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Abstract

We give an asymptotic description of the monotone increasing solutions of a limit bound-
ary value problem for a class of nonlinear difference equations with continuous arguments.

1 Introduction

In [1] Mallet-Paret studied the existence and some properties of the monotone increasing (nonde-
creasing) solutions x : R — R of the limit boundary value problem (LBVP for short)

—cx'(§) = F(x(E+r1),2(E+72),...,z(E+rN)) (1)
i z(§) = -1, Jim z(€) =1, )

where ¢ € R is a parameter and the shifts r; € R, 1 < 57 < N, and the nonlinearity I : RN - R
satisfy the following standing assumptions:

)N >2,7 =0andr; # r, whenever 1 < j <k <N,

(i) F : RV — R is a continuously differentiable function such that the partial derivatives
D;F,1 < j < N,are locally Lipschitz continuous,

(iii) D F'(u) > 0 whenever u € RN and 2 < j < N,
(iv) there exists ¢ € (—1,1) such that the function ¢ : R — R defined by

O(x) = F(z,x,...,x), r €R, 3)
satisfies the following conditions:
e O(z)>0 forz € (—o0,—1) U (g,1),

e O(x) <0 forz € (—1,q) U (1,00),
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(v) for the function ® defined by (3), we have
®'(-1) <0, ®'(q) >0, and (1) < 0.

Note that assumption (iv) implies that the Eq. (1) has exactly three equilibria, x = —1, x = ¢ and
x = 1. If ¢ # 0 then Eq (1) is a functional differential equation of mixed type (including both
delayed and advanced arguments), while in the case when ¢ = 0 Eq. (1) reduces to a difference
equation.

Under the above hypotheses, Mallet-Paret proved the existence of ¢ € R and a monotone
increasing solution z : R — R of LBVP (1)-(2), and described the asymptotic behavior of (&) as
& — 400 as follows:

Theorem 1.1. ([1, Theorem 2.2]). If ¢ # 0 and x : R — R is a monotone increasing solution of
LBVP (1)-(2) then there exist C > 0 and € > 0 such that

—14+0_*E 4 0P8 ¢ oo,
z(§) = T (g -
1 —Cre™s +0(e+79%), £ — 00,

where \* € (0,00) is the unique positive eigenvalue of the linearization of Eq. (1) about the
equilibrium x = —1, and X\, € (—00,0) is the unique negative eigenvalue of the linearization of
Eq. (1) about the equilibrium r = 1.

Ifc =0and x : R — R is a monotone increasing solution of LBVP (1)-(2) then

1
lim — 10g<1 + Hﬁ(f)) =AY, if Tmax > 0,
£——00 §
1
Jim 2 log(1— 2(¢)) = X3, if Tmin <0,
where Tmax = MaXi<j<N Tj, Tmin = Minj<j<y 7j and X*, N\ have the same meaning as

before.

Clearly, if ¢ = 0 (the case of difference equations) the asymptotic formulas for () are not
as sharp as in the the case when ¢ # 0. Our aim is to show that in the case ¢ = 0 the asymptotic
formulas for the monotone increasing solutions of LBVP (1)-(2) can be improved.

2 Main Results

If ¢ = 0 then there is an important difference between the cases of rationally related shifts and
rationally non-related shifts.

Definition 2.1. We say that the shifts r;, 1 < j < IV, are rationally related if all ratios

T .
<. 1<j<k<N,
Tk
are rational. In this case there exists v > 0 such that all shifts r;, 1 < 57 < NN, are integer multiples
of v, ie.,
rj = n;v forsomen; € Z, 1<j<N.
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Our main results are the following two theorems dealing separately with the cases of rationally
related and rationally non-related shifts.

Theorem 2.1. Suppose that ¢ = 0 and the shifts r;, 1 < j < N, are rationally related. If
x : R — R is a monotone increasing solution of LBVP (1)-(2) then for some ¢ > 0 we have

©=J1" C_(§)eM* +0(eMT9), ¢ = —00, if rmax > 0,
x - S S
1- C+(§)6/\+£ + O(e()\+_6)§)v f — 00, if"ﬂmin < 07

where the functions Cy : R — R are v-periodic (with v as in Definition 2.1), uniformly positive
and bounded, that is, for some o > 0 and 8 > 0, we have

a<Ci(§)<B, ek

Theorem 2.2. Suppose that ¢ = 0 and the shifts v;, 1 < j < N, are not rationally related. If
z : R — R is a monotone increasing solution of LBVP (1)-(2) then there exist constants C+ > 0
such that
(f) -1+ C(_e/\qi5 + 0(6)\25)7 5 — —0%, ifrmax >0,
X == s s
1— C+e)‘+5 + o(e/\+5), & — oo, if Pmin < 0.

In Theorems 2.1 and 2.2, the symbols A“ and A% have the same meaning as in Theorem 1.1.

3 Sketch of the Proof

We will restrict ourselves to the case when & — co. Suppose ¢ = 0 and z : R — R is a monotone
increasing solution of LBVP (1)-(2). Define

y(§) =1-x(§), &€k

Then y : R — [0, c0) is a nonnegative, monotone decreasing solution of the linear equation

N
Y Ay +r) =0, EER,
j=1

where .
A4i€) = [ DiF(n(e.&) + (1 Os()dr, 125 < N,
0
with
m(x, &) = (x(E+ 1), 2(+72),...,x(E+rN)) €RY
and

k(1) =(1,1,...,1) e RV,
The assumptions on F' imply that the coefficients A;(£), 1 < j < N, have the properties:

(P1) There exist constants

J

J

Qg ﬁj € R, 1
Qg > 0, 2

IN A

N,
N,

IN A
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such that

(P2) The limits
Ajo = lim A;(§), 1<j7<N,
E—o0
exist (in R), and the convergence is exponentially fast, that is, for some k& > 0, we have

Aj(é.) = Aj,O + O(e_k§)7 g — 00, 1 S] < N.

(P3) Asy =350, Ajo < 0.
The desired asymptotic formulas for & — oo follow from the following propositions.

Proposition 3.1. Suppose that the coefficients A; : R — R, 1 < j < N, of the linear equation

N
> A (yE+r) =0 “)
j=1

are continuous and have properties (P1)—(P3). Assume also that the shifts r;, 1 < 7 < N, are
rationally related. If y : R — (0, 00) is a positive, monotone decreasing solution of (4) then for
some € > 0, we have

y(€) = OO + 0N, €= o,

where \° is the unique negative eigenvalue of the limiting equation

N
S AjoyE+ry) =0, )

J=1

and the function Cy. : R — R is v-periodic (with v as in Definition 2.1), uniformly positive and
bounded.

Proposition 3.2. Suppose that the coefficients Aj : R — R, 1 < j < N, of Eq. (4) are continuous
and have properties (P1)—(P3). Assume also that the shifts rj, 1 < j < N, are not rationally
related. If y : R — (0,00) is a positive, monotone decreasing solution of (4) then there exists
Cy > 0 such that

Y(E) = e 4 0(eM), € ox,

where \° € (—00,0) is the unique negative eigenvalue of the limiting equation (5).

The proofs of Propositions 3.1 and 3.2 will be given in our forthcoming paper. We only remark
that if the shifts are rationally related then the linear difference equation (4) can be treated as a
higher order linear recurrence equation. In fact, the proof of Proposition 3.1 uses only the Residue
Theorem. The case of rationally non-related shifts is more difficult. The difficulty arises from
the fact that the eigenvalues of the limiting constant coefficient equation (5) may be dense in a
nontrivial interval. The proof of Proposition 3.2 will be based on a Tauberian theorem for the
Laplace transform due to Ikehara [2], Chap. V, Theorem 17.
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