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Abstract The gamma-Ricker model is one of the more flexible and general discrete-
time population models. It is defined on the basis of the Ricker model, introducing
an additional parameter y > 0. For some values of this parameter (y < 1), popula-
tion is overcompensatory, and the introduction of an additional parameter gives more
flexibility to fit the stock—recruitment curve to field data. For other parameter values
(y > 1), the gamma-Ricker model represents populations whose per-capita growth
rate combines both negative density dependence and positive density dependence. The
former can lead to overcompensation and dynamic instability, and the latter can lead
to a strong Allee effect. We study the impact of the cooperation factor in the dynamics
and provide rigorous conditions under which increasing the Allee effect strength stabi-
lizes or destabilizes population dynamics, promotes or prevents population extinction,
and increases or decreases population size. Our theoretical results also include new
global stability criteria and a description of the possible bifurcations.

Keywords Discrete-time population model - Gamma model - Extinction - Density
dependence - Stability - Allee effect - Stock and recruitment

1 Introduction

Discrete-time population models are widely used to describe the life histories of many
organisms, including fish, birds, insects, mammals and plants (Kot 2001). One impor-
tant purpose of population models consists of helping to predict the long-term behavior
of population abundance and to understand the influence of the involved parameters.
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Fig. 1 Graphs of the map f for 25 F
§ =1, B = 4, and different
values of y: y = 1 (Ricker map)
in blue, y = 0.5 < 1 inred and
y =2 > 1 in black. The dashed
line is the graph of y = x (Color
figure online)

Stock-recruitment models play a central role in theoretical ecology, especially in the
context of fish populations (Quinn and Deriso 1999; Clark 2010). The so-called stock—
recruitment or spawner—recruit relationship R = f(S) establishes the recruits R that
are produced by the spawning stock S in each time cycle (typically, annual), so that the
discrete-time population model x,+1 = f(x,) governs the between-year dynamics.
Here, x, represents the population size after n generations, n = 1,2, ... Function
f involves a number of parameters that usually have (at least at a phenomenological
level) a biological meaning: growth rate, carrying capacity, survival probability of
juveniles, etc.

An important function of the involved parameters is that they offer some flexibility
to find a suitable model that fits well the available population data. Perhaps the most
typical stock-recruitment models are the compensatory Beverton—Holt model x,,+1 =
axp, /(1 + Bx,),a > 0, 8 > 0 (Beverton and Holt 1957) and the overcompensatory
Ricker model x,,+1 = ﬂxne_Bx'l, B > 0,8 > 0 (Ricker 1954). In both cases, function
f has only two parameters, and it has been argued (e.g., Iles 1994) that these models
are relatively inflexible. More flexible models involving three parameters have been
suggested in the literature (see Quinn and Deriso 1999); among them, perhaps the best
known is the Shepherd model x,,+1 = ax, /(1 + ,Bx,}; ), which gives the Beverton—Holt
model for y = 1, and it is overcompensatory for y > 1, so that its dynamics for these
parameter values are closer to those of the Ricker model.

We devote this paper to investigate the rich dynamics of another stock—recruitment
model with three parameters, to which we will refer as the gamma-Ricker model:

Xna1 = By e = f(xy), (1

where B, y, § are positive parameters. Model (1) is included in the list of spawner—
recruit models in Chapter 3 from Quinn and Deriso (1999), where it is called the
gamma model. A particular case of (1) is the Ricker model (y = 1), and the Cushing
model (Cushing 1971) is a limit case (§ = 0). Equation (1) is defined as a flexible and
general overcompensatory model, which exhibits a strong Allee effect for y > 1 (see
Fig. 1).

Model (1) has been employed in different scenarios and with different names; with-
out trying to be exhaustive, we mention some of them: Reish et al. (1985) used (1) to
fit spawner—recruitment data for the Atlantic menhaden, and they called it unnormal-
ized gamma model. In his review of stock—recruitment relationships, Iles (1994) also
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emphasizes the flexibility of (1) and refers to it as to the Saila—Lorda equation. Zheng
etal. (1995) and Zheng and Kruse (2003) found that (1) fits well the stock—recruitment
data for three Alaskan crab stocks, and they refer to (1) as to a general Ricker equation.
Interestingly, they estimated stock—recruitment relationships using (1) with values of
y < 1 (overcompensatory growth) and y > 1 (depensatory growth); see, e.g., Fig-
ure 7 in page 115 of Zheng and Kruse (2003). Avilés (1999) used model (1) with
I < y < 2 in the context of cooperative interaction in a group of individuals, and she
refers to (1) as to a Ricker-type difference equation with a positive density-dependent
factor. Accordingly, the parameter y is called cooperation parameter. We notice that
depensation models are commonly known as models with Allee effects (Courchamp
et al. 2008); in this context, Eq. (1) with y = 2 has been already introduced by
Asmussen (1979). A mechanistic derivation of particular cases of (1) can be found in
Eskola and Geritz (2007) (the Ricker model, y = 1) and Eskola and Parvinen (2007)
(the Asmussen model, y = 2). In the latter reference, the authors refer to (1) as to a
Ricker-type model with Allee effect.

Following the approach in previous papers (Avilés 1999; Scheuring 1999; Schreiber
2003), we can rewrite model (1) in the following form:

Xp1 = Bxnl (x,)G(xp), (2)

where G(x) = ¢~ and

I(x) = (g)y 7EeR, a>0. 3)

In the above factorization, each factor represents an ecological mechanism or effect.
Namely, Bx, is the spawning stock, G (x) describes the intraspecific competition, and
I(x) is a cooperation or interference factor, depending on y. Parameter « in (3) is
used to scale x, avoiding dimensional problems when raising powers. Clearly, Eq. (2)
can be rescaled so that « effectively drops out, and we can restrict our analysis to the
three-parameter model (1).

We can distinguish three cases in formulation (2), depending on y:

— if y = 0, then the term [ (x) drops out, and we get the Ricker model;
— if y > 0, then I (x) is a cooperation or “self-facilitation” factor;
— if y < 0, then I (x) is an interference or “self-inhibition” factor.

The case y > 0 combines both negative density dependence and positive density
dependence, so it allows to study the impact of cooperation in different dynamical
regimes, especially on the persistence of a population and on its equilibrium population
size.

In the case y < 0, model (2) contains two factors of negative density dependence.
We notice that 7 (x) tends to infinity as x tends to zero, which is biologically prob-
lematic. This effect is hidden in model (2) if —1 < y < 0 [which corresponds to
0 < y < lin (1)] by interaction with some other effects. Thus, although this case has
been used as an admissible (phenomenological) population model (Quinn and Deriso
1999; Zheng and Kruse 2003), it is important to keep in mind that the per-capita
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production of stock goes to infinity if population size becomes too small, which is
questionable from a mechanistic point of view. Actually, if y < —1, Eq. (1) does
not correspond to a valid spawner—recruitment model because f(0) # 0 (Quinn and
Deriso 1999, p. 97). In this case, the odd behavior of 7 (x) near the origin is translated
to f(x), and it is not hidden anymore by interaction with other factors. We will not
address this case in the paper, but it is worth mentioning that, in contrast to the case
y > —1, (2) has unbounded solutions for any y < —1; this odd behavior in an equa-
tion with two interference factors can be explained by the fact that population reaches
very low values, which at the next generation become arbitrarily big because f(x)
tends to infinity as x tends to zero.

Given the history of the gamma-Ricker model, and considering that the case
0 < y < 1 has also been employed in the ecological literature, and it has not
been analyzed in detail, we give a thorough picture of the dynamics of (1) for all
y > 0. We obtain new results, which include sharp stability conditions, establish-
ing the exact basins of attraction (Theorem 1), as well as a precise statement for the
stabilizing/destabilizing effects of y (Proposition 3), and for the transitions between
extinction and persistence (Proposition 4). We are particularly interested in the effects
of the cooperation/interference term I (x) on population size, and we are able to deter-
mine the exact conditions, depending on the other parameter values 8 and §, for which
population size at equilibrium increases as y is increased (Theorem 2).

For convenience of the reader, we will give a “phenomenological” name to the
involved parameters for later use in the paper. We call 8 the productivity parameter, §
the competition parameter, and, following Avilés (1999), we refer to y as the cooper-
ation parameter (although the corresponding term can actually represent interference,
namely if y < 1).

2 Dynamical Analysis

In this section, we study the dynamics of (1), with 8, y,§ > 0. In our first result,
we list several basic properties of the map f : [0, 00) — [0, oo) that defines the
right-hand side of (1). We omit the elementary proof.

Proposition 1 The map f(x) = Bx?Y e~ (B, y, 8 > 0) satisfies the following prop-
erties:

(@) f(0)=0andlimy_, f(x)=0.

) O =0ify > 1 f(0)=pify =1 andlim, o+ f'(x) = 00 if0 <y < L.

(¢) f is a C®®-unimodal map in (0, 00), with a unique critical point at ¢ = y /8, and
f(c) is the global maximum of f. In consequence, all solutions {x,},>0 of (1) are
bounded by f(c) foralln > 1.

(d) Ify < 1, then(1)is persistent and f has a unique positive fixed point p. Moreover,
f(x)>xif0<x < p,and f(x) <xifx > p.

(e) If y = 1, then f has a unique positive fixed point if B > 1 and no positive fixed
points if B < 1.

(f) If y > 1, then f can have two positive fixed points, one positive fixed point or no
positive fixed points.
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When y > 1 and f has two positive fixed points, the smallest one is unstable and it
is usually referred to as the Allee threshold (Courchamp et al. 2008). If population
abundance falls below the Allee threshold, then extinction occurs.

In our discussion about the dynamics of (1), an important question is the sign of the
Schwarzian derivative of f. We recall that the Schwarzian derivative of f is defined
for every x > 0, x # ¢ = y/$, by the expression

f”’(x)) 3 (f”(x))z
S = - = .
S ( o) 2w

The next proposition establishes the sign of (Sf)(x). The proof of this proposition
and the subsequent results in the paper are given in “Appendix”.

Proposition 2 Consider the map f(x) = Bx¥ e, with > 0,8 > 0.

Q) Ify = 1, then (Sf)(x) <0 forall x € (0,00),x # y/$.
@) If0 <y < 1, then (Sf)(x) < O forall x € (y /5, 00).

Proposition 2 is crucial to find sharp estimates for the basins of attraction of the
equilibria in (1) and also to apply previous results for one-dimensional population
models with Allee effects. For example, the results of Schreiber (2003) ensure that (1) is
not persistent for all initial conditions if y > 1; actually, the dynamics falls in one of the
following generic categories: total extinction if the unique fixed point is O; bistability if
f has two positive fixed points (the Allee threshold A and p > A) and f(f(c)) > A;
essential extinction if f(f(c)) < A (here, c = y/§ is the critical point of f). In
case of bistability, population persists for intermediate values of initial population
densities, while essential extinction means that extinction occurs with probability one
for a randomly chosen initial condition.

2.1 Bifurcations

A description of the possible bifurcations in (1) helps to understand the possible
dynamics and the role played by the parameters. We identify the bifurcations observed
in the model, which are important in the discussion about stability, extinction and
population abundance. We do not aim to give a rigorous bifurcation analysis; we
refer the reader to Wiggins (1990) for a systematic study of bifurcations in discrete
dynamical systems.

— Generic bifurcations of fixed points.
Taking B as the bifurcation parameter, we observe two important bifurcations of
fixed points.

— Tangent (saddle-node) bifurcations: A tangent bifurcation occurs for y > 1.
For fixed values of y > 1 and § > 0, there is a critical value 8* = g*(y, 8)
such that f has two positive fixed points if 8 > *, one positive fixed point if
B = B* and no positive fixed points if 8 < B*. The value of 8* has already
been identified by Avilés (1999), and is given by
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The smallest fixed point that is born after the tangent bifurcation is always
unstable, and the largest one is stable for values of 8 close enough to *. Inter-
estingly, if we look at tangent bifurcations taking y as the bifurcation parameter,
extinction windows can appear in the bifurcation diagram; see Proposition 4
and Fig. 3.

— Period-doubling (flip) bifurcations: Let p be the unique positive fixed point of
the difference Eq. (1) if either y < 1 or y = 1 and 8 > 1, or the largest fixed
pointif y > 1 and B > B*. The equilibrium p loses its asymptotic stability

after a supercritical period-doubling bifurcation occurs when f'(p) = —1.
The analytic expression for the bifurcation curve can also be found in Avilés
(1999) and is defined by
y+ 1\
B =e’t! (T) ) (5)

Analogously to the previous case, considering y as the bifurcation parameter, flip
bifurcations can give rise to stability windows between two stability switches; see
Proposition 3 and Fig. 4.

Using g as the bifurcation parameter, these are the only bifurcations of fixed points
that (1) can undergo, with the exception of the case y = 1, for which a transcritical
bifurcation occurs at 8 = 1 (switching the system from extinction to persistence).
Since we are also interested in changes in the dynamics of (1) as y is varied, we
look below at other possible bifurcations of fixed points.

— Bifurcations at y = 1, x = 0: When the parameter y crosses the critical value 1,
the dynamics of (1) near zero changes because the behavior of the multiplier f”(0)
changes abruptly (see Proposition 1 (b)). We observe the following bifurcations:

— Transcritical bifurcation: If 8 < 1, then a transcritical bifurcation occurs at the
bifurcation point (x, y) = (0, 1). For y < 1, the positive fixed point is stable
and 0 is unstable. For y > 1, 0 becomes asymptotically stable and the branch
of positive fixed points disappears. See, e.g., Fig. 3a.

— Pitchfork bifurcation: If § > 1, then a curve of positive fixed points passes
through the bifurcation point (x, ) = (0, 1), and is defined for y € (1,1 +
g), e > 0.For y < 1, 01is unstable, and, for y > 1, 0 becomes asymptotically
stable, and the new positive equilibrium is unstable. This bifurcation can be
identified as a subcritical pitchfork bifurcation. See Figs. 3b and 4.

— Transcritical bifurcation for 8 = ¢°: This is a special case for which x = 1 is an
equilibrium of (1) forall y > 0.If y < 1, then 1 is the unique positive equilibrium;
if y > 1, then there is another positive equilibrium p. At the critical value y =
1 + 4, a transcritical bifurcation occurs, in such a way that 1 is asymptotically
stable for y < 1 + §, and unstable for y > 1 4 §, and the opposite occurs for p.
See Fig. 4a.

— Other bifurcations
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productivity parameter, 3

cooperation parameter, =y

Fig. 2 Main bifurcation boundaries for Eq. (1) with § = 2, and regions with different dynamical behavior
(see the text). From below, solid lines: extinction boundary (red color); monotone/oscillatory convergence
(black color); stability boundary (blue color). The red dashed curve represents the border between bistability
and essential extinction. Finally, the brown dashed line (y = 1, 8 > 1) is the boundary between persistence
and bistability. The horizontal dotted lines correspond to the case studies chosen for the bifurcation diagrams
in Figs. 3 and 4 (Color figure online)

— Route of period-doubling bifurcations to chaos: After the period-doubling
bifurcation occurs, further increasing of the parameter 8 results in a cascade of
period-doubling bifurcations leading to chaos. This phenomenon is observed
both for the persistent case (y < 1) and for the case with Allee effects (y > 1).

— Boundary collision (crisis) leading to essential extinction. If ¥ > 1, then a
crisis bifurcation occurs when the basin of attraction of the chaotic attractor
collides with the basin of attraction of zero. This situation happens when the
second iteration of the critical value ¢ = y/§ is the Allee threshold A. At the
parameter values for which this boundary collision occurs, Eq. (1) is chaotic;
for more details, see, e.g., Schreiber (2001, 2003) and Liz (2010). Boundary
collisions leading to essential extinction are shown in Figs. 3 and 4.

In Fig. 2, we show the main bifurcation boundaries for Eq. (1) with § = 2, which
allows to divide the plane of parameters (y, §) in eight regions with different dynamics.

The behavior of the solutions in each region is as follows (we give precise expla-
nations later in the paper):

— Regions (I), (II), and (IIT) correspond to y < 1,0or y = 1, B > 1, so all nonzero
solutions of (1) are bounded away from zero (persistence). In the first region, all
nonzero solutions converge to the positive equilibrium, and the convergence is
eventually monotone; in the second one, the convergence is oscillatory; finally, in
region (III) the positive equilibrium is unstable and all positive solutions converge
to a periodic solution or they exhibit chaos.

— In region (IV), the unique equilibrium is 0, and it is a global attractor (total
extinction).
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— In regions (V), (VI) and (VII) the equilibrium O is asymptotically stable, and it
coexists with other attractor (bistability); the nonzero attractor is an equilibrium
in regions (V) (monotone convergence) and (VI) (oscillatory convergence), and it
is a periodic or chaotic attractor in region (VII).

— Finally, in region (VIII) almost every initial condition converges to zero (essential
extinction).

2.2 Global Stability

Our next result states that the positive equilibrium p is globally asymptotically sta-
ble whenever it is asymptotically stable in the persistent case. In case of bistability,
Theorem 1 shows that the largest positive equilibrium p attracts all initial conditions
that do not converge to O if p is asymptotically stable (excluding the Allee threshold
A and its preimage f~!(A), which obviously are driven to A and remain there).

Theorem 1(A) Assume that 0 < y < 1, ory = 1 and B > 1. Then the unique
positive equilibrium p is globally asymptotically stable for the difference Eq. (1)
if the following condition holds:

I—y
p < et (VT“> . ©)

If condition (6) does not hold, then p is unstable.

(B) Assume thaty > 1 and B > B* [defined in (4)], and let A, p (A < p) be the
positive equilibria of (1). Then the largest equilibrium p is asymptotically stable
if and only if (6) holds. Moreover, in this case, p attracts all initial conditions
of (1) starting at the interval J = (A, f~1(A)), while initial conditions xo ¢
[A, f~1(A)] are driven to 0.

In both cases, the convergence to the equilibrium is eventually monotone if and
only if the following inequality holds:

peer ()7 ™

Remark Although the stability condition (6) has been found in previous papers (e.g.,
Avilés 1999), the global stability result for y < 1 is new. For y = 1, we recover the
known global stability condition 8 < ¢? for the Ricker map.

Theorem 1 allows us to know the influence of the different parameters on the
stability of the positive equilibrium of (1). First, it is clear from (6) that increasing
is destabilizing for fixed values of y and §. Solving (6) for &, it can be easily seen that
increasing 8 for fixed values of 8 and y is stabilizing if y > 1, destabilizingif y < 1,
and does not have any influence if y = 1. The influence of y for fixed values of g and
4 is more subtle. The stabilizing/destabilizing effects of the parameter y are stated in
the following result:
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Proposition 3 Let p be the unique positive equilibrium of the difference Eq. (1) if
y < 1, or the largest positive equilibrium if y > 1 and 8 > B*. Then:

2 and

(i) Increasing y is destabilizing if either 8§ < e™% and B < e/8, or § > e~
B <e/s.

(1) Increasing y produces two stability switches (first stabilizes and then destabilizes)
if$ > e ?and e/ < B < Ts(y), where, for every fixed value of 8,y can be

calculated as the unique root of the equation (1 +y)exp(—2/(1+y)) =6, and
Ts(x) = ¢ (x +1)/8)'

(iii) If§ < e 2and B > e/8, or8 > e % and B > T5(y), then p is unstable for all
y > 0.

A consequence of Proposition 3 is that, for some fixed values of § and B, increasing
y may change the stability properties of a positive equilibrium of (1) either stabilizing
an unstable equilibrium or inducing oscillations in a stable system.

2.3 Total Extinction

We say that there is total extinction in the population governed by (1) if O is a global
attractor, that is, if lim,_, - x, = O starting at any initial condition xy > 0. The
boundaries for total extinction are defined by (4)if y > 1l,andby0 < g < lify = 1.
Thus, it is clear that decreasing § or increasing 6 leads to extinction if y > 1. In our
next result, we list the extinction/survival effects of the parameter y for Eq. (1).

Proposition 4 The following properties hold for Eq. (1):

() If B < €, then increasing y produces two extinction/survivorship switches (with
an extinction window in between) at some critical values y1 < yi. Moreover,
vi=1lifp<landy > 1ifl <p <é.

(ii) If B = €°, then the population governed by (1) does not exhibit total extinction
for any value of y.

We emphasize that increasing 8 or decreasing § can lead to essential extinction
if y > 1, which, from a biological point of view, is equivalent to total extinction.
However, probably the parameter values necessary for essential extinction are less
realistic from a population modeling perspective.

2.4 Population Abundance

In this subsection, we establish rigorously the range of values of y for which population
abundance at the largest positive equilibrium increases as y is increased. Theorem 2 has
to be considered together with Theorem 1, because the positive effects of ¢ on popula-
tion size at equilibrium can be effectively observed if the equilibrium is asymptotically
stable. As for the previous results, the proof of Theorem 2 is given in “Appendix”.
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Theorem 2 For fixed values of B and §, let p = p(y) be the unique positive equilib-
rium of the difference Eq. (1) if y < 1, or the largest positive equilibrium if y > 1
and B > B*. Then:

() If B > €%, then p(y) exists for all y € (0, 00), and it is an increasing function
of y.
) If B = &, then p(y) exists for all y € (0, 00), it is constant (p(y) = 1) for
y <1436, and it is an increasing function of y for y > 1+ 6.
(iii) If B < €°, let y1, y» be defined as in Proposition 4. Then, p(y) exists on (0, y1]1U
[y2, 00), p(y) is decreasing for y < y| and increasing for y > y».

2.5 Case Studies

We choose four different case studies to illustrate the main features of the gamma-
Ricker model with respect to bifurcations, stability, extinction and population
abundance. We fix § = 2 and produce a numerical bifurcation diagram with parameter
y for four different values of 8.

We begin with 8 = 1 (see Fig. 3a). In the persistent regime (y < 1), the positive
equilibrium p = p(y) is a global attractor because 8 < e/§. Total extinction occurs
for y between y; = 1 and y» ~ 6.436. At y = 1, there is a transcritical bifurcation,
and, at y = y», there is a saddle-node bifurcation. Since 8 < ¢°, the largest positive
equilibrium p = p(y) decreases for y € (0, 1) and increases for y > y». The
positive effect of y is observable until p(y) becomes unstable after a period-doubling
bifurcation occurs at y ~ 6.715. Then, a route of period-doubling bifurcations to
chaos starts, and a chaotic attractor collides with the Allee threshold A at y & 7.008.
Thus, bistability occurs for y € (6.436, 7.008), and there is essential extinction for
y > 7.008.

For g = 5 (Fig. 3b), the equilibrium p(y) is unstable for small values of y because
e/8 < PB. The equilibrium p(y) becomes (globally) asymptotically stable after a

a
6 @) (b)

g - 6
&F S5F 8 5%
() -
g4 g4

L n 3,
g 3 : =
Z 2f ' L2
@ ge -
ERL =
o, =}
1) ~ 2, 0f
Q, OF---= e}

. . . . . 8 1k . . . . . .

0 2 4 6 8 0 1 2 3 4 5 6

cooperation parameter, v cooperation parameter, y

Fig. 3 Bifurcation diagrams for Eq. (1) with § = 2, using y as the bifurcation parameter. Red dashed
lines correspond to unstable equilibria, which, in case of bistability, establish the boundary between the
immediate basins of attraction of the extinction equilibrium 0 and the nontrivial attractor p.a 8 = 1, b
B = 5. In both cases, 8 < €%, and therefore, there is a extinction window, as Proposition 4 states (Color
figure online)
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@ ) b)
e S5F g
8 8 5f
g g4
1] n
=1 3 o 3¢
2 5l .2
ki 3 2
El =
2 2
1Sy o
a0 o 0f
0 1 2 3 4 5
cooperation parameter, ~y cooperation parameter, ~y

Fig. 4 Bifurcation diagrams for Eq. (1) with § = 2, using y as the bifurcation parameter. Red dashed lines
correspond to unstable equilibria. a f = 2 b B = 9.Inboth cases, f > ¢®, and therefore, total extinction
does not occur for any value of y > 0 (Color figure online)

period-halving bifurcation at y ~ 0.669. Since B > 1, a pitchfork bifurcation occurs
at y = 1, so a branch of unstable positive fixed points is born and is continued until
it collides with the branch of stable fixed points p(y) at a saddle-node bifurcation (at
y = y1 ~ 1.888). After y1, there is an extinction window [y, y»], with y» &~ 4.374.
As in the previous example, the positive equilibrium p(y) becomes unstable at a
period-doubling bifurcation at y & 4.994, and there is essential extinction after a
boundary collision at y & 5.496. Since B < ¢°, the largest positive equilibrium p(y)
is decreasing for y < yj and increasing for y > y».

The case g = 2 =é (Fig. 4a) is special because x = 1 is an equilibrium of (1) for
all y > 0. Since B > e/, this equilibrium is unstable for small values of y. Actually,
it remains unstable until a period-halving bifurcation occurs at y = 1. At the same
value of y, a pitchfork bifurcation occurs at x = 0, and a branch of unstable positive
fixed points is born. This branch is increasing and reaches the value laty = 14§ = 3,
where there is a transcritical bifurcation at which the equilibrium x = 1 loses again its
stability, and the largest equilibrium p(y) becomes an increasing function of y; the
positive effect is observable until p(y) becomes unstable at the second flip bifurcation
(y ~ 4.436). Since B > ¢°, the population does not exhibit total extinction for any
value of y. However, essential extinction occurs for y > 5.061.

The case B = 9 > ¢’ (Fig. 4b) is similar to the previous one. The main difference
is that the branch p(y) is asymptotically stable and increasing for all y in the stability
window [y1, 2] ~ [1.220, 4.102]. As before, total extinction does not occur, but
population undergoes essential extinction for y > 4.826.

3 Discussion

The gamma-Ricker equation (1) is a very interesting discrete-time population model.
On the one hand, it has proved to give greater flexibility than other two-parameter
models (Ricker, Cushing) to fit data in different animal populations, including Atlantic
menhaden (Reish et al. 1985), flatfish (Iles 1994) and crabs (Zheng et al. 1995; Zheng
and Kruse 2003). On the other hand, (1) with y > 1 can represent the growth of a
population subject to both positive and negative density dependence (Avilés 1999).

@ Springer



428 E. Liz

In regard to the first aspect, the dynamics of (1) for different parameter values
allows flexibility to fit data for overcompensatory populations, which can exhibit
Allee effects (for y > 1). Of course, this flexibility comes at the cost of an additional
parameter. The dynamics ranges from monotone convergence to an equilibrium (a
typical dynamics for compensatory population models such as the Beverton—Holt),
oscillatory convergence to an equilibrium, sustained periodic oscillations and chaos.
The theoretical results given in this paper allow to get two-parameter bifurcation
diagrams that help to understand the underlying dynamics (Fig. 2).

The role of the additional parameter y introduced in the Ricker model is better
understood with the formulation (2) given in “Introduction.” If 0 < y < 1, an inter-
ference factor 7 (x) = (x/a)?” ! is introduced in the model; this case is questionable
from a biological point of view, because the per-capita production tends to infinity as
the population size tends to zero, which is not biologically admissible. Yet, this param-
eter range has been used in the ecological literature and is probably the consequence
of using phenomenological fitting models without thinking about their mechanistic
consistency.

The case y > 1 corresponds to Eq. (2) with y = y — 1 > 0, that is, the term
I(x) = (x/a)? ! is a factor of positive density dependence. In this case, the gamma-
Ricker map f(x) = Bx?e%* meets the technical hypotheses given in “Appendix” of
Schreiber (2003), so (1) displays typical dynamics of discrete-time population models
with Allee effects and overcompensation. The dynamics include some effects already
observed in previous published work, such as population disappearances preceded by
chaotic transients, and transitions from extinction to bistability through a saddle-node
bifurcation (Avilés 1999; Schreiber 2003). Our results show that sudden collapses
preceded by a stable regime can also occur, leading to extinction windows between
two stable regimes (see, e.g., Fig. 3b); this phenomenon seems to be new in the
literature of discrete models with Allee effects when the cooperation factor is used as
abifurcation parameter. We notice that a similar effect has been shown for other discrete
and continuous models with Allee effects, but for different bifurcation parameters (e.g.,
Hilker 2010; Cid et al. 2014).

Regarding stability, Scheuring (1999) shows that increasing the Allee effect strength
in a discrete overcompensatory model increases the stability of the largest positive
equilibrium, while Avilés (1999) and Schreiber (2003) show a transition from simple
to complex dynamics. We prove rigorously that both stabilization and destabilization
are possible outcomes of increasing the cooperation parameter; indeed, usually two
consecutive flip bifurcations occur, being the first one stabilizing and the second one
destabilizing, in such a way that a stability window between two periodic regimes
shows up (see, e.g., Fig. 4). As far as we know, this is the first time in the literature of
populations with Allee effect and overcompensation where this effect is reported.

Other dynamically interesting results are the variety of bifurcations that can be
observed in Eq. (1). Though saddle-node, period-doubling and boundary collisions are
typically observed in models with Allee effect (Schreiber 2003; Liz 2010), we show
that transcritical and pitchfork bifurcations are also possible in bifurcation diagrams
for the cooperation parameter y (see, e.g., Fig. 4).

We hope our results shed some new light on the response of models with Allee
effects to changes in the cooperation parameter. The Allee effect is defined as a causal
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positive relationship between the number of individuals in a population and their fitness
(“the more the better””) (Courchamp et al. 2008), but it is sometimes considered as a
negative effect; for example, Scheuring (1999) calls it “the cost of rarity,” and Eskola
and Parvinen (2007) define it as a reduction in individual fitness at low population
densities. The reason is that the Allee effect makes the fixed point zero asymptotically
stable, driving small enough initial population densities to extinction. Actually, Fig. 3b
shows this negative effect of cooperation: When there is a low population density at
the equilibrium in the absence of cooperation (because the production parameter j is
small compared with the competition parameter §), then the strong Allee effect induced
by the cooperation factor 7 (x) = x¥ with positive y reduces both the population size
at the stable positive equilibrium and the size of its basin of attraction. At some
critical value of y, this basin of attraction collapses, and population is doomed to
extinction. This negative effect is not observed in Fig. 4, where cooperation prevails
over intraspecific competition, so that an increasing value of y results in an increase
in population abundance.

However, even in case of strong intraspecific competition, cooperation can be bene-
ficial for population persistence. This point has been emphasized by Hilker et al. (2017)
in their study of predator—prey models with foraging facilitation among predators (see
also Berec 2010; Alves and Hilker 2017). The analysis of a predator—prey model with
hunting cooperation shows that cooperation-mediated persistence is a positive con-
sequence of the Allee effect: hunting cooperation can ensure the persistence of the
predator population when predators would go extinct in the absence of cooperation
(Hilker et al. 2017). A similar effect is observed in the gamma-Ricker model; see, for
example, Fig. 3a, where for y = 1 (Ricker model), populations are leading to extinc-
tion, but for y € (6.436, 7.008), populations can persist at intermediate population
levels.

Another analogy between the gamma-Ricker model with y > 1 and predator—prey
models with hunting cooperation is that the interplay between overcompensation and a
strong production increase due to high cooperation rates can lead to population cycles
and their sudden disappearance.
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A Appendix

Proof of Proposition 2 Computing the Schwarzian derivative of f and simplifying,
we get
—q )

SHx) = m,

Vx#y/s, ®)

where
g(x) = 8%x* — 4y 83x3 + 6y28%x2 — 4(y° — y)sx + vyt — Y2
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Since ¢” (x) = 128%(y —8x)?2, it follows that g is convex. On the other hand, equation
¢’(x) = 0 has a unique real root xo = (y — y'/3)/8, and

m = q(xo) = 3y ()’ — )/1/3)

is a global minimum of g.

It is clear that m > O if y > 1, and therefore, g(x) > O forallx e R. If y = 1,
then xo = m = 0, and hence, g(x) > O for all x > 0. In both cases, it follows from
(8) that (Sf)(x) < Oforall x € (0,00),x #y/$.

If 0 < y < 1, then g(x) has two real roots x1, x, with x; < 0 < x3. Moreover,
g(x) > 0 for all x > x,. Since ¢(y/8) = 3y? > 0, it follows that /8 > x,, and
therefore, g(x) > O for all x > y/§. Again (8) ensures that (Sf)(x) < O for all
x € (y/$, 00). m|

Proof of Theorem 1 We need two auxiliary results that we include here for complete-
ness of the proof. The first one is a consequence of Corollary 2.10 in El-Morshedy
and Jiménez-Lépez (2008):

Proposition 5 Let f : (0, 00) — (0, 00) be a C* map with a unique fixed point p
and a unique critical point c, which is a local maximum. If —1 < f’(p) < 1 and
(Sf)(x) < Oforall x € (c,00), then p is globally asymptotically stable.

The second one is taken from Proposition 1 in Liz and Ruiz-Herrera (2015):

Proposition 6 Consider the difference equation

Xnt1 = f(xn),

where f satisfies the following conditions:

(H1) f:[0,00) — [0,00)isa Cl-unimodal map, with a unique critical point ¢ > 0,
such that f'(x) > 0 forall x € (0, ¢) and f'(x) < 0 forall x € (c, ).

(H2) f(0) = f'(0) =0, and limy_, o f(x) = 0.

(H3) f has three fixed points 0 < x1 < xa, so that f(x) < x forall x € (0,x1) U
(x2,00) and f(x) > x forall x € (x1, x2).

(H4) f is three times differentiable, and (Sf)(x) < 0 whenever f'(x) # 0.

If f2(c) > x1 and f'(x2) > —1, then x> is asymptotically stable and its immediate
basin of attraction is (x1, f_1 (x1).

We proceed with the proof of Theorem 1 (A). First, we observe that condition (6)
is equivalent to f'(p) > —1. Indeed,

fl(p)=Bp’ e (y —8p) = %(y —8p) =y — op.
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Hence,

+1 +1 +1
Fp=—lesp<t — (=)<
8 8 3
It is clear that the last inequality is equivalent to (6).
Now, the result follows easily from Propositions 1,2 and 5. Notice that the inequality
f'(p) < 1 always holds because

ff(p)=y—8p<lesp>y—1.

The last inequality trivially holds because y — 1 < 0.

If (6) does not hold, then f/(p) < —1, and therefore, p is unstable.

The proof of Theorem 1 (B) follows from Proposition 6. Propositions 1 and 2 ensure
that assumptions (H1)—(H4) hold.

Finally, the convergence to the equilibrium p is eventually monotone if and only
if f/(p) > 0, which is equivalent to say that f(c) < c for the unique critical point
c =y/é of f.1Itis clear that condition f(y/8) < y /& is equivalent to (7). O

Proof of Proposition 3 The equilibrium is asymptotically stable if 8 < Ts(y). It is
easily seen that 75(0) = e/ and lim,_, o T5(x) = 0. Moreover, Ta/ (x) = 0if and
only if

(14 x)e 2/0+9 = 5, 9)
It is clear that Eq. (9) has a unique positive solution 7 if and only if § > ¢ 2.

Thus, if § < e~ 2 then Ty is decreasing on (0, 00), and therefore, increasing y is
destabilizing if B < e¢/§, and the fixed point p is unstable for all values of y > 0 if
B > e/5. See Fig. Sa.

If § > e~ 2, then Ts attains a local maximum at y > 0. Thus, there are three
possibilities (see Fig. 5b):

Unstable

__productivity parameter, 8
__productivity parameter, 8

0,0) cooperation parameter, v 0,0) cooperation parameter, ~y

Fig. 5 (Color Figure Online) Graph of the map 8 = T;5(y) showing the stability switches for the largest
positive equilibrium of (1). a Ty is decreasing for § = 0.1 < e 2 b Ts is unimodal for § = 1 > e 2
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Fig. 6 (Color Figure Online)
Graph of the map 8 = Gs(y)
showing the survival/extinction
switches for (1)

___ productivity parameter, 3

‘ A N
Surv.— xtinction Survival
1 ‘1496 _
0,0) cooperation parameter,

— If B < e/4, the increasing y is destabilizing.
— Ife/5 < B < Ts(y), then there are two stability switches.
— If B > Ts(y), then p is unstable for all y > 0.

A singular case is § = T5(y), for which p is only asymptotically stable if y = y.

Proof of Proposition 4 The proof of Proposition 4 is very similar to the proof of Propo-
sition 3, using the map G that defines the extinction boundary:

el x—1 1—x B Se x—1
Gs(x):=e = , x> 1.
8 x—1

In this case, G is unimodal, with a global maximum Gg(1 4+ §) = &% Moreover,
lim, 1+ Gs(x) = 1,limy_, 0 Gs(x) = 0. See Fig. 6. We leave the details to the
reader.

Proof of Theorem 2 The equation that defines a positive equilibrium of (1) is
Bp?Y~le = 1, or, equivalently, p!~7e% — B = 0. For a fixed value of 8 > 0,
define the map

F(p.y)=p'" 7 —B, p>0,y>0.

By the implicit function theorem, equation F (p, ) = Odefines a function p = p(y) if

dF/dp # 0.By Proposition 4, we know that p(y) exists for y € (0, 00) if 8 > ¢, and

otherwise, p(y) exists in two open intervals (0, y1], [y2, 00), with0 < 1 < y; < y».
Moreover, we can compute

dp _ —9F/3y _ _pln(p)
Ay AF/dp 1—y+68p

First we show that the denominator is always positive. Indeed, if y < 1, then
1—y+38p >68p > 0.1f y > 1, then it is clear that the largest equilibrium point p
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satisfies p > p*, where p* is the fixed point at which f/(p*) = 1. Now, it is easy to
check that p* = (y — 1)/4, and therefore,

y —1

p > == 1—y+4ép>0.

Thus, dp/dy > 0if p > 1,and dp/dy < Oif p < 1.

Now, if y < 1, then it is clear that p = 1 if and only if 8 = e%. Moreover, since
f(x) > xforx < pand f(x) < x forx > p, it follows that p > 1if 8 > €%, and
p<lif g <éd.

Ify > 1 and B > ¢°, a simple graphical analysis also shows that p > 1. Hence,
p(y) is an increasing function of y for y € (0, 00) if B > €°.

Ify > land 8 < €%, then two extinction switches occurat yy, y2, with 1 < y; < y».
Moreover, since y; < 148 < yo,wegetthat p(y1)) = (y1—1)/6 <1 < (yp—1)/6 =
p(y2). Thus, p(y) is a decreasing function of y in (0, y;) and an increasing function
of y in (32, 00).

Finally, if 8 = e, then x = 1 is an equilibrium of (1) for all y > 0. Moreover,
p = listhe largest positive equilibrium if y < 1+4§;fory > 144, x = 1 isunstable,
and the largest positive equilibrium is p > 1. Thus, p(y) is an increasing function of
y in (1 + 6, 00). O

8
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