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The purpose of this paper is to analyze the effect of constant effort harvesting upon global dynamics of a

discrete-time population model with juvenile and adult stages. We consider different scenarios,

including adult-only mortality, juvenile-only mortality, and equal mortality of juveniles and adults.

In addition to analytical study of equilibria of the system, we analyze global dynamics by means of an

automated set-oriented rigorous numerical method. We obtain a comprehensive overview of the

dynamics as the harvest rate and survival probability change. In particular, we determine the range of

parameters for which the population abundance gets larger in spite of an increase in the harvest rate

(so-called hydra effect), and for which subsequent increases in harvesting effort can magnify fluctua-

tions in population abundance (destabilize it) and then stabilize it again (so-called bubble effect).

& 2011 Elsevier Ltd. All rights reserved.
1. Introduction

The effects of increasing mortality in various populations are a
very important issue from different points of view. In particular,
determining these effects is vital for optimal management of
renewable resources and for control of invasive species. It is
commonly accepted that harvesting helps stabilizing the popula-
tion, and an increase in mortality should typically lead to a
decrease in the population stock. However, recent studies indicate
that this is not always the case. On the one hand, it turns out that
greater mortality can in some cases increase population size
(Abrams, 2009; DeRoos et al., 2007; Zipkin et al., 2008, 2009;
Terry and Gourley, 2010); on the other hand, it was found out that
increasing mortality can magnify fluctuations in population
abundance, as was first noticed by Beddington and May (1977).
More recent papers exploring this effect are (Abrams and Quince,
2005; Zipkin et al., 2009; Hsieh et al., 2006; Anderson et al., 2008;
Pardini et al., 2009); in particular, Abrams and Quince (2005)
prove that higher predator mortality can be destabilizing in a
predator–prey model with a structured prey population when
stage length is sufficiently short.

In order to shed some new light on these issues, and to provide
a more rigorous analysis on how harvesting influences the
dynamics, in this paper we study a simple stage-structured model
ll rights reserved.

yk).
with two age classes (juveniles and adults), recently introduced
by Zipkin et al. (2009). If An and Jn denote the amounts of adults
and juveniles after n generations, respectively, then the model
equations can be written as follows:

Anþ1 ¼ ð1�hjÞsjJnþð1�haÞsaAn

Jnþ1 ¼ gðð1�haÞAnÞ ð1Þ

where ha,hjA ½0;1� are harvest rates of adults and juveniles,
respectively; sa,sjA ½0;1� are the corresponding survivorship rates,
and g: ½0,1Þ-½0,1Þ is the stock-recruitment function. We will
work with Ricker (1954) map

gðxÞ ¼ axe�bx ð2Þ

with a41,b40, but similar analysis can be done for other
overcompensatory recruitment models. The model assumes that
harvest occurs prior to breeding, surviving juveniles become
adults after one time step, and adults are capable of surviving
several seasons.

As in Zipkin et al. (2009), we will focus on three main harvest
strategies, which can be applied in practice and give insight into
what happens in the case of other harvest options to kill juveniles
and adults with different relative proportions:
Ha:
 adult-only harvest (hj¼0 and ha40)

Hj:
 juvenile-only harvest (ha¼0 and hj40)

He:
 targeting both stages in equal proportion (ha ¼ hj40)
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For example, pest control is usually stage-specific, that is, it is
frequently designed to kill either juveniles or adults (Terry and
Gourley, 2010). On the other hand, a harvest strategy that targets
both stages in equal proportion (Case He) consists of removing all
individuals encountered, regardless of their age (Zipkin et al.,
2009).

We will also assume that the survivorship rates sa and sj are
related in one of the following manners, which cover the main
examples in Zipkin et al. (2009) (see Table 1 there).
S1:
 sj ¼ 1�sa
Se:
 sj¼sa
The former case includes some typical situations in which
juvenile survivorship is much lower than adult survivorship;
(for example, the case sj¼0.2, sa¼0.8 considered in Zipkin et al.
(2009). The latter case assumes that the survivorship rate is the
same for juveniles and adults alike.

We emphasize that Case S1 is sometimes implicitly assumed in
the literature. In the absence of harvesting, the system (1)–(2) can
be reduced to the second-order difference equation for the size of
the adult population

Anþ1 ¼ saAnþsjaAn�1e�bAn�1 ð3Þ

This equation was introduced by Clark (1976, 1990) to model
whale populations (see also May, 1980; Fisher, 1984; Botsford,
1992; Higgins et al., 1997). If asj41�sa, then Eq. (3) has a positive
equilibrium K, which represents the saturation level. This equili-
brium satisfies the following equation:

sja¼ ð1�saÞe
bK ð4Þ

which is sometimes referred to as the balance equation (May,
1980). Replacing (4) into (3) gives

Anþ1 ¼ saAnþð1�saÞAn�1e�bðAn�1�KÞ

This form of Clark’s equation, with different choices for g, was
used by May (1980) and Fisher (1984). See (El-Morshedy and Liz,
2006; El-Morshedy et al., 2008; Liz, 2010) for further discussion.

In this paper, we will consider all the six cases that are
combinations of the three harvest strategies with the two rela-
tions on the survivorship rates listed above, and we will use the
above labels to indicate these cases, e.g., ‘‘Case Hj–S1’’ will refer to
the case of juvenile-only harvest in which the survivorship rates
are related by the equation sj ¼ 1�sa, and ‘‘Case Se’’ will refer to
the three cases in which sj¼sa, taken collectively.

The paper is organized as follows. In Section 2 we apply
analytical methods to investigate the existence and stability of
equilibrium states of the system as a function of the parameters.
We explain the results of this analysis and discuss their biological
consequences. In particular, in Section 2.3 we investigate the
effect of an increase in population size in spite of an increase in
harvesting effort (so-called hydra effect), and in Section 2.4 we
discuss the phenomenon of destabilization followed by re-stabi-
lization of the population caused by subsequent increases in
harvesting (the effect of a bubble). Technical proofs of the results
of this analysis are postponed to Appendix A. In Section 3 we
apply a set-oriented numerical method for the analysis of global
dynamics as selected parameters are varied, and we discuss the
results of this analysis. In particular, we discuss periodic oscilla-
tions, an averaged version of the hydra effect, a numerical
counterpart of the bubble effect, as well as synchronous and
resonant behavior of the population abundance. Most technical
details and remarks are postponed to Appendix B. In Section 4 we
briefly compare the results obtained by both methods, and we
summarize key findings of our work.
2. Stability analysis of critical points

2.1. Reduction to a single second-order equation

As noticed before for the case without harvesting, the system (1)
can be reduced to the Clark model defined by the second–order
difference equation for the size of the adult population

Anþ1 ¼ ð1�haÞsaAnþð1�hjÞsjgðð1�haÞAn�1Þ ð5Þ

Consider Eq. (5) with the Ricker map (2). Our first observation
is that not all parameters are important for the dynamics. Indeed,
the change of variables xn ¼ ðb=rÞAn, where r¼ lnðaÞ40, trans-
forms the equation under consideration into

xnþ1 ¼ ð1�haÞsaxnþð1�hjÞsjð1�haÞxn�1erð1�ð1�haÞxn�1Þ ð6Þ

Since we focus on the changes in the adult population, our aim is
to understand the dynamics of this equation, depending on the
values of the parameters ha,hj,sa,sjA ½0;1�, and r40.

Solutions of the difference equation (6) are sequences fxngnZ0

that can be obtained by recurrence starting with two nonnegative
initial values x0,x1. Eq. (6) can be written in the form

xnþ1 ¼ ð1�dÞxnþpf ðð1�haÞxn�1Þ

where f ðxÞ ¼ xerð1�xÞ, d¼ 1�ð1�haÞsa, and p¼ ð1�hjÞsj. Some
important aspects of this equation, such as boundedness and
persistence, have been studied by Gy +ori and Trofimchuk (2000)
and can be applied to Eq. (6). In particular, if ha,saAð0;1Þ, then all
solutions of (6) with x0Z0, x140, are positive and bounded.
Moreover, it follows from Gy +ori and Trofimchuk (2000, Corollary
12) that Eq. (6) is uniformly persistent if r4r0, where

r0 :¼ ln
1�ð1�haÞsa

ð1�hjÞð1�haÞsj

� �
ð7Þ

We recall that the notion of uniform persistence for Eq. (6) means
that there is e40 such that lim infn-1xn4e for every solution
fxng of (6) with positive initial conditions; see, e.g., the recent
monograph (Smith and Thieme, 2011).

2.2. Equilibria of the system

Equilibria provide the most basic information about long-term
behavior of solutions, and therefore their existence and stability
constitute primary issues to be investigated in any dynamical
system. In this section, we investigate this subject with regards to
our population model.

A number K is an equilibrium of (6) if and only if it satisfies the
equation

K ¼ ð1�haÞsaKþð1�hjÞsjð1�haÞKerð1�ð1�haÞKÞ ð8Þ

We work with the usual definitions of stability and asymptotic
stability (see, e.g., Elaydi, 2005, Section 5.3). In particular, the
notions of stability (asymptotic stability) are understood as local
stability (local asymptotic stability). We say that the positive
equilibrium K is globally attracting if it attracts all positive
solutions, that is, limn-1xn ¼ K whenever x140. We say that K

is globally asymptotically stable if it is asymptotically stable and
globally attracting.

The following result provides comprehensive information on
the existence and global stability of the equilibria of (6), as well as
an actual formula for the equilibrium, which turns out to be
unique. The proof of this result is an easy consequence of some
results from Gy +ori and Trofimchuk (2000), and can be found in
Appendix A.

Proposition 2.1. Let r0 be defined by (7). If rrr0 then the unique

equilibrium of (6) is x¼0, and all solutions converge to 0. If r4r0



Table 1
Ranges of values of the adult harvest rate ha for which the hydra effect in adult

population is observed in Eq. (6) for r¼4, Case Ha (adult-only harvest), and

different values of sa. Both Cases: Ha–S1 (sj ¼ 1�sa) and Ha–Se (sj¼sa), are

considered.

sa Hydra effect in Case S1 Hydra effect in Case Se

0.15 0:841oha o0:941 0:087oha o0:667

0.4 0:7773oha o0:917 0:658oha o0:875

0.8 0:102oha o0:744 0oha o0:051 and 0:829oha o0:937
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then 0 is unstable and (6) has a unique positive equilibrium

K ¼
1

1�ha
1�

r0

r

� �
ð9Þ

Moreover, if r0orrr0þ1 then the positive equilibrium K is globally

asymptotically stable.

Remark 2.2. An immediate conclusion that can be drawn from
Proposition 2.1 is that overharvesting leads to extinction. More-
over, the positive equilibrium K is globally asymptotically stable
for harvest rates slightly smaller than the critical value after
which the population is doomed to extinction. For example, in
Case Ha the positive equilibrium K is globally asymptotically
stable if hn

1rhaohn

2, and 0 is globally attracting (implying
extinction) for haZhn

2, where

hn

1 ¼ 1�ðsaþð1�hjÞsje
r�1Þ

�1

hn

2 ¼ 1�ðsaþð1�hjÞsje
rÞ
�1

This remark will be important for the discussion in Section 2.4.

In the following result, proved in Appendix A, we state the
stability properties of the positive equilibrium defined by (9) for
r4r0.

Proposition 2.3. Let r0 be defined by (7). If

r0oror0þ
2�sað1�haÞ

1�sað1�haÞ
ð10Þ

then the positive equilibrium K of (6) is locally asymptotically stable.

On the other hand, if

r4r0þ
2�sað1�haÞ

1�sað1�haÞ

then the equilibrium K is unstable.

2.3. The hydra effect

The phenomenon of a seemingly paradoxical increase in
population size in response to an increase in per-capita mortality
rate was named the hydra effect by Abrams and Matsuda (see
Abrams, 2009 and references therein) after the mythological beast
that grew two heads to replace each that was cut off. Because of
its undeniable biological importance, determining situations in
which this phenomenon may occur is of great interest; see, e.g.,
Sieber and Hilker (2012). Abrams (2009) reviewed mechanisms
underlying the hydra effect; in particular, this effect may occur in
one-dimensional discrete-time generation population models
when mortality precedes density dependence. In this section,
0.0
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Fig. 1. Regions of stability and of the hydra effect in the plane of parameters ðha ,saÞ for
we begin with a formal definition of what we mean by the hydra
effect in our model, and then we answer the question of when this
effect occurs.
Definition 2.4. We say that the hydra effect occurs in the adult

population if Eq. (6) has a stable equilibrium and the equilibrium
remains stable and gets larger as the harvest rate is increased.

Since an explicit expression for the equilibrium K is given by
(9), it is easy to determine the necessary and sufficient conditions
on when K gets larger as the harvesting effort is increased. We
state these conditions for the different harvest strategies in our
next result, whose proof is postponed to Appendix A.
Proposition 2.5. In Case Ha, the hydra effect occurs in the adult

population if and only if

r0þ
1

1�sað1�haÞ
oror0þ

2�sað1�haÞ

1�sað1�haÞ
ð11Þ

where r0 is defined by (7).

In Cases Hj and He, the hydra effect does not occur in the adult

population.

Proposition 2.5 allows us to plot the values of parameters
ðha,saÞ for which the hydra effect occurs in Eq. (6) for every fixed r

in the case of adult-only harvest. In Fig. 1, we do it for r¼4 for
both cases Ha–S1 and Ha–Se.

Notice that Proposition 2.5 yields a result on a stage-specific
hydra effect, in which abundance of the adult stage increases with
greater adult mortality. We refer to Abrams (2009) for more
comments and related references. We observe that the Hydra
effect in the adult population is relatively frequent for low values
of the survivorship rate sj of juveniles. Some numerical results for
sa¼0.15, 0:4, and 0.8 are supplied in Table 1.
ha
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Equilibrium
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Eq. (6) in Case Ha (hj¼0) for r¼4. (a) Case Ha–S1 (sj ¼ 1�sa). (b) Case Ha–Se (sj¼sa).
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Fig. 3. A bubble formed by plotting the minimum and maximum values of a

solution of Eq. (6) in Case Ha–S1 (hj¼0, sj ¼ 1�sa), with randomly chosen initial

conditions x0 ,x1 A ½0;2�, as ha is increased, for r¼4 and sa¼0.7. We made 200

iterations for each value of ha, and discarded the first 150. The stable equilibrium

is destabilized at h1 and stabilized again at h2.
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2.4. Instability due to harvesting and the phenomenon of a bubble

An important question that has attracted attention of ecolo-
gists is whether harvesting can lead to population instability or, in
other words, if an increase in harvest rates can elevate variability
in the abundance of the species under consideration. Indeed, such
a phenomenon has been reported in several populations, and one
of the more plausible hypotheses that can cause it is the age

truncation effect (see Anderson et al., 2008; Hsieh et al., 2006, and
references therein), as is believed to be the case of fisheries
removing large and old individuals through size-age selective
fishing. Zipkin et al. (2009) argue that population instability as a
result of harvesting is possible in the system given by (1) when
both fecundity and adult survivorship are high.

Our first result in this direction, which we prove in Appendix
A, shows that if adults are not targeted then the positive
equilibrium cannot be destabilized as hj is increased.

Proposition 2.6. For Eq. (6), in Case Hj, the locally asymptotically

stable positive equilibrium cannot be destabilized as hj is increased.

Regions of stability in the plane of parameters ðhj,saÞ are shown
in Fig. 2. We notice that in Case Hj–S1 the condition for extinction
is independent of the survivorship rate sa; in this case r¼ r0 if and
only if hj ¼ 1�e�r (see the vertical line hj ¼ 1�e�4 in Fig. 2(a)).

We also emphasize another fact that is proved in Appendix A.
In Case Hj–Se, if rr3 then the equilibrium is asymptotically stable
whenever it exists. However, for r43, increasing mortality of
juveniles does stabilize the population for intermediate values of
the adult survivorship rate.

In the remainder of this section, we assume that ha40, that is,
we consider Cases Ha and He. Since, by Proposition 2.1 and
Remark 2.2, the positive equilibrium is always globally asympto-
tically stable for values of ha slightly smaller than the critical
value after which the population is doomed to extinction, one can
immediately see that high harvest rates cannot destabilize the
equilibrium. Therefore, a mechanism is necessary that allows
destabilizing the system and then stabilizing it again. In
one-dimensional discrete-time models, this is possible when a
period-doubling route to chaos is broken down, giving rise to
period-halving bifurcations, which in turn stabilize the system
again around an equilibrium point (Nusse and Yorke, 1988; Stone,
1993). The bifurcation diagram forms a closed loop-like structure
similar to a bubble (see Ambika and Sujatha, 2000; Bier and
Bountis, 1984), which gave the name to this phenomenon.

We formalize the idea of destabilizing a population and
stabilizing it again by introducing the concept of a bubble for
0.0
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s a

Stability

0.2 0.4 0.6 0.8 1.0

Fig. 2. Regions of stability in the plane of parameters ðhj ,saÞ for Eq. (6) in Case Hj (juve
Eq. (6), and we provide rigorous analysis of the range of the
survivorship parameter sa for which an increase in the harvest
rate ha of adults leads to the loss and then re-gain of stability.
Definition 2.7. For Eq. (6), we say that there is a bubble as ha is

increased if there are points h1oh2oh3 such that the positive
equilibrium of (6) is asymptotically stable for haAð0,h1Þ [ ðh2,h3Þ,
and unstable for haAðh1,h2Þ.

The mechanism that destabilizes the positive equilibrium and
stabilizes it again is a Naimark–Sacker bifurcation (see, e.g.,
Wiggins, 1990). An example is shown in Fig. 3, where we plotted
the maximum and minimum values achieved by a solution once
the transients have died out.

In both Cases Ha and He, the corresponding stability diagrams
indicate the existence of a bubble and show the range of values of
the survivorship parameter sa for which a bubble occurs (see
Figs. 4, 6). Actually, analytical results can be derived to determine
this range for each given value of the parameter r. In the following
result, whose proof can be found in Appendix A, we do this task
for Case Ha.
Proposition 2.8. In Case Ha–S1, there is a bubble in Eq. (6) as ha is

increased if and only if r43 and

r�2

r�1
osao

er�3

1þer�3
ð12Þ
s a
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0.2 0.4 0.6 0.8 1.0

nile-only harvest, ha¼0) for r¼4. (a) Case Hj–S1 (sj ¼ 1�sa). (b) Case Hj–Se (sj¼sa).
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In Case Ha–Se, there is a bubble in Eq. (6) if and only if sðrÞosar1,
where s(r) is the greatest solution of the equation

ln
1�x

x

� �
þ

1

1�x
¼ r�1 ð13Þ

in the interval ð0;1Þ.

The range of values of sa for which there is a bubble as ha is
increased in Eq. (6) is shown in Fig. 5 for r between 3 and 10 in
Cases Ha–S1 and Ha–Se. For example, if r¼4 then there is a bubble
for saA ð2=3,e=ð1þeÞÞ � ð0:66,0:73Þ in the former case, and for
saAð0:759,1Þ in the latter.
Remark 2.9. Since s(r) is an increasing function of r, it follows
from Proposition 2.8 that the length of the interval of values of the
adult survivorship parameter sa for which there is a bubble as ha

is increased in Eq. (6) is a monotone decreasing function of the
parameter r in Case Ha–Se.

Case He reports qualitatively similar results to those of Case Ha,
although more intricate calculations are needed. Compare the
regions of stability in Fig. 4 with those in Fig. 6.

Existence of a bubble in the bifurcation diagram is a strong
indicator of the fact that increasing harvesting can lead to
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instability in the model, as was observed in recent empirical
studies for plant, insect, and fish populations (see Zipkin et al.,
2009 and references therein).

Our results are in accordance with the age-truncation hypoth-
esis suggested by Anderson et al. (2008), who discuss how
increased variability in fish abundance may be caused by the fact
that fishing typically targets the larger individuals of a species.

We would like to point out that in the literature about
discrete-time population models of dimension higher than one,
the bubbling phenomenon has been barely treated, although
some related diagrams were already obtained for the three-
dimensional model for the flour beetle Tribolium analyzed by
Costantino et al. (1995), and for the model of population
dynamics of Alliaria petiolata (garlic mustard) recently studied
by Pardini et al. (2009). Rigorous studies of the phenomenon of
bubbling are relatively scarce; for some recent results, see Sander
and Yorke (2011).

2.5. Systems with an unstable equilibrium

In the previous sections, we have divided the plane of para-
meters ðha,saÞ into different regions depending on the stability
properties of the equilibrium, and we have determined the ranges
of the parameters for which such phenomena as the hydra effect
and a bubble occur. However, we have not provided any informa-
tion about the dynamics of the system (1) in the regions where
the equilibrium is unstable. It is well known that, even for
one-dimensional maps, the asymptotic behavior of solutions can
range from simple periodic oscillations to chaos (see, e.g, May, 1976).

In fact, this remark can provide new conclusions, not raised up
by the previous study, regarding the potential of harvesting to
increase variability. For example, if we consider Eq. (6) with r¼4,
Case Ha–S1, Proposition 2.8 ensures that the equilibrium cannot
be destabilized by harvesting for small values of sa. However, if
we look at the bifurcation diagram in Fig. 7 then we see that
0.0
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Fig. 7. Bifurcation diagram for Eq. (6), Case Ha–S1, with r¼4 and sa¼0.15.

0
0

1

2

3

4

5
ha =0

xn

n

x

20 40 60 80 100

Fig. 8. Time series for Eq. (6), Case Ha–S1, with r¼4 and sa¼0.15. Left: without harvesti

periodic pattern appears).
harvesting indeed enhances variability from a simple four-peri-
odic regime to an apparently chaotic behavior. In Fig. 8, we show
time series for 100 generations in the model without harvesting
(convergence to a four-periodic regime), and with a rate of
harvesting of 60% (apparently chaotic).
3. Set-oriented numerical analysis of global dynamics

In this section, we apply the method for the analysis of global
dynamics introduced by Arai et al. (2009), which is based upon
rigorous numerical set-oriented computations. This is a computa-
tional method that algorithmically subdivides the parameter
space into regions of equivalent dynamics, and provides an
interactive tool to analyze and visualize, for each specific para-
meter value, selected features of the dynamics, not only the
attractors, but also unstable invariant sets, usually difficult to
find using classical methods.

We begin with a brief introduction to this method and we
explain how it is applied to our model. Then we describe the
results obtained, and we discuss some biologically interesting
phenomena that were found with this approach.

3.1. Description of the method

The core idea behind the computational method in question is
to decompose the dynamics into isolated invariant sets that
correspond to recurrent structures (e.g., fixed points or periodic
solutions) in such a way that connecting orbits between them
define a strict partial order, like in a gradient system, and then to
determine classes of parameters for which these decompositions
are equivalent. The computations are carried out using interval
arithmetic (Moore, 1966), and the results are mathematically
rigorous. This last feature distinguishes our method from approx-
imate numerical simulations, which are typically much cheaper
but may not provide reliable results.

The input to the method applied to the system of interest
consists of the following data:
(I1)
0

1

2

3

4

5

n

ng (a
The two-dimensional map defined by (1), with the Ricker
map (2), in which we fix a :¼ e4, so that we work with r¼4,
as discussed in the previous sections, and we also fix the
scaling parameter b :¼ a=e, so that all the solutions with non-
negative initial conditions are eventually trapped in ½0;1�2.
(I2)
 The ranges of the varying parameters. Although the compu-
tational method may handle all the parameters ha, hj, sa and sj

varying simultaneously, we limit our attention to two vary-
ing parameters at a time, and we consider the six cases listed
in Section 1. The first varying parameter is ha in Case Ha, hj in
Case Hj, and ha¼hj in Case He, and the second varying
parameter is sa, with sj ¼ 1�sa in Case S1 and sj¼sa in
ha =0.6

0
n

20 40 60 80 100

four-periodic attractor is observed); right: with adult harvest rate ha¼0.6 (no
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Case Se. We vary both parameters from 0 to 1, and thus we
take L :¼ ½0;1�2 for the parameter space.
(I3)
 The phase space bounding box that contains all asymptotic
dynamics, with an additional margin to compensate for numer-
ical overestimates; a quick computation at low resolution
suggested that the choice of B :¼ ½0,1:35�2 would be appropriate.
(I4)
 The resolutions in the parameter space and in the phase
space. We subdivide the parameter space L uniformly into
500�500 boxes, and the phase space B into 1024�1024
boxes. The choice of the resolutions was made on the basis of
the resulting cost of computations, which was between 1000
and 3000 CPU hours for each case, with the memory usage
not exceeding 2 GB.
. Continuation diagrams for the six cases considered in Section 3, with r¼4 fixed.

on of this article). Selected continuation classes are given labels, and the global d
The computations run at a computer cluster in a convenient
way, using a flexible dynamic parallelization scheme introduced

by Pilarczyk (2010) built into the software.

The output of the computations consists of the following
information:
(O1)
Classes

ynamic
Classes of parameters for which the qualitative dynamics is
equivalent, as computed at the fixed resolution in the phase
space by means of a decomposition into chain recurrent
components and connecting orbits between them (see
Appendix B.1 for a detailed description). These classes are
given as subsets of L, built of the boxes into which L was
subdivided.
of equivalent dynamics are indicated with shades of gray (colors in the web

s found in each of them is discussed in the text.
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(O2)
Fig. 10
ring. (b

pair o

(a) ð20

color i
For each parameter box, the phase space portrait of the
computed outer approximations of the chain recurrent
components in terms of isolating neighborhoods, with
information on the detected connecting orbits, gathered in
a structure called a numerical Morse decomposition, as
explained in Appendix B.1. For each of these isolating
neighborhoods, the Conley index is computed whenever
possible, as explained in Appendix B.2, and also additional
quantities are calculated, as discussed in Sections 3.4 and
3.5. Moreover, each isolating neighborhood is classified
either as attracting or unstable. Additionally, based on the
Conley index, the neighborhood may be said to be of the type

of a certain hyperbolic fixed point or hyperbolic periodic
orbit (in particular, it may be called repelling), as explained
in Appendix B.2.
3.2. Results of the computations

In Fig. 9, continuation diagrams computed for the six cases
under consideration are shown. Each continuation class consist-
ing of more than 1 element is indicated in some solid color, with
colors repeated for small classes that are at some distance from
each other. A few largest classes were given labels (a), (b), etc.,
and are briefly discussed below. The reader is invited to explore
the details at the interactive presentation provided at the website
(Pilarczyk, 2011). The classes corresponding to the labels (a), (b),
etc., will be denoted below Ca, Cb, etc.

The three subcases of Case S1, grouped in the left column in
Fig. 9, show similar dynamics to each other, so we limit the
detailed discussion to Case Ha–S1. The classes that appear in the
other two cases are labeled in a consistent way so that they
represent similar dynamics to the one that was found in the
corresponding classes in the case discussed.

For parameters in Ca, a small isolating neighborhood of the
origin is attracting, and it has been verified rigorously that no
other recurrent dynamics is present in B, and thus the neighbor-
hood of the origin contains a global attractor.

As the parameters in Ca get closer to the border with Cb, the
neighborhood gets stretched, and it splits upon entering Cb into an
unstable neighborhood of the origin and another attracting isolating
neighborhood. The latter neighborhood gets farther apart from the
origin if one changes the parameters towards the middle of Cb.
. Some saddle-node configurations found in Case Ha–S1. (a) An attracting isolating

) The ring split into a pair of attracting (dark gray, red) and saddle-like (bright gra

f attracting (dark gray, red) and saddle-like (bright gray, green) nine-periodic

0;263Þ: ½0:400,0:402� � ½0:526,0:528�, (b) ð3;223Þ: ½0:006,0:008� � ½0:446,0:448�, (c

n this figure legend, the reader is referred to the web version of this article.)
As the parameters in Cb change towards the border with Cc , the
attracting neighborhood gets larger, and in Cc this neighborhood
gets split into a pair formed by a small round repelling neighbor-
hood surrounded by an attracting neighborhood in the shape of a
ring, as shown in Fig. 10(a). For parameters in Cc0 and Cc00 , the
attracting ring is split into a pair of two isolating neighborhoods
of the type of an attracting and saddle periodic orbit, respectively,
of period 5 (in Cc0 ) or 9 (in Cc00 ); these sets are illustrated in
Fig. 10(b) and (c), respectively.

For parameters in Cd, the invariant ring described above is split
into a pair of neighborhoods of the type of four-periodic orbits, an
attracting one and a saddle one, as shown in Fig. 11(a). In Cd0 , the
attracting neighborhood is split even further, like in a period-
doubling bifurcation, as illustrated in Fig. 11(b).

As the parameters in Cd are changed towards the border with
Ce, the four-periodic attracting neighborhood gets larger, and is
eventually replaced in Ce with a thick attracting ring surrounding
the small repelling neighborhood in the middle, as shown in
Fig. 12(a). In some small regions of parameters labeled with ðe0Þ,
inside this thick ring, a four-periodic repeller is visible, as
illustrated in Fig. 12(b). It looks like a neighborhood of an
unstable periodic orbit embedded in a chaotic attractor.

Eventually, for parameters in Cf , a single huge attracting
isolating neighborhood is observed (not shown here), which
apparently indicates complicated recurrent dynamics taking place
in that region of the phase space, or at least the lack of or very
weak hyperbolicity of solutions, which makes it impossible to
separate various recurrent pieces (if any) at the resolution at
which the computations are done.

In addition to all this, in the narrow regions of parameters
along the bottom edge of the diagram, one can also see periodic
isolating neighborhoods formed along the coordinate axes (unless
a single huge isolating neighborhood is found that touches the
axes, as it happens for smaller harvest rates). Moreover, these
neighborhoods resemble shadows of the other isolating neighbor-
hoods which are of unusually regular shape and form a checkered
pattern (see Fig. 13). We discuss these particular configurations in
Section 3.6.

Similarly to Case S1, the three subcases of Case Se exhibit
global dynamics similar to each other, except the five-periodic
orbit observed in Class Cc0 was only found in Case Ha–Se. (It is not
ruled out that some five-periodic windows may also exist in the
neighborhood in the shape of a ring observed in Class Cc , with a repeller inside the

y, green) five-periodic neighborhoods observed in Class Cc0 . (c) The ring split into a

neighborhoods observed in Class Cc00 . The corresponding parameter boxes are:

) ð118;185Þ: ½0:236,0:238� � ½0:370,0:372�. (For interpretation of the references to



Fig. 11. A period doubling bifurcation observed in Case Ha–S1. (a) A numerical Morse decomposition observed in Class Cd . In addition to an unstable neighborhood of the

origin (black) and a repelling isolating neighborhood in the center of the picture (gray, blue), a pair of saddle-type (dark gray, red) and attracting (light gray, green) four-

periodic isolating neighborhoods are present. (b) In Class Cd0 , the attracting four-periodic isolating neighborhood is replaced by a saddle-type four-periodic neighborhood

(darker light gray, green) coupled with an eight-periodic attracting neighborhood (brighter light gray, cyan). The corresponding parameter boxes are:

(a) ð307;144Þ: ½0:614,0:618� � ½0:288,0:290�, (b) ð251;144Þ: ½0:502,0:504� � ½0:288,0:290�. (For interpretation of the references to color in this figure legend, the reader is

referred to the web version of this article.)

Fig. 12. Large isolating neighborhoods observed in Case Ha–S1: (a) a large attracting isolating neighborhood in the shape of a thick ring (gray, red), with a repelling

isolating neighborhood in the center (dark gray, blue), in addition to an unstable neighborhood of the origin (black), observed in Class Ce . (b) A repelling four-periodic

isolating neighborhood (dark gray, red) revealing additional details on the structure of the thick ring (gray, green) in Class Ce0 . The corresponding parameter boxes are:

(a) ð201;60Þ: ½0:402,0:404� � ½0:120,0:122�, (b) ð201;55Þ: ½0:402,0:404� � ½0:110,0:112�. (For interpretation of the references to color in this figure legend, the reader is

referred to the web version of this article.)
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other cases, but they were not detected at the resolution at which
the computations were carried out.) As in the former case, the
classes in the three diagrams are labeled in a consistent way,
following the type of dynamics encountered.

For parameters in Ca, a small attracting neighborhood of the
origin is the only recurrent dynamics found. For parameters in Cb,
this neighborhood is split into a small unstable neighborhood of
the origin and a small attracting neighborhood located at some
distance from the origin. This attracting neighborhood gets larger
and in the region Cc eventually splits into a small repelling
neighborhood surrounded by an attracting neighborhood in the
shape of a ring, as shown in Fig. 14(a). In some small areas of
parameters labeled by Cc0 in Case Ha–Se, this ring is split into a
pair of five-periodic attracting and saddle-type neighborhoods, as
illustrated in Fig. 14(b). For parameters in Cd, the attracting ring
and the small repelling neighborhood inside have collided, and a
single attracting neighborhood is observed (not shown).

Summarizing, we were able to compute a comprehensive
overview of global dynamics for the entire ranges of the two
varying parameters in each of the six cases of interest. The
richness of the dynamics that we observe suggests that the
resolution of our computations is satisfactory, and the results
we obtained are meaningful. Since the resolutions we chose in the
parameters and in the phase space are at the border of precision
at which these quantities can be controlled or determined for a
real biological system, possible additional details that might be
revealed at finer resolutions would be of negligible biological
importance. The reader is referred to Luzzatto and Pilarczyk



Fig. 13. Numerical Morse decompositions that form checkered patterns (resonance) and contain (very thin) isolating neighborhoods along the coordinate axes (synchronization),

observed in Case Ha–S1 for very low values of sa. The corresponding parameter boxes are: (a) ð385;0Þ: ½0:770,0:772� � ½0:000,0:002�, (b) ð487;7Þ: ½0:974,0:976� � ½0:014,0:016�.

Fig. 14. A saddle-node configuration found in Case Ha–Se: (a) an attracting isolating neighborhood in the shape of a ring, with a small repelling neighborhood in the center,

observed in Class Cc . (b) The ring split into a pair of five-periodic saddle-type (dark gray, red) and attracting (light gray, green) neighborhoods, observed in Class Cc0 . The

corresponding parameter boxes are: (a) ð240;445Þ: ½0:480,0:482� � ½0:890,0:892�, (b) ð230;445Þ: ½0:460,0:462� � ½0:890,0:892�. (For interpretation of the references to color

in this figure legend, the reader is referred to the web version of this article.)
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(2011) for a more in-depth discussion of this issue and for a
suggestion of a theory that deals with dynamics perceived at
finite resolution.

Some specific phenomena found using the computational
method are discussed in the subsequent sections.

3.3. Periodic attractors

Periodic behavior of a system is nearly as important as an
equilibrium state. Although the population state is not constant at
a periodic cycle, it repeats with a regular periodicity, and thus
corresponds to predictable oscillations in population abundance.

The results of the computations described in Section 3.2 reveal
the presence of several continuation classes in which isolating
neighborhoods corresponding to periodic cycles were found,
many of them being attracting, often in a configuration with an
isolating neighborhood of a saddle type. Some of these instances
are plotted in Figs. 10, 11 and 14.

In some cases periodic behavior may be found in a large
continuation class, like Class (d) in Case Ha–S1 (see Figs. 9, 11).
However, periodic behavior also appears in some smaller classes
that look like isles inside a larger class, in which an isolating
neighborhood in the shape of a ring is observed instead. This
phenomenon of breaking recurrent dynamics into a pair of
unstable and stable periodic cycles is of special biological impor-
tance, because it suggests a breakdown of seemingly chaotic
behavior into a well predictable repetitive cycle.

Windows of attracting periodic orbits in bifurcation diagrams
were previously found in other discrete-time biological models such
as the two-dimensional nonlinear Leslie model investigated by
Guckenheimer et al. (1977), the two-dimensional Maynard Smith
delayed model for growth population studied by Aronson et al.
(1982), and the three-dimensional model for the dynamics of the
flour beetle Tribolium considered by Costantino et al. (1995) and
Costantino et al. (1997). For Clark’s delayed recruitment model with
Ricker-type nonlinearity, this phenomenon was observed numerically
by Botsford et al. as the parameter r was increased (Botsford, 1992,
1997; Higgins et al., 1997). However, we would like to point out that
saddle-node configurations such as those observed in Figs. 10, 11 and
14 are very difficult to detect using classical approaches.

Saddle-node configurations are common in higher dimen-
sional dynamical models in an ecological context, and a typical



Fig. 15. Numerical investigation of the averaged hydra effect in Case Ha–S1: (a) the average size of the adult population for attracting neighborhoods computed at each

parameter box. The size is illustrated with shades of gray (color in the web version of this article) according to the scale plotted below the image. (b) Parameters for which

the averaged hydra effect of relative size at least 10% was found, with shade of gray (colors in the web version of this article) indicating the relative size of this effect.
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effect is that trajectories starting near the stable manifold of a
saddle will initially move towards the saddle before moving away
along a hyperbolic orbit towards its ultimate attractor (see
Cushing et al., 1998 and references therein). As a consequence,
transients in the time series data are usually longer for some
initial population sizes.
3.4. The averaged hydra effect

Although it is much more difficult to prove the occurrence of the
hydra effect using the results discussed in this section, one can
detect some indications of such an effect by means of the analysis of
certain properties of attracting isolating neighborhoods.

We cannot measure the adult population size at an equili-
brium point, as we did in Section 2.3, because we simply do not
have well identified fixed points. Therefore, we choose to analyze
the average adult population size computed for an entire isolating
neighborhood instead. As a consequence, we talk about the
averaged hydra effect.

Note that due to the linear scale in the variables and thanks to
the uniform grid in the phase space, the average adult population
size in N can be easily computed with good accuracy by summing
the adult population sizes corresponding to the centers of all the
boxes that form N, and then dividing the result by the number of
boxes in N.

In our computations, exactly one attracting neighborhood was
found for each parameter box.1 This simplifies the situation
considerably, because if there had existed multiple attracting
isolating neighborhoods then we would have had to consider the
evolution of each of these sets separately as harvest rate is
increased, with all the subtleties coming from possible bifurca-
tions of the isolating neighborhoods.

The core feature of the hydra effect is the increase in the adult
population size in spite of an increase in harvest rate. This kind of
an effect can be perceived in a situation in which the attracting
1 Actually, in most cases in which the attracting isolating neighborhood was

touching the coordinate axes, the numerical calculations did not prove that its

image was contained in its interior, because of the points whose one of the

coordinates was 0. However, we know that for this model, the region B absorbs

every positive orbit, so the isolating neighborhood that is a minimal element with

respect to the partial order constructed for the numerical Morse decomposition, is

in fact attracting.
neighborhood is replaced by one that has a greater average adult
population size, as the harvest rate increases. We refer to
Appendix B.3 for a formal definition of the averaged hydra effect,
as well as for the definition of the size and relative size of this
effect.

The average size of the adult population computed for Cases
Ha–S1 and Ha–Se at each parameter box under consideration is
illustrated in Figs. 15(a) and 16(a), respectively, and the boxes for
which considerable averaged hydra effect was found are indicated
in Figs. 15(b) and 16(b). Results for the remaining cases are only
shown at the website (Pilarczyk, 2011). Very limited amount of
hydra effect (of relative size up to 25%) was found in Case Hj–S1,
and no hydra effect exceeding 10% was found in Case Hj–Se, which
agrees with Proposition 2.5. In Case He–S1, very small parameter
regions with the averaged hydra effect of relative size up to 38%
were found. However, in Case He–Se, considerable hydra effect
was found in the region of low harvest rate and high survival rate,
approximately corresponding to the region (d) in Fig. 9 for the
same case.

The hydra effect found in Case He–Se seemingly contradicts the
analytical results obtained in Section 2.3. However, the reason for this
difference, as well as for some other discrepancies between the
analytical and numerical results, is the fact that different definitions
of hydra effect are used in both cases. While in Proposition 2.5 an
immediate increase in the adult population size represented by the
stable positive equilibrium was considered only, here we take into
account the entire attracting isolating neighborhood, independent of
what it contains, and we look at any increase in harvest rate, possibly
a very large one. As a consequence, an increase in the average adult
population size observed in a model may be simply due to weaker
stability of the equilibrium in the direction in which the adult
population is larger, or to the fact that an isolating neighborhood
for another stable solution (a periodic orbit, for instance) observed for
some higher harvest rate (possibly a much higher one), where the
equilibrium is no longer stable, results in a higher average adult
population size. Indeed, all these cases are very much relevant from
the biological point of view, because a real system modeled by the
equations may be subject to small distortions, which are then all
accounted for in this approach. Moreover, the knowledge of a
possibility of hydra effect that occurs after a considerable increase
in harvest rate only may be important in practice, for instance, in the
case of pest control, where application of an insecticide increases
mortality in a radical manner.



Fig. 16. Numerical investigation of the averaged hydra effect in Case Ha–Se: (a) the average size of the adult population for attracting neighborhoods computed at each

parameter box. The size is illustrated with shades of gray (colors in the web version of this article) according to the scale plotted below the image. (The value greater than

1 is due to numerical overestimates.) (b) Parameters for which the averaged hydra effect of relative size at least 10% was found, with shade of gray (colors in the web

version of this article) indicating the relative size of this effect.
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Although numerical investigation of the hydra effect in the
region of instability was already done before for one-dimensional
models depending on one parameter (Abrams, 2009; Seno, 2008),
as far as we are aware, our work has been the first time that this
task was carried out in a 2-parameter setting.

3.5. Population size fluctuations and the numerical bubble effect

The isolating neighborhoods are constructed as components of
recurrent dynamics, and thus they are transitive at the resolution
at which the computations are carried out. In other words, within
the given accuracy, a transition of population from each state is
not ruled out to any other state within the same isolating
neighborhood. This either corresponds to the existence of some
exact trajectories of the modeled system (1) from each state to
the other, or some trajectories with small perturbations (within
the accuracy of computations) on the way.

Since an attracting neighborhood does not allow trajectories to
escape, the dynamics inside such a neighborhood corresponds to
a long-term behavior of a population. Such dynamics can either
be very simple, e.g., a periodic or almost periodic orbit, or may
have complicated fine structures, e.g., a chaotic attractor. Never-
theless, the entire attracting neighborhood reflects all the possible
configurations that can be reached by the population in its
evolution over time.

It is natural to use the size of an attracting neighborhood as a
means of measuring how much population size can fluctuate,
especially that this is a global attractor in our case. Note that
fluctuations in population size measured in this way reflect
changes in all the age groups, not just the total population size,
nor the adult population size alone.

The fact that our model exhibits exactly one attracting isolating
neighborhood simplifies the definitions and the discussion greatly
(see discussion on this issue in Section 3.4 and Footnote 1).

By verifying how the size of the attracting neighborhood
changes upon increase in harvest rate, one can determine how
harvesting contributes to stabilization or destabilization of the
population. If this quantity increases as harvest rate is increased,
and then decreases down to or below the previous value as
harvest rate is further increased then we encounter a phenom-
enon analogous to a bubble, as discussed in Section 2.4.

Since obviously the population stabilizes trivially as harvest
rate is increased to 1, we are only interested in the effect of a
bubble if the average adult population size in the attracting
neighborhood after stabilization is comparable to the average
adult population size in the attracting neighborhood before the
destabilization.

We refer to Appendix B.4 for a formal definition of the
numerical bubble effect which we suggest for this analysis, as
well as for the definition of the size and relative size of this effect.

The size of the attracting neighborhood computed for Cases
Ha–S1 and Ha–Se at each parameter box under consideration is
illustrated in Figs. 17(a) and 18(a), respectively, and the para-
meters for which the numerical bubble effect was found are
indicated in Figs. 17(b) and 18(b). Results for the remaining cases
are only shown at the website (Pilarczyk, 2011).

In most situations, the numerical bubble effect was found
when an attractor that co-exists with one or more unstable
isolating neighborhoods collides with them to become a large
attractor, which in turn gradually decreases in size as harvest rate
is increased. This scenario explains the existence of the numerical
bubble effect in Case Hj, where no bubble effect concerning the
equilibrium takes place, as stated in Proposition 2.6.

The ‘‘classical’’ bubble effect that agrees with the scenario
outlined in Section 2.4 was observed in Cases Ha–Se and He–Se in
the top 1/3 area of the diagram, approximately. However, for the
parameters in the top left corner, no numerical bubble effect was
spotted due to the fact that the re-gained stability of the
equilibrium is weaker, which results in the size of the isolating
neighborhood staying above the original one.

The disagreements found between the analytical and numer-
ical results are due to the differences in the definitions. First of all,
Definition 2.7 is stated for a fixed parameter sa and takes into
consideration the entire range of all harvest rates possible. As a
consequence, the regions in which the analytically found bubble
effect occurs are marked as horizontal stripes in Figs. 4 and 6. The
numerical bubble effect, on the contrary, is defined for each
parameter point ðha,saÞ or ðhj,saÞ separately, and considers harvest
rates limited to those higher than ha (or hj, respectively). There-
fore, regions of parameters for which a numerical bubble effect
was found have more complicated shapes than those coming
from the analytical calculations. Secondly, instead of considering
the existence of a stable positive equilibrium, the numerical
bubble effect is based upon the size of the attracting neighbor-
hood, which depends on many factors, including the ‘‘strength’’ of
stability of the stable equilibrium whenever it exists.



Fig. 18. Numerical investigation of population size fluctuations in Case Ha–Se: (a) the size of the attracting neighborhood (in boxes), indicated according to the scale

shown below the image. (b) Parameters for which the numerical bubble effect of relative size greater than 100% was found and the average adult population size after the

stabilization did not drop below 75% of the original size, with shade of gray (color in the web version of this article) indicating the size of this effect. The top value of 8931%

corresponds to a nearly 90-fold increase in the size of the attracting neighborhood.

Fig. 17. Numerical investigation of population size fluctuations in Case Ha–S1: (a) the size of the attracting neighborhood (in boxes), indicated according to the scale shown

below the image. (b) Parameters for which the numerical bubble effect of relative size greater than 100% was found and the average adult population size after the

stabilization did not drop below 75% of the original size, with shade of gray (color in the web version of this article) indicating the size of this effect. The top value of

6141%, corresponds to an over 61-fold increase in the size of the attracting neighborhood.
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3.6. Synchronization and resonance

The phenomenon of presence of exactly one age class of a
population at a time is called synchronization. It indicates that the
age transitions of all individuals are synchronized across the entire
population, thus the name. This phenomenon is mathematically
characterized by an orbit whose points have exactly one positive
coordinate, which is then called a synchronous orbit. Synchronous
phenomena are observed in some natural insect populations, for
example, if there is a single reproductive age class and the adults die
after having laid eggs. Periodical cicadas, inhabiting the eastern
United States, are typical examples of such a case (May, 1979).
A question as to whether a given model admits synchronous orbits
has recently drawn some attention due to its biological importance;
see, e.g., Cushing (2003) and Kon (2006).

If sa¼0 then the system (1) simplifies to

Anþ1 ¼ ð1�hjÞsjJn

Jnþ1 ¼ gðð1�haÞAnÞ ð14Þ
and thus Eq. (5) for the adult population size becomes

Anþ1 ¼ ð1�hjÞsjgðð1�haÞAn�1Þ ð15Þ

If fkjg,fljg,j¼ 1;3,5, . . ., are periodic solutions (including fixed
points) of Eq. (15) then the interlaced periodic orbit fk1,l1,k3,
l3,k5,l5, . . .g is also a solution of (15). Since in our model gð0Þ ¼ 0,
the trivial orbit lj � 0 is also a solution to (15), which can be
combined with a non-zero fixed point or a non-trivial periodic
orbit of (15), if any, and give rise to a synchronous periodic orbit.
This explains the existence of the periodic isolating neighbor-
hoods located along the boundary of the positive cone for low
values of sa, including those in Fig. 13.

Alongside with the synchronous orbits, in the same phase
space diagrams, one can also see orbits created by other combi-
nations of periodic solutions of (15), which also inherit the
stability of those periodic solutions in the corresponding
directions. Such orbits very much resemble the phenomenon of
resonance between age classes, and was studied, e.g., by Liz (2009,
see Fig. 1).
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4. Conclusions and final remarks

Recent theoretical and empirical studies have revealed that an
induced increase in mortality in a population may lead to
unexpected and sometimes undesirable consequences. On the
one hand, the phenomenon of an increase in population abun-
dance in response to an increase in mortality (the hydra effect)
shows that control efforts of nuisance and invasive species
require careful consideration (Abrams, 2009; Zipkin et al., 2008,
2009) and a good understanding of the underlying population
dynamics (Pardini et al., 2009). On the other hand, fishing or
harvesting strategies should take into account the possibility of
increasing variability in population abundance, thus leading to
elevated complexity of the dynamics and the risk of extinction
(Anderson et al., 2008; Costantino et al., 1997; Hsieh et al., 2006;
Pardini et al., 2009; Zipkin et al., 2009).

Since the presence of these phenomena, as well as their
strength, depends strongly on the relevant parameters of the
model (survivorship rates of the different age classes, growth
rates) and the harvesting strategies, a thorough characterization
of the dynamics in response to an increase in mortality is
necessary. The main aim of this paper was to address this task
for a simple stage-structured discrete-time population model
proposed in Zipkin et al. (2009), considering different harvesting
strategies, depending on a selection of the classes of individuals
from the population to be targeted.

The two substantially different methodologies that were
applied to the analysis of the population model under considera-
tion have provided a comprehensive overview of the dynamics of
the system. The results obtained with these methods complement
each other, and they agree on most of the overlapping part.

We rigorously analyzed the hydra effect, understood as an
increase in population size represented by a stable equilibrium in
response to an increase in the harvest rate. The analytical
approach to this question in the parameter ranges where there
exists a stable equilibrium was complemented by approximate
numerical computation of the parameter ranges for which the
averaged hydra effect occurs.

Moreover, we rigorously proved that increasing adult mortal-
ity can produce a bubble, defined as a destabilization and
re-stabilization of the positive equilibrium upon subsequent
increases in the harvest rate. We also proved that this scenario
is not possible in the strategy of juvenile-only mortality. We
studied an analogous phenomenon in the numerical context, and
we found parameters for which an increase in the fluctuations of
population size occurs as a result of increased harvesting,
followed by a return to the original value upon further harvesting
increase. We found and discussed some differences from the
results of the analytical study.

Additionally, the numerical method provided information
about attracting periodic cycles appearing in some parameter
ranges of unstable positive equilibrium.

As a general conclusion regarding the methodology of investiga-
tion of dynamics, we have demonstrated that although the impor-
tance of the analytical approach is undeniable and provides rigorous
results about equilibria of the system, it turns out that using modern
numerical methods may provide considerable amount of additional
information, in part rigorous (like the computed decompositions of
the phase space) and in part heuristic (like the averaged hydra effect
and the numerical bubble effect).

We remark that the results obtained in Section 2 can be seen
as a rigorous analysis of the effects of harvesting in the dynamics
of the celebrated delayed Clark (1976, 1990) model used in
fisheries.

Regarding the implications of our study in fisheries manage-
ment and in control of plagues, some words of caution are in
order. In particular, our study of the averaged hydra effect in
Section 3.4 shows that the average of the population size is
greater for values of the harvest rate close to the border of
collapse, especially if adult survivorship rates are low. This
conclusion is in agreement with previous results for other
population models (Abrams, 2009; Abrams and Quince, 2005;
Seno, 2008), and strongly indicates that the possibility of the
hydra effect must not be used to justify greater fishing. Another
implication of the counterintuitive effects of harvesting discussed
in this paper is that, in control of plagues, culling may not be
effective until removal rates are very high (Pardini et al., 2009;
Zipkin et al., 2009).

For this paper, E. Liz chose the subject and conducted the analysis
of stability of equilibria using analytical methods (Section 2 and
Appendix A), P. Pilarczyk did the numerical analysis of global
dynamics using software of his authorship (Section 3 and Appendix
B), and both authors organized the material and edited the paper
together.
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Appendix A. Proofs of propositions in Section 2

This section gathers the technical proofs of the results of the
analysis conducted in Section 2.

A.1. Proof of Proposition 2.1

We will apply some results from Gy +ori and Trofimchuk (2000).
To do that, let us observe that Eq. (6) can be written in the form

xnþ1 ¼ ð1�dÞxnþpxn�1f 1ðxn�1Þ

where f 1ðxÞ ¼ ð1�haÞerð1�ð1�haÞxÞ, d¼ 1�ð1�haÞsa, and p¼ ð1�hjÞsj.
Thus, condition rrr0 is equivalent to pf 1ð0Þrd. Since f1 is

strictly decreasing on ð0,1Þ, Corollary 12 in Gy +ori and Trofimchuk
(2000) ensures that all solutions of (6) converge to 0 if rrr0.

Since Ka0 is a solution of (8) if and only if ð1�haÞK ¼ 1�r0=r,
it is clear that there exists a unique positive solution K of (8) if and
only if r4r0, and the expression of K is given by (9). On the other
hand, Corollary 10 in Gy +ori and Trofimchuk (2000) states that K is
globally asymptotically stable if F 0ðKÞZ0, where FðxÞ ¼ xf 1ðxÞ.
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Since F 0ðxÞZ0 if and only if xA ½0;1=ðrð1�haÞÞ�, we get that

F 0ðKÞZ0()ð1�haÞKr
1

r

Since, by (6), ð1�haÞK ¼ 1�r0=r, it follows that

F 0ðKÞZ0()1�
r0

r
r

1

r
()r�r0r1()rrr0þ1 &
A.2. Proof of Proposition 2.3

The linearized equation of (6) about x¼K is

ynþ1 ¼ ð1�haÞsaynþð1�hjÞsjð1�haÞf
0
ðð1�haÞKÞyn�1 ðA:1Þ

where f ðxÞ ¼ xerð1�xÞ. Hence, the associated characteristic equation
is

qðyÞ ¼ y2�ð1�haÞsay�ð1�hjÞsjð1�haÞf
0
ðð1�haÞKÞ ¼ 0

In view of Proposition 2.1, we can restrict ourselves to the case
f 0ðð1�haÞKÞo0. It is easy to check that all roots of q(x) remain in
the interior of the unit disk if and only if bo1, where

b¼�ð1�hjÞsjð1�haÞf
0
ðð1�haÞKÞ40

Direct computations show that bo1 if and only if the second
inequality in (10) holds. We recall that the first one is necessary to
ensure the existence of K. The conclusion of Proposition 2.3
follows from the linearized stability result (see, e.g., Elaydi,
2005, Theorem 5.15). &

A.3. Proof of Proposition 2.5

The first inequality in (11) is equivalent to the condition
@K=@ha40 in Case Ha, while the second inequality is the neces-
sary condition for the asymptotic stability of K.

In Case He, the condition @K=@ha40 leads to

r4r0þ
2�sað1�haÞ

1�sað1�haÞ

But this means that K is unstable. Thus, there is no observable
hydra effect in the adult population.

Finally, in Case Hj, @K=@hj ¼�1=ðrð1�hjÞÞo0, so an increase in
harvesting always leads to a decrease in the size of the equili-
brium K. &

A.4. Proof of Proposition 2.6

By Proposition 2.3, we know that, for a fixed r4r0, the positive
equilibrium K of (6) changes its asymptotic stability when

r¼ r0þ
2�sað1�haÞ

1�sað1�haÞ
ðA:2Þ

where, since ha¼0, r0 is defined as

r0 ¼ ln
1�sa

ð1�hjÞsj

� �

Thus, the border of the asymptotic stability region is given by the
equation

r¼ ln
1�sa

ð1�hjÞsj

� �
þ

2�sa

1�sa
ðA:3Þ

In Case S1, Eq. (A.3) simplifies to

2�sa

1�sa
¼ rþ lnð1�hjÞ
This equation allows us to obtain the explicit expression

sa ¼ 1�
1

r�1þ lnð1�hjÞ
:¼ SðhjÞ

so that K is unstable if saoSðhjÞ and it is asymptotically stable if
sa4SðhjÞ. Since

@S
@hj
¼
�ð1�saÞ

2

1�hj
o0

increasing hj cannot destabilize a stable equilibrium K. See
Fig. 2(a).

Now consider Case Se (sj¼sa). Eq. (A.3) becomes

r¼
2�sa

1�sa
þ ln

1�sa

ð1�hjÞsa

� �

This equation defines hj as a function of sa in an explicit form:

hj ¼HðsaÞ ¼ 1�
1�sa

sa
e1�rþ1=ð1�saÞ ðA:4Þ

It is easy to check that the function H has a unique critical point in
ð0;1Þ at sa ¼ 1=2, which is a local maximum. Since

Hð1=2Þ ¼ 1�e3�r 40()r43

it follows that the positive equilibrium K is asymptotically stable
whenever it exists (i.e., r0or) if rr3. If r43, then K is asympto-
tically stable if hj4HðsaÞ, and is unstable if hjoHðsaÞ, where HðsaÞ

was defined in (A.4). This means that the positive equilibrium
cannot be destabilized as hj is increased; actually, an increase in
harvesting of juveniles tends to stabilize the positive equilibrium
(see Fig. 2(b)). &

A.5. Proof of Proposition 2.8

As in the proof of Proposition 2.6, recall that, for a fixed r4r0,
the positive equilibrium K of (6) changes its asymptotic stability
when (A.2) holds.

Let us consider the function

Gðsa,haÞ ¼
2�sað1�haÞ

1�sað1�haÞ
þr0�r ðA:5Þ

An application of the Implicit Function Theorem allows us to
ensure that Eq. (A.2) defines sa as a smooth function of ha and

sa
0ðhaÞ ¼ �

@G=@ha

@G=@sa
ðA:6Þ

Let us begin with the proof of Case Ha–S1. In this case,

r0 ¼ ln
1�ð1�haÞsa

ð1�haÞð1�saÞ

� �

and (A.2) becomes

2�sað1�haÞ

1�sað1�haÞ
þ ln

1�ð1�haÞsa

ð1�haÞð1�saÞ

� �
¼ r ðA:7Þ

We first prove that, for every fixed haA ½0;1Þ, there exists at most
one value of saA ½0;1� for which (A.7) holds. Indeed, let us fix
haA ½0;1Þ. We introduce the variable z¼ 1�sað1�haÞ, saA ½0;1�.
With this notation, (A.7) is equivalent to

g1ðzÞ :¼
1

z
þ ln

z

z�ha

� �
¼ r�1 ðA:8Þ

Since

g1
0ðzÞ ¼

�1

z2
þ

1

z
�

1

z�ha

and 0oz�harz, it follows that g1 is decreasing on ð0;1�. It is
hence clear that Eq. (A.8) has at most one solution zðhaÞ. Therefore,
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Fig. A1. Illustration for the proof of Proposition 2.6: boundaries of the region of

stability for Eq. (6) with r¼4, hj¼0 and sj¼sa.
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there is at most one solution of (A.7) given by

saðhaÞ ¼
1�zðhaÞ

1�ha

We notice that, for ha¼0, this solution exists and it is given by

sað0Þ ¼ 1�zð0Þ ¼ 1�
1

r�1
¼

r�2

r�1

On the other hand, (A.6) leads to

sa
0ðhaÞ ¼

ð1�saÞ 2ð1�haÞsa�1ð Þ

ð1�haÞð1�saÞþð1�haÞsah2
a

The denominator of this fraction is always positive, and hence
sa
0ðhaÞo0 if and only if 2sað1�haÞo1.

In particular, sa
0ð0Þr0 implies that sa

0ðhaÞo0 for all haAð0;1Þ.
In this case, there is no bubble, because sa is a one-to-one function
of ha. Thus we need sa

0ð0Þ40, which is equivalent to sað0Þ41=2.
Notice that saðhaÞ is always decreasing at ha ¼ 1�e2�r , since this
corresponds to the case sa¼0, and then

sa
0ð1�e2�rÞ ¼

�1

ð1�haÞ
o0

Since sa
0ðhaÞ ¼ 0 only if ha ¼ ha :¼ 1�1=ð2saÞ, the curve saðhaÞ is

unimodal when sað0Þ41=2. This means that there are two points
where the stability of K changes if and only if saAðS1ðrÞ,S2ðrÞÞ,
where

S1ðrÞ ¼ sað0Þ ¼
r�2

r�1

S2ðrÞ ¼ saðha Þ ¼
er�3

1þer�3

To complete the proof, we notice that a necessary condition for
the existence of a bubble is sað0Þ41=2, which is equivalent to
r43.

Next consider Case Ha–Se. The expression (A.2) turns into

2�sað1�haÞ

1�sað1�haÞ
þ ln

1�ð1�haÞsa

ð1�haÞsa

� �
¼ r ðA:9Þ

As in the previous case, we study the number of possible solutions
of (A.9) for every fixed haA ½0;1Þ. In this case, the change of
variables z¼ 1�sað1�haÞ transforms (A.9) into

g2ðzÞ :¼
1

z
þ ln

z

1�z

� �
¼ r�1 ðA:10Þ

Since g2
0ðzÞ ¼ ð2z�1Þ=ðz2ð1�zÞÞ, it follows that g2

0ðzÞo0 for
zAð0;1=2Þ, g2

0ðzÞ40 for zAð1=2;1Þ, and there is a global mini-
mum g2ð1=2Þ ¼ 2. Moreover, limz-0þ g2ðzÞ ¼ limz-1�g2ðzÞ ¼1.
Thus, (A.10) has two solutions z1ðhaÞ, z2ðhaÞ in ð0;1Þ if r43, and
no solution if ro3. Therefore, for r43, Eq. (A.9) has at most two
solutions

siðhaÞ ¼
1�ziðhaÞ

1�ha
, i¼ 1;2

For ha¼0, these solutions exist and are defined by sið0Þ ¼ 1�zið0Þ,
i¼ 1;2. Notice that s1ð0Þ,s2ð0Þ are the solutions of (13) in ð0;1Þ.

Next consider (A.6), which, after simplification, boils down to

sa
0ðhaÞ ¼

sa

1�ha
ðA:11Þ

Thus, it follows that sa is an increasing function of ha. Moreover,
its simple expression allows us to integrate (A.11) and obtain

saðhaÞ ¼
sað0Þ

1�ha
Hence, for every r43, the solutions of Eq. (A.9) in ½0;1� � ½0;1�
are defined by the two increasing curves

s1ðhaÞ ¼
s1ð0Þ

1�ha

s2ðhaÞ ¼
s2ð0Þ

1�ha

where s1ð0Þos2ð0Þ are the solutions of (13) in ð0;1Þ.
Notice that

siðhaÞ ¼ 1()sið0Þ ¼ 1�ha()ha ¼ 1�sið0ÞAð0;1Þ

for i¼1,2. It follows that the graphs of s1 and s2 intersect the line
sa¼1 before leaving the square ½0;1� � ½0;1�. Therefore, it is clear
that there is a bubble as ha is increased if and only if r43 and
saAðs2ð0Þ,1�. See Fig. A1 for a representation of the graphs of s1ðhaÞ

and s2ðhaÞ in the case r¼4. &
Appendix B. Technical details and remarks for Section 3

This appendix gathers various technical details of and remarks
on the computational method used in Section 3, as well as some
notes on the interpretation of the results of the computations.

B.1. Technical description of the numerical method

In this section we introduce the definitions and terminology
necessary to explain the numerical method applied in Section 3.

Let f :X-X be a continuous map on a topological space X. A set
S� X is an invariant set with respect to f if f ðSÞ ¼ S. The invariant

part of a set N� X is InvN :¼
S
fS�N : f ðSÞ ¼ Sg. The set N is called

an isolating neighborhood if N is compact and InvN� intN, where
intN denotes the interior of N. S is an isolated invariant set if
S¼ InvN for some isolating neighborhood N.

Any sequence fxkgkAZ of points xkAX such that f ðxkÞ ¼ xkþ1 is
called a complete orbit (or just an orbit for short). An analogous
sequence indexed by the non-negative integers only is called a
positive orbit.
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A Morse decomposition (see Conley, 1978) of X with respect to f

is a finite collection of disjoint isolated invariant sets (called
Morse sets) S1, . . . ,Sp with a strict partial ordering ! on the index
set f1, . . . ,pg such that for every xAX\ðS1 [ � � � [ SpÞ and for every
complete orbit fgkgkAZ such that g0 ¼ x there exist indices i!j

such that gk-Si as k-1 and gk-Sj as k-�1.
A rectangular set is a product of compact intervals. Given a

rectangular set R¼ ½a1,a1þd1� � � � � � ½an,anþdn� �Rn and integer
numbers s1, . . . ,sn40, we call the following set an s1 � � � � � sn

uniform rectangular grid in R:

Gs1 ,...,sn ðRÞ :¼
Yn

i ¼ 1

aiþ
ji

si
di,aiþ

jiþ1

si
di

� �
:

(

jiAf0, . . . ,si�1g,iAf1, . . . ,ng
�

The individual boxes in the grid are referred to by the n-tuples
ðj1, . . . ,jnÞ for convenience.

Consider an m-parameter family of maps on Rn:

f :Rn
�Rm

3 ðx,lÞ/f lðxÞARn
ðB:1Þ

Let B�Rn and L�Rm be rectangular sets.
Let d1, . . . ,dn40 and s1, . . . ,sm40 be integer numbers, taken

by our computations as d1 :¼ d2 :¼ 210
¼ 1024 (with n¼2) and s1 :

¼ s2 :¼ 500 (with m¼2). In the computational method introduced
by Arai et al. (2009), for each parameter box L�L in the s1 �

� � � � sm uniform rectangular grid in L, a rigorous outer estimate
of the map f l valid for all the parameters lAL is automatically
computed using interval arithmetic, on each of the boxes in the
d1 � � � � � dn uniform rectangular grid in B. Then a family of sets
N1, . . . ,Np � B is constructed with some ordering ! on f1, . . . ,pg,
such that for each lAL, each set Ni, i¼ 1, . . . ,p, is an isolating
neighborhood in B, and whenever a possibility of the existence of
an orbit from Ni to Nj is detected, the relation Nj!Ni is set. The
family fSi :¼ InvNi : i¼ 1, . . . ,pg forms a Morse decomposition of
InvB with respect to f l with the ordering !. The sets Ni are
constructed as unions of closed boxes with respect to the d1 �

� � � � dn uniform rectangular grid in B. The collection N1, . . . ,Np is
called a numerical Morse decomposition, and the isolating neigh-
borhoods N1, . . . ,Np are called numerical Morse sets.

A numerical Morse decomposition can be schematically
depicted as a directed graph whose vertices correspond to the
Morse sets and edges indicate possible connecting orbits between
them. In order to simplify such a representation, one can plot the
transitive reduction of this graph, as is done in the presentation of
the results at the website (Pilarczyk, 2011).

B.2. The Conley index

The Conley index, introduced by Conley (1978) for flows, and
generalized, e.g., by Mrozek (1990) and Szymczak (1995) to discrete
semidynamical systems induced by continuous maps, is a topologi-
cal invariant that provides information about isolated invariant sets.
Its homological version is algorithmically computable (to certain
extent) from an isolating neighborhood and an outer estimate of the
map, like those described in Appendix B.1, and is thus useful in this
type of computations. This index takes into account the exit set of an
isolating neighborhood N, which is the closure of f ðNÞ\N, and thus
reflects the stability of what N contains.

The definition of the homological Conley index is based upon an
index pair, and, roughly speaking, consists of the relative homology
of the index pair, as well as the map induced in relative homology,
further called the index map. This data may be represented as a finite
sequence of finitely generated groups, e.g., ðZ,0,Z2

Þ, together with
the images of homology generators by the index map, expressed as
combinations of homology generators, at each level of gradation
separately. Since the actual Conley index involves additional reduc-
tion (or otherwise it depends on the index pair instead of being an
invariant of the isolated invariant set), and the reduced canonical
form seems to be very hard to compute, the non-zero eigenvalues of
the index map may be used as a simplified and reliable invariant.

For each isolating neighborhood N computed with the method
described in Appendix B.1, an index pair can be easily constructed
by taking N and the part of the forward image of N which sticks
out of N, provided that this image and also its further image are
both fully contained in the phase space B. Otherwise, it is
unknown whether N is an isolating neighborhood in Rn, and then
the Conley index cannot be computed. This situation typically
happens if N is too close to the boundary of B. For example, in our
computations it was the case each time with the neighborhood of
the origin, and also with the synchronous orbits discussed in
Section 3.6 (see also Fig. 13).

The knowledge of the Conley index of an isolating neighbor-
hood N allows to draw conclusions on the invariant part of N. In
particular, if the index of N is nontrivial then InvNa|. The index
can also be used to prove the existence of periodic orbits or more
complicated dynamics.

For the purpose of this paper, the Conley index and the relation
of f ðNÞ with respect to N is used in order to classify each
computed isolating neighborhood N on the basis of stability. We
say that an isolating neighborhood N is attracting if f ðNÞ �N, that
is, if the image of N is entirely contained in N. One can prove that
then N contains a local attractor, which justifies this terminology.
Otherwise, if the image of N is not fully contained in N, we say
that N is unstable. If N has the Conley index of a hyperbolic fixed
point or a hyperbolic periodic orbit with d-dimensional unstable
manifold then we say that N is of the type of the corresponding
point or orbit. For a typical system, it is likely that N indeed
contains a periodic orbit of the expected period, but—since the
Conley index is a purely topological tool and does not provide
information about derivatives—the actual stability of such an
orbit may be different, and the dynamics in N may turn out to be
much more complicated than seen from outside (that is, from the
perspective of the isolating neighborhood). If N�Rn is of the type
of a fixed point or a periodic orbit with n-dimensional unstable
manifold then we say that N is repelling.

Since detailed introduction to the Conley index is beyond the
scope of this paper and requires certain knowledge of algebraic
topology, we refer the reader to Conley (1978), Mrozek (1990),
and Szymczak (1995) for more details on the Conley index, and to
Mischaikow et al. (2005) and Pilarczyk and Stolot (2008) and
references therein for discussion of some technical aspects of the
computation of this index in the way in which it was implemen-
ted in the software used in Section 3. Brief explanation on how to
interpret the information on the Conley indices of isolating
neighborhoods in the online presentation (Pilarczyk, 2011) of
the results can also be found in Arai et al. (2009).

B.3. Definition of the averaged hydra effect

The definition of the averaged hydra effect discussed in Section
3.4 can be formalized as follows.

Let iAf1, . . . ,mg be an index of a harvest rate parameter in the
system (B.1). Let l¼ ðl1, . . . ,lmÞARm. We say that the system (B.1)
experiences the averaged hydra effect at resolutionR at the parameter

l as li is increased if the average adult population size p in the
attracting neighborhood N computed at a parameter box b contain-
ing l is smaller than the average adult population size p0 in the
attracting neighborhood N0 computed for another parameter box b0

containing l0 ¼ ðl1, . . . ,l0i, . . . ,lmÞ, where l0i4li, provided that the
numerical Morse decomposition computed at the parameter box b

and at b0 has a unique attracting neighborhood.
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The maximal difference p0�p over all valid l0 and the corre-
sponding quotient ðp0�pÞ=p are called, respectively, the size and
the relative size of the averaged hydra effect.

B.4. Definition of the numerical bubble effect

The definition of the numerical bubble effect discussed in
Section 3.5 can be formalized as follows.

Let iAf1, . . . ,mg be an index of a harvest rate parameter in the
system (B.1). Let l¼ ðl1, . . . ,lmÞARm. We say that the adult
population in the system (B.1) experiences the numerical bubble

effect at resolution R at the parameter l as li is increased if the
volume v of the attracting neighborhood N computed at a
parameter box b containing l is smaller than the volume v0 of
the attracting neighborhood N0 computed for another parameter
box b0 containing l0 ¼ ðl1, . . . ,l0i, . . . ,lmÞ, where l0i4li, and greater
than or equal to the volume v00 of the attracting neighborhood N00

computed for yet another parameter box b00 containing
l00 ¼ ðl1, . . . ,l00i , . . . ,lmÞ, where l00i 4l0i, provided that the numerical
Morse decomposition computed at each of the parameter boxes b,
b0 and b00 has a unique attracting neighborhood, and additionally
the average adult population size p00 in N00 is at least as large as a
certain percentage of the average adult population size p in N (the
actual percentage threshold depends on a particular application,
and we set it to 75% for the model considered in this paper).

The maximal difference v0�v over all valid pairs ðl0,l00Þ and the
corresponding quotient ðv0�vÞ=v are called, respectively, the size

and the relative size of the numerical bubble effect.

References

Abrams, P.A., 2009. When does greater mortality increase population size? The
long story and diverse mechanisms underlying the hydra effect. Ecol. Lett. 12,
462–474.

Abrams, P.A., Quince, C., 2005. The impact of mortality in a predator population
size and stability in systems with stage-structured prey. Theor. Popul. Biol. 68,
253–266.

Ambika, G., Sujatha, N.V., 2000. Bubbling and bistability in two parameter discrete
systems. Pramana-J. Phys. 54, 751–761.

Anderson, C.N.K., Hsieh, C.H., Sandin, S.A., Hewitt, R., Hollowed, A., Beddington, J.,
May, R.M., Sugihara, G., 2008. Why fishing magnifies fluctuations in fish
abundance. Nature 452, 835–839.

Arai, Z., Kalies, W., Kokubu, H., Mischaikow, K., Oka, H., Pilarczyk, P., 2009. A
database schema for the analysis of global dynamics of multiparameter
systems. SIAM J. Appl. Dyn. Syst. 8, 757–789.

Aronson, D.G., Chory, M.A., Hall, G.R., McGehee, R.P., 1982. Bifurcations from an
invariant circle for two-parameter families of maps of the plane: a computer-
assisted study. Commun. Math. Phys. 83, 303–354.

Beddington, J.R., May, R.M., 1977. Harvesting natural populations in a randomly
fluctuating environment. Science 197, 463–465.

Bier, M., Bountis, T.C., 1984. Reemerging Feigenbaum trees in dynamical systems.
Phys. Lett. A 104, 239–244.

Botsford, L.W., 1992. Further analysis of Clark’s delayed recruitment model. Bull.
Math. Biol. 54, 275–293.

Botsford, L.W., 1997. Dynamics of populations with density-dependent recruit-
ment and age structure. In: Tuljapurkar, S., Caswell, H. (Eds.), Structured-
Population Models in Marine, Terrestrial, and Freshwater Systems, Population
and Community Biology Series, vol. 18, Chapman & Hall, New York,
pp 371–408.

Clark, C.W., 1976. A delayed recruitment model of population dynamics with an
application to baleen whale populations. J. Math. Biol. 3, 381–391.

Clark, C.W., 1990. Mathematical Bioeconomics: The Optimal Management of
Renewable Resources, second ed. John Wiley & Sons, Hoboken, New Jersey.

Conley, C., 1978. Isolated Invariant Sets and the Morse Index. American Mathe-
matical Society, Providence, RI.

Costantino, R.F., Cushing, J.M., Dennis, B., Desharnais, R.A., 1995. Experimentally
induced transitions in the dynamic behaviour of insect populations. Nature
375, 227–230.

Costantino, R.F., Desharnais, R.A., Cushing, J.M., Dennis, B., 1997. Chaotic dynamics
in an insect population. Science 275, 389–391.

Cushing, J.M., 2003. Cycle chains and the LPA model. J. Differ. Equations Appl. 9,
655–670.
Cushing, J.M., Dennis, B., Desharnais, R.A., Costantino, R.F., 1998. Moving towards
an unstable equilibrium: saddle nodes in population systems. J. Anim. Ecol. 67,
298–306.

De Roos, A.M., Schellekens, T., Van Kooten, T., Van De Wolfshaar, K., Claessen, D.,
Persson, L., 2007. Food-dependent growth leads to overcompensation in stage-
specific biomass when mortality increases: the influence of maturation versus
reproduction regulation. Am. Nat. 170, E59–E76.

Elaydi, S., 2005. An Introduction to Difference Equations, third ed. Springer Verlag,
New York.

El-Morshedy, H.A., Liz, E., 2006. Globally attracting fixed points in higher order
discrete population models. J. Math. Biol. 53, 365–384.
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