked in [1, Remark 3.11], the present setting can be applied
to Eq. (3.1) with time-dependent bounded discrete delays of the form

ẋ(t) = (1 + x(t))F0

(
t, x(t− h1(t)), . . . , x(t− hn(t))

)
, (3.9)

where hi : [0,∞) → [0,∞) are continuous and bounded. For h(t) = max{hi(t) :
1 ≤ i ≤ n} > 0, t ≥ 0, Theorem 3.2 is valid for (3.9) if we replace

∫ t

t−h
β(s)ds,∫ t

t−h
λ(s)ds in (A1), (A4) by

∫ t

t−h(t)
β(s)ds,

∫ t

t−h(t)
λ(s)ds, respectively.

4. Applications. In this section, we consider some scalar FDEs which have served
as models for the growth of a single population, and improve some results in the
literature.

Example 4.1. Consider the following IVP, studied in [1, 8]:

ẏ(t) = −p(t)y(t− h)(a− y(t))(b + y(t)), t ≥ 0, (4.1)
y0 = ψ, (4.2)

for

ψ ∈ C = C([−h, 0);R), ψ(θ) ∈ [−b, a) for θ ∈ [−h, 0), ψ(0) ∈ (−b, a), (4.3)

where a, b, h > 0 and p : [0,∞) → (0,∞) is continuous. By the change of variables

x(t) =
1 + y(t)/b

1− y(t)/a
− 1,
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(4.1)–(4.2) is transformed into

ẋ(t) = (1 + x(t))F (t, xt), t ≥ 0
x0 = ϕ ∈ C−1

where

F (t, ϕ) = −p(t)
abϕ(−h)

1 + b
a+bϕ(−h)

.

Thus, F is given by F (t, ϕ) = abp(t)r(ϕ(−h)), where

r(x) =
−x

1 + b
a+bx

,

and (A3) is satisfied with λ(t) = abp(t).

Theorem 4.2. Suppose that
∫ ∞

0

p(t)dt = ∞

and there is T ≥ h with

ab sup
t≥T

∫ t

t−h

p(s)ds ≤ 3
2
.

Then, the solutions of the IVPs (4.1)–(4.2) with ψ as in (4.3) are defined for
t ≥ 0 and satisfy y(t) → 0 as t →∞.

Proof. For a = b, the result was proven in [8]. For a 6= b, one can verify (see [1] for
details) that (A1)–(A2) hold with β(t) = abp(t) if

∫∞
0

p(t)dt = ∞. Thus, the result
is an immediate consequence of Theorem 3.2 ut

We note that Theorem 4.2 improves both Corollary 4.1 in [8], and Theorem 4.4
in [1]: in [8] the same result was proven under the stronger condition

(a + b)2

4
sup
t≥T

∫ t

t−h

p(s) ds ≤ 3/2,

and in [1] this condition was replaced by

b(a + b) sup
t≥T

∫ t

t−h

p(s) ds ≤ 3/2.

Example 4.3. Consider the delayed “food-limited” population model with envi-
ronmental periodicity proposed by Gopalsamy et al. [3],

Ṅ(t) = s(t)N(t)
K(t)−N(t−mω)

K(t) + c(t)s(t)N(t−mω)
, (4.4)

where s, c, K are continuous, positive and ω-periodic functions and m is a positive
integer. We only consider positive solutions of (4.4). In other words, we consider
solutions of (4.4) with initial conditions

N0 = ϕ, (4.5)

for ϕ ∈ C and ϕ(θ) ≥ 0 for −mω ≤ θ < 0 and ϕ(0) > 0.
From [3], it is known that there exists a unique positive ω-periodic solution

N∗(t), that satisfies K∗ ≤ N∗(t) ≤ K∗, t ∈ [0, ω], for K∗ = min0≤t≤ω K(t), K∗ =
max0≤t≤ω K(t). Furthermore, the solution of any IVP (4.4)–(4.5) is bounded and
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bounded below away from zero on [0,∞). Effect the change x(t) = N(t)/N∗(t)−1.
Then, (4.4) reads as

ẋ(t) = (1 + x(t))F (t, xt), t ≥ 0, (4.6)

where
F (t, ϕ) = F0(t, ϕ(−mω))

for

F0(t, x) = − s(t)K(t)N∗(t)[1 + s(t)c(t)]x
[K(t) + s(t)c(t)N∗(t)][K(t) + s(t)c(t)N∗(t)(1 + x)]

.

Clearly, initial conditions (4.5) for (4.4) are equivalent to initial conditions x0 = ϕ
with ϕ ∈ C−1 for (4.6).

Define

b(t) =
s(t)N∗(t)[1 + s(t)c(t)]
K(t) + s(t)c(t)N∗(t)

. (4.7)

Thus (4.6) is written as

ẋ(t) = −(1 + x(t))b(t)
K(t)x(t−mω)

K(t) + s(t)c(t)N∗(t)(1 + x(t−mω))
.

Since the functions s, c,K have positive lower and upper bounds, it is easy to
check that (A1) and (A2) hold for (4.6). On the other hand, for

v(t) :=
s(t)c(t)N∗(t)

K(t)
,

let
v0 = min

t≥0
v(t), (4.8)

and define
r(x) =

−x

1 + v0
1+v0

x
.

For x ≥ 0, we have

K(t)x
K(t) + s(t)c(t)N∗(t)(1 + x)

=
x

1 + v(t)(1 + x)
≤ x

1 + v0(1 + x)
= − 1

1 + v0
r(x).

Analogously, for −1 ≤ x < 0,

K(t)x
K(t) + s(t)c(t)N∗(t)(1 + x)

≥ x

1 + v0(1 + x)
= − 1

1 + v0
r(x).

This implies that (4.6) satisfies (A3), for r(x) defined as above, i.e., with b = v0
1+v0

,
and

λ(t) =
b(t)

1 + v0
.

Applying Theorem 3.2, we obtain the following criterion for the global attractivity
of the periodic solution N∗(t) of (4.4), which improves the result in [1, Theorem
4.8].

Theorem 4.4. For b(t) as in (4.7) and v0 as in (4.8), assume that

v0 6= 1 and
1

1 + v0

∫ mω

0

b(t) dt ≤ 3
2
, or

v0 = 1 and
∫ mω

0

b(t) dt < 3.
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Then every positive solution N(t) of (4.4) satisfies

lim
t→∞

(N(t)−N∗(t)) = 0.

Example 4.5. Consider the Michaelis-Menton single-species growth equation with
several delays

ẏ(t) = γ(t)y(t)

[
1−

n∑

i=1

aiy(t− hi(t))
1 + ciy(t− hi(t))

]
, (4.9)

where ai > 0, ci > 0, γ(t), hi(t) are continuous functions, 0 ≤ hi(t) ≤ h for
i = 1, . . . , n, γ(t) ≥ 0, t ≥ 0, and γ(t) > 0 for large t, h(t) = max{hi(t) : i =
1, 2, . . . , n} > 0, and

n∑

i=1

ai

1 + ci
= 1. (4.10)

Equation (4.9) was investigated in [6, 11] in the particular case γ(t) ≡ γ > 0
and hi(t) ≡ hi ≥ 0, i = 1, . . . , n. As shown in [6, Corollary 4.3.2], the change of
variables x(t) = y(t)− 1 reduces (4.9) to

ẋ(t) = (1 + x(t))F (t, xt), (4.11)

where

F (t, ϕ) = −γ(t)
n∑

i=1

aiϕ(−hi(t))
(1 + ci)[1 + ci + ciϕ(−hi(t))]

.

Set a =
∑n

i=1 ai, and c = min{ci : i = 1, 2, . . . , n}.
Theorem 4.6. Assume that ∫ ∞

0

γ(t) dt = ∞. (4.12)

If c 6= 1 and
a

(1 + c)2

∫ t

t−h(t)

γ(s) ds ≤ 3
2
, for large t ≥ 0, (4.13)

then all positive solutions of (4.9) tend to the positive equilibrium y∗ = 1 as t →∞.
If c = 1, the same result holds if we replace (4.13) by

a

∫ t

t−h(t)

γ(s) ds < 6, for large t ≥ 0.

Proof. We prove that all solutions of (4.11) with initial condition x0 = ϕ ∈ C−1 go
to zero as t →∞. Set

r(x) =
−x

1 + (c/(1 + c))x
, fi(x) =

aix

(1 + ci)(1 + ci + cix)
, i = 1, 2, . . . , n.

Since ϕ ∈ C−1 we have, for i = 1, 2, . . . , n,

−fi(ϕ(−hi(t))) ≥ −fi(M(ϕ)) ≥ ai

(1 + c)2
r(M(ϕ)).

Hence,

F (t, ϕ) = −γ(t)
n∑

i=1

fi(ϕ(−hi(t))) ≥ γ(t)
n∑

i=1

ai

(1 + c)2
r(M(ϕ))

= γ(t)
a

(1 + c)2
r(M(ϕ)). (4.14)
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Analogously,
−fi(ϕ(−hi(t))) ≤ ai

(1 + c)2
r(−M(−ϕ)),

and therefore
F (t, ϕ) ≤ γ(t)

a

(1 + c)2
r(−M(−ϕ)). (4.15)

From (4.14) and (4.15), we conclude that (A3) is satisfied with λ(t) = aγ(t)/(1+c)2,
and b = c/(1 + c).

Condition (A2) follows from (4.12), and (A1) holds with β(t) = γ(t), η(q) =
−∑n

i=1 fi(q), q > −1. Hence the result is now a consequence of Theorem 3.2. See
also Remark 3.6. ut

For the particular case γ(t) ≡ γ > 0 and hi(t) ≡ hi ≥ 0, i = 1, . . . , n, h =
max1≤i≤n hi > 0, Theorem 4.6 was proven in [11] under condition γh ≤ 3/2. Thus
our result improves the one in [11] whenever a < (1+ c)2. This is always the case if
ci = c for all i = 1, 2, . . . , n, since in this situation, from (4.10), a = (1+c) < (1+c)2.
In particular, our result is always better for n = 1.

Example 4.7. Consider the delay differential equation

Ṅ(t) = ρ(t)N(t)
K −∑n

i=1 aiN
p(t− τi(t))

K +
∑n

i=1 si(t)Np(t− τi(t))
, t ≥ 0, (4.16)

where ai > 0,K > 0, p > 0, ρ(t), si(t), τi(t) are continuous functions, 0 ≤ τi(t) ≤
τ, ρ(t), si(t) ≥ 0, t ≥ 0, for i = 1, . . . , n, and ρ(t) > 0 for large t. Eq. (4.16) was
studied in [1, 9]. In [9], possible unbounded delays were allowed. In [1], Theorem
3.1 (i.e., Theorem 3.2 with b = 0) was applied to the study of the global attractivity
of the positive equilibrium of (4.16). However, our method with b > 0 is not easy
to apply to certain models with more than one discrete delay. Therefore, here we
only consider the case n = 1.

Let n = 1, τ1(t) = τ(t), a = a1 and S(t) = s1(t), so that (4.16) reads as

Ṅ(t) = ρ(t)N(t)
K − aNp(t− τ(t))

K + S(t)Np(t− τ(t))
, t ≥ 0. (4.17)

Eq. (4.17) has been considered by many authors, since it has been proposed as an
alternative model to the delayed logistic equation for a food limited single popula-
tion model (see [1, 2, 4, 7] and references therein).

As usual, because of its biological context, we only consider positive solutions of
(4.17). Following the approach in [1], we effect the change of variables

1 + x(t) =
(N(t)

N∗

)p

,

where

N∗ =
(K

a

)1/p

is the unique positive equilibrium of (4.17). Thus, Eq. (4.17) is written as

ẋ(t) = −pρ(t)(1 + x(t))
ax(t− τ(t))

a + S(t)[1 + x(t− τ(t))]
, t ≥ 0. (4.18)

The following result was proven in [7, Corollary 3]. However, here we present a
simpler proof.
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Theorem 4.8. [7] Assume S0 := inft≥0 S(t) 6= a, and
∫ ∞

0

ρ(t)
1 + S(t)

dt = ∞, (4.19)

p

1 + a−1S0

∫ t

t−τ(t)

ρ(s) ds ≤ 3
2
, for large t ≥ 0. (4.20)

Then all positive solutions of (4.17) tend to the positive equilibrium N∗ as t →∞.
If S0 = a, the same result holds if we assume (4.19) and

p

∫ t

t−τ(t)

ρ(s) ds < 3, for large t ≥ 0. (4.21)

Proof. Note that (4.18) has the form (3.1), for F defined by

F (t, ϕ) = pρ(t)F0

(
t, ϕ(−τ(t))

)
, t ≥ 0, ϕ ∈ C−1, (4.22)

where

F0 : [0,∞)× [−1,∞) → R, F0(t, x) = − x

1 + a−1S(t)(1 + x)
.

Assuming (4.19), then (A1) is fulfilled with β(t) = ρ(t)
1+a−1S(t) , as well as assump-

tions (H1)–(H2) in [1] (cf. [1]). On the other hand, as we have already noticed,
(H1)–(H2) in [1] imply (A2). Thus (4.19) implies that F given by (4.22) satisfies
conditions (A1)–(A2).

We now argue as in Example 4.3 Define

r(x) =
−x

1 + S0
a+S0

x
. (4.23)

Then,

F0(t, x) ≥ −x

1 + a−1S0(1 + x)
=

1
1 + a−1S0

r(x), x ≥ 0,

F0(t, x) ≤ −x

1 + a−1S0(1 + x)
=

1
1 + a−1S0

r(x), −1 ≤ x < 0.
(4.24)

From (4.22) and (4.24), we have

F (t, ϕ) ≥ pρ(t)
1 + a−1S0

r
(
ϕ(−τ(t))

) ≥ pρ(t)
1 + a−1S0

r
(
M(ϕ)

)

if ϕ(−τ(t)) ≥ 0, and

F (t, ϕ) ≤ pρ(t)
1 + a−1S0

r
(
ϕ(−τ(t))

) ≤ pρ(t)
1 + a−1S0

r
(−M(−ϕ)

)

if −1 ≤ ϕ(−τ(t)) ≤ 0. We deduce then that F satisfies (A3) where r(x) is defined
by (4.23) and

λ(t) =
pρ(t)

1 + a−1S0
.

Thus (4.20) and (4.21) imply (A4) in the form stated in Remark 3.6, and the result
follows from Theorem 3.2. ut

For the particular case of Eq. (4.16) with n = 1, we remark that Theorem 4.8
improves the results in [1, 9].

From Corollary 3.3, the following results:
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Theorem 4.9. Let 0 < S0 := inft≥0 S(t), S0 := supt≥0 S(t) < ∞, and suppose
that either S0 > a or S0 < a. Assume (4.19), and that there is T ≥ h such that

α := α(T ) = sup
t≥T

(
p

∫ t

t−τ(t)

ρ(s)
1 + a−1S(s)

ds
)
≤ 3
√

2 , (4.25)

with
α2

2 + α
<

(S0 − a)(a + S0)
(S0 − a)(a + S0)

. (4.26)

Then all positive solutions of (4.17) tend to the positive equilibrium N∗ as t →∞.

Proof. Following the reasoning above, one deduces that F defined by (4.22) satisfies
(i) of Corollary 3.3, i.e.,

λ(t)r1(M(ϕ)) ≤ F (t, ϕ) ≤ λ(t)r2(−M(−ϕ)), for t ≥ 0,

where the first inequality holds for all ϕ ∈ C−1 and the second one for ϕ ∈ C−1

such that ϕ > −1/b2, with λ(t) and ri(x) defined by

λ(t) =
pρ(t)

1 + a−1S(t)
, ri(x) =

−x

1 + bix
, i = 1, 2,

where 0 < b1 ≤ b2 are given by

b1 =
S0

a + S0
, b2 =

S0

a + S0
.

Also, b1 > 1/2 if S0 > a, and b2 < 1/2 if S0 < a. On the other hand, (4.25) and
(4.26) imply (3.7) and (3.8), respectively. ut
Remark 4.10. For (4.17) with a = 1 and τ(t) ≡ τ , So and Yu [10] proved that N∗
is uniformly and asymptotically stable assuming (4.19) and

p sup
t≥τ

( ∫ t

t−τ

ρ(s)
1 + S(s)

ds
)

<
3
2
.

However, Example 4.11 below shows that this condition is not sufficient to insure
the global attractivity of N∗, that is, the result in Theorem 4.8 does not hold if
(4.20) is replaced by

p

∫ t

t−τ(t)

ρ(s)
1 + a−1S(s)

ds ≤ 3
2
, for large t ≥ 0.

Example 4.11. Consider the following periodic delay differential equation with
piecewise linear nonnegative coefficients ρ(t + 5) = ρ(t), S(t) = S(t + 5):

x′(t) = ρ(t)x(t)
1− x(t− 1)

1 + S(t)x(t− 1)
, (4.27)

where S(t) > 0 is continuous, and ρ, S are defined on the period interval [−1, 4) by

ρ(t) =





0 if t ∈ [−1, 1) ∪ [2, 3);
a1 > 0 if x ∈ [1, 2);
a2 > 0 if x ∈ [3, 4);

S(t) =





is linear on [−1, 1) and on [2, 3);
b1 > 0 if x ∈ [1, 2);
b2 > 0 if x ∈ [3, 4).

For z ∈ R, we denote x = x(·, z) : [0, +∞) → (0,+∞) as the solution of the initial
value problem x(s, z) ≡ z, s ∈ [−1, 0], for (4.27). Applying the above mentioned
result from [10], we conclude that the inequality

sup
t∈R

∫ t

t−1

ρ(s)
1 + S(s)

ds = max
{

a1

1 + b1
,

a2

1 + b2

}
< 3/2
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is sufficient for the exponential stability of the equilibrium x(t, 1) ≡ 1. Thus we
will be within the stability zone for x(t, 1) ≡ 1 with

a1 = 1, b1 = 0.1, b2 = 10, a2 =
4.5(1 + 100 exp(−4.5))

1− 10 exp(−4.5))
= 10.68617...,

because in this case max {a1/(1 + b1), a2/(1 + b2)} < 1.
Now, since every solution of (4.27) is eventually constant over intervals [−1 +

5k, 5k], all 5-periodic solutions of (4.27) are determined by the algebraic equation
x(4, z) = z. It is easy to find that

x(2, z) = z exp
(

a1(1− z)
1 + b1z

)
, x(4, z) = x(2, z) exp

(
a2(1− x(2, z))
1 + b2x(2, z)

)
,

and that z1 = 1, z2 = 146.105... and z3 = 10 satisfy x(4, z) = z. Thus Eq. (4.27)
has at least three positive periodic solutions and cannot be globally attracting.

We remark that it is possible to replace the above ρ(t) with a positive, 5-periodic
and continuous ρ∗(t) in such a way that the modified equation (4.27) will have a
5-periodic solution close to x(t, z2) in the sup-norm. Indeed, a direct analysis of
the one-dimensional map x(4, ·) : R+ → R+ shows that the fixed point z2 is a
hyperbolic attractor: x′z(4, z2) ∈ (0, 1). Thus we can find ε1 < ε2 such that

x(5, Ū(z2, ε2)) = x(4, Ū(z2, ε2)) ⊂ U(z2, ε1), (4.28)

where U(z2, ε) = (z2 − ε, z2 + ε).

Now, let us consider the Poincaré map Πρ : C+ → C+, C+
def
= C([−1, 0);R+),

defined as Πρ(ψ) = x5(ψ), where xt(ψ) : [0, +∞) → C+ solves the initial value
problem x(s, ψ) = ψ(s), s ∈ [−1, 0] for (4.27). From (4.28), we get ΠρŪ(z2, ε2) ⊂
U(z2, ε1), where U(ψ, ε) = {φ ∈ C+ : |φ − ψ|C < ε} ⊂ C+ denotes an open ball
centered in ψ ∈ C+ and with radius ε, while X̄ stands for the closure of X.

Finally, using the step by step method, we easily find that Πα(φ) converges to
Πρ(φ), uniformly on φ from bounded subsets of C+, when α → ρ in the space of all 5-
periodic piecewise continuous functions equipped with the norm |α|1 =

∫ 5

0
|α(s)|ds.

This implies that we can perturb the coefficient ρ slightly (in the stated norm) to
transform it into a positive continuous function ρ∗ which satisfies Πρ∗Ū(z2, ε2) ⊂
U(z2, ε2). Since Π is compact, an application of the Schauder fixed point theorem
assures the existence of a non-trivial 5-periodic solution of the perturbed equation.

Appendix A. Proof of Theorem 2.9. First we need the following lemma:

Lemma A.1. Let g : (−ε, ε)×(α, β) → R be a smooth function such that g(0, a) = 0
for every a ∈ (α, β), and there is a0 ∈ (α, β) satisfying

∂g(0, a0)
∂x

= 1,
∂2g(0, a0)

∂a∂x
< 0, and

∂2g(0, a0)
∂x2

> 0.

Then there is an open interval Γ about a0 and a strictly increasing smooth function
x = x(a) such that x(a0) = 0 and

g(x(a), a) = x(a), a ∈ Γ.

Proof. Set

H(x, a) =
{

g(x, a)/x− 1 if x 6= 0,
∂g(0, a)/∂x− 1 if x = 0.
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Notice that H(x, a) is smooth and

H(0, a0) =
∂g(0, a0)

∂x
− 1 = 0,

∂H(0, a0)
∂x

=
1
2

∂2g(0, a0)
∂x2

> 0.

Thus we can apply the implicit function theorem to deduce the existence of a
smooth function x = x(a) with x(a0) = 0 defined on some open interval I 3 a0 and
such that

H(x(a), a) ≡ 0, a ∈ I.

Since

x′(a0) = −∂H(0, a0)/∂a

∂H(0, a0)/∂x
= −2

∂2g(0, a0)/∂a∂x

∂2g(0, a0)/∂x2
> 0,

the function x(a) is strictly increasing in some neighborhood Γ ⊂ I of a0. Recalling
the definition of H(x, a), we conclude that

g(x(a), a) = x(a), x′(a) > 0 for all a ∈ Γ.

ut
Proof of Theorem 2.9. For i=1,2, we introduce the functions (cf. [7])

Ai(x) = x + ri(x) +
1

ri(x)

∫ 0

x

ri(t)dt.

Notice that, for λ(M) defined in (2.11), the solution x(t) = x(t, M) of every
initial value problem x(s) = ψ(s), s ∈ [−1, 0] satisfying ψ(0) = M decreases on
[0, λ(M)). Moreover,

x(λ(M)− 1) = 0, and x(λ(M)) = A1(M).

Analogously, if we choose M sufficiently small to satisfy A1(M) > β, and define
T (M) as

T (M) = λ(M) + 1− 1 + bA1(M)
a

,

we find that
x(T (M)) = A2(A1(M)).

This means that Eq. (2.10) has at least one nontrivial periodic solution if

A2(A1(M)) = M

for some M > 0. Notice that A2(A1(x)) depends on two parameters a, b. For
b fixed, we vary a in order to obtain a positive solution M of A2(A1(M)) = M
sufficiently small to satisfy all the requirements. To this end, we apply Lemma A.1.
Set g(x, a) = A2(A1(x)). A simple computation shows that

∂g(0,−3/2)
∂x

= 1,
∂2g(0,−3/2)

∂a∂x
= −2 < 0,

and
∂2g(0,−3/2)

∂x2
=

8
3
(b− 1) > 0.

This implies, by Lemma A.1, that for every fixed b > 1 we can find a positive δ and
a strictly increasing continuous function M = M(a) : [−3/2,−3/2 + δ) → [0,+∞)
such that g(M(a), a) = M(a) for all a ∈ (−3/2,−3/2 + δ). ut
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Remark A.2. It is possible to find a T-periodic, positive and continuous function
h∗, close to h in the L1-norm, and such that all conclusions of Theorem 2.9 remain
valid if we replace h with h∗ in (2.10). To do this, we can apply a perturbation
argument similar to that used in Example 4.11.
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