Sesión 3. Esquemas numéricos en OpenFOAM

E. Martín¹, M. Meis^{1,2} y F. Varas¹

¹Univ. de Vigo y ²Vicus Desarrollos Tecnológicos

Dinámica de fluidos computacional con OpenFOAM 18–20 de Junio de 2014

Proyecto CloudPYME

El proyecto CloudPYME (ID 0682_CLOUDPYME2_1_E) está cofinanciado por la Comisión Europea a través del Fondo Europeo de Desarrollo Regional (FEDER), dentro de la tercera convocatoria de proyectos del Programa Operativo de Cooperación Transfronteriza España—Portugal 2007–2013 (POCTEP).

Esquemas numéricos en OpenFOAM

Discretización numérica

- discretización espacial y temporal
 - discretización espacial
 - tratamiento de términos convectivos
 - discretización temporal
- algoritmos globales de resolución
 - SIMPLE
 - PISO
- resolución de sistemas lineales

Outline

- Discretización espacial y temporal
- Algoritmos numéricos de resolución
- Resolución de sistemas lineales

Plan

- Discretización espacial y temporal
- Algoritmos numéricos de resolución
- Resolución de sistemas lineales

Formulación de modelos

Ecuación de conservación genérica (forma diferencial)

$$\underbrace{\frac{\partial}{\partial t}(\rho\Phi)}_{\text{acumulación}} + \underbrace{\text{div}(\rho\vec{U}\Phi)}_{\text{convección}} - \underbrace{\text{div}(\rho\Gamma_{\Phi}\vec{\nabla}\Phi)}_{\text{difusión}} = \underbrace{S(\Phi)}_{\text{fuente}}$$

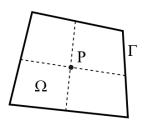
Formulación integral: balance sobre volumen de control V

$$\frac{d}{dt} \int_{V} \rho \Phi dV + \int_{\partial V} \rho \vec{U} \Phi \cdot d\vec{S} - \int_{\partial V} \rho \Gamma_{\Phi} \vec{\nabla} \Phi \cdot d\vec{S} = \int_{V} S(\Phi) dV$$

Discretización mediante volúmenes finitos

Formulación de balance sobre celda Ω

$$\frac{d}{dt} \int_{\Omega} \rho \Phi dV + \int_{\Gamma} \rho \vec{U} \Phi \cdot d\vec{S} - \int_{\Gamma} \rho \Gamma_{\Phi} \vec{\nabla} \Phi \cdot d\vec{S} = \int_{\Omega} S(\Phi) dV$$

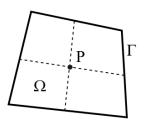


Discretización mediante volúmenes finitos

Aproximación mediante volúmenes finitos

A partir de aproximaciones de Φ en P se debe obtener:

- aproximación de $\int_{\Omega} F(\Phi) dV$
- aproximación de $\int_{\Gamma} \vec{G}(\Phi) \cdot d\vec{S}$

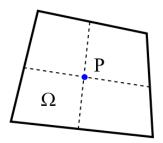


Integración sobre celdas

Aproximación de integral sobre celda Ω

$$F(\vec{x}) = F_P + (\vec{\nabla}F)_P \cdot (\vec{x} - \vec{x}_P) + O(||\vec{x} - \vec{x}_P||^2)$$

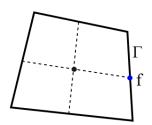
$$\int_{\Omega} F d\Omega \simeq \int_{\Omega} (F_P + (\vec{\nabla}F)_P \cdot (\vec{x} - \vec{x}_P)) d\Omega = F_P V_P$$



Integración sobre caras

Aproximación de integral sobre cara Γ

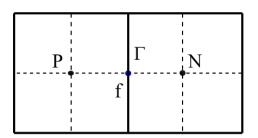
$$ec{G}(ec{x}) = ec{G}_f + (ec{
abla} ec{G})_f (ec{x} - ec{x}_f) + O(||ec{x} - ec{x}_f||^2) \ \int_{\Gamma} ec{G} \cdot dec{S} \simeq \int_{\Gamma} (ec{G}_f + (ec{
abla} ec{G})_f (ec{x} - ec{x}_f)) \cdot dec{S} = ec{G}_f \cdot ec{S}_f$$



Aproximación de términos difusivos

Cálculo de flujo difusivo

$$\int_{\Gamma}
ho \Gamma_{\Phi} \vec{
abla} \Phi \cdot d\vec{S} \simeq (
ho \Gamma_{\Phi})_f (\vec{
abla} \Phi)_f \cdot \vec{S}_f$$
 $(\vec{
abla} \Phi)_f \cdot \vec{S}_f \simeq |\vec{S}_f| rac{\Phi_N - \Phi_P}{|\vec{d}|}$

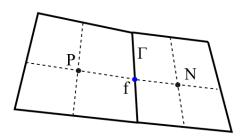


Aproximación de términos difusivos

Cálculo de flujo difusivo (malla general)

$$\int_{\Gamma} \rho \Gamma_{\Phi} \vec{\nabla} \Phi \cdot d\vec{S} \simeq (\rho \Gamma_{\Phi})_f (\vec{\nabla} \Phi)_f \cdot \vec{S}_f$$

$$(\vec{\nabla}\Phi)_f = f_X(\vec{\nabla}\Phi)_P + (1-f_X)(\vec{\nabla}\Phi)_N \quad \text{con} \quad (\vec{\nabla}\Phi)_P \simeq \frac{1}{V_P} \sum_f \Phi_f \vec{\mathcal{S}}_f$$

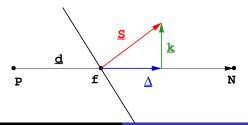


Aproximación de términos difusivos

Implementación práctica

- Esquema anterior produce stencil grande (matrices menos huecas y mayor consumo de memoria)
- En práctica se introducen correcciones

$$(\vec{\nabla}\Phi)_f \cdot \vec{S}_f = \underbrace{\vec{\Delta} \cdot (\vec{\nabla}\Phi)_f}_{} + \underbrace{\vec{k} \cdot (\vec{\nabla}\Phi)_f}_{}$$



Aproximación de términos fuente

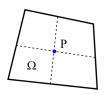
Cálculo de términos fuente

términos lineales:

$$\int_{\Omega} S(\Phi) dV \simeq (S(\Phi))_P V_P = S_p \Phi_P V_P$$

• términos no lineales (linealización):

$$\int_{\Omega} S(\Phi) dV \simeq (S(\Phi))_P V_P \simeq S_{0P} V_P + S_{1P} \Phi_P V_P$$



Problema estacionario unidimensional sin fuentes

$$\frac{d}{dx}(\rho U\Phi) - \frac{d}{dx}(\rho \Gamma_{\Phi} \frac{d\Phi}{dx}) = 0$$
$$\Phi(0) = \Phi_{0} \qquad \Phi(L) = 0$$

Forma adimensional (ρ , U y Γ_{Φ} constantes)

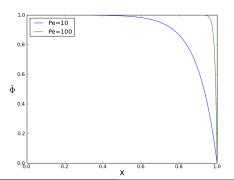
$$\frac{d\hat{\Phi}}{d\hat{x}} - \frac{1}{Pe} \frac{d^2\hat{\Phi}}{d\hat{x}^2} = 0$$

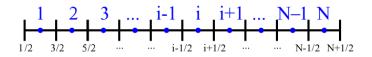
$$\hat{\Phi}(0) = 1 \qquad \hat{\Phi}(1) = 0$$

donde
$$Pe = \frac{LU}{\Gamma_{\Phi}}$$

Solución analítica de problema modelo

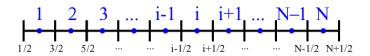
$$\hat{\Phi}(x) = \frac{exp(Pe \ x) - exp(Pe)}{1 - exp(Pe)}$$





Formulación de balances sobre celda i-ésima

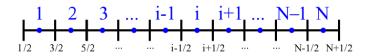
$$\int_{x_{i-1/2}}^{x_{i+1/2}} \frac{d\hat{\Phi}}{d\hat{x}} d\hat{x} - \int_{x_{i-1/2}}^{x_{i+1/2}} \frac{1}{Pe} \frac{d}{d\hat{x}} (\frac{d\hat{\Phi}}{d\hat{x}}) d\hat{x} = 0$$



Tratamiento de términos difusivos

$$-\int_{x_{i-1/2}}^{x_{i+1/2}} \frac{1}{Pe} \frac{d}{d\hat{x}} (\frac{d\hat{\Phi}}{d\hat{x}}) d\hat{x} = \frac{1}{Pe} (\frac{d\hat{\Phi}}{d\hat{x}}|_{x_{i+1/2}} - \frac{d\hat{\Phi}}{d\hat{x}}|_{x_{i-1/2}})$$

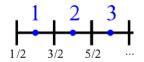
$$\simeq \frac{1}{Pe}(\frac{\hat{\Phi}_{i+1} - \hat{\Phi}_i}{\Delta \hat{x}} - \frac{\hat{\Phi}_i - \hat{\Phi}_{i-1}}{\Delta \hat{x}}) = \frac{1}{Pe}\frac{\hat{\Phi}_{i+1} - 2\hat{\Phi}_i + \hat{\Phi}_{i-1}}{\Delta \hat{x}}$$



Aproximación de términos convectivos

$$\int_{x_{i-1/2}}^{x_{i+1/2}} \frac{d\hat{\Phi}}{d\hat{x}} d\hat{x} = \hat{\Phi}|_{x_{i+1/2}} - \hat{\Phi}|_{x_{i-1/2}}$$

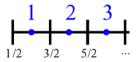
$$\simeq \frac{\hat{\Phi}_{i+1}+\hat{\Phi}_i}{2}-\frac{\hat{\Phi}_i+\hat{\Phi}_{i-1}}{2}=\frac{\hat{\Phi}_{i+1}-\hat{\Phi}_{i-1}}{2}$$



Balance en primera celda (condición de contorno en $x_{1/2}$)

Contribución de término difusivo

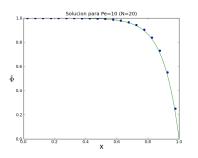
$$\begin{split} -\int_{x_{1/2}}^{x_{3/2}} \frac{1}{Pe} \frac{d}{d\hat{x}} (\frac{d\hat{\Phi}}{d\hat{x}}) d\hat{x} &= \frac{1}{Pe} (\frac{d\hat{\Phi}}{d\hat{x}}|_{x_{3/2}} - \frac{d\hat{\Phi}}{d\hat{x}}|_{x_{1/2}}) \\ &\simeq \frac{1}{Pe} (\frac{\hat{\Phi}_2 - \hat{\Phi}_1}{\Delta \hat{x}} - \frac{\hat{\Phi}_1 - \hat{\Phi}_{cc}}{\frac{1}{2}\Delta \hat{x}}) \end{split}$$

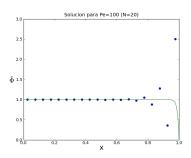


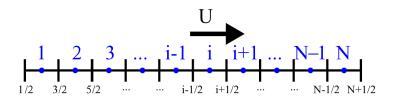
Balance en primera celda (condición de contorno en $x_{1/2}$)

Contribución de término convectivo

$$\int_{x_{1/2}}^{x_{3/2}} \frac{d\hat{\Phi}}{d\hat{x}} d\hat{x} = \hat{\Phi}|_{x_{3/2}} - \hat{\Phi}|_{x_{1/2}} \simeq \frac{\hat{\Phi}_1 + \hat{\Phi}_2}{2} - \hat{\Phi}_{cc}$$

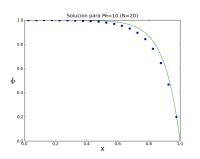


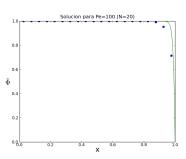




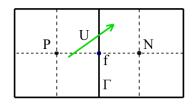
Una aproximación estable de términos convectivos

$$\int_{x_{i-1/2}}^{x_{i+1/2}} \frac{d\hat{\Phi}}{d\hat{x}} d\hat{x} = \hat{\Phi}|_{x_{i+1/2}} - \hat{\Phi}|_{x_{i-1/2}} \simeq \hat{\Phi}_i - \hat{\Phi}|_{i-1}$$





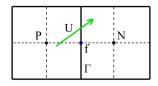
Aproximación de flujos convectivos



Contribución de flujos convectivos

$$rac{d}{dt}\int_{\Omega}
ho\Phi dV + \underbrace{\int_{\Gamma}
hoec{U}\Phi\cdot dec{S}}_{\Gamma} - \int_{\Gamma}
ho\Gamma_{\Phi}ec{
abla}\Phi\cdot dec{S} = \int_{\Omega}S(\Phi)dV$$
 $\int_{\Gamma}
hoec{U}\Phi\cdot dec{S}\simeq (
hoec{U})_f\Phi_f\cdot ec{S}_f$

Aproximación de flujos convectivos



Esquemas básicos

aproximación centrada (central differencing)

$$\Phi_f = (\Phi_f)_{CD} = f_X \Phi_P + (1 - f_X) \Phi_N$$

aproximación descentrada (upwind differencing)

$$\Phi_f = (\Phi_f)_{UD} = \Phi_P$$

aproximación mixta (blended differencing)

$$\Phi_f = (1 - \gamma)(\Phi)_{UD} + \gamma(\Phi)_{CD}$$

Aproximación de flujos convectivos

Otras aproximaciones de flujos convectivos

- descentrado de orden superior:
 - linear upwinding
 - QUICK
- esquemas TVD y limitadores de flujo:
 - van Leer
 - SUPERBEE
 - MINMOD
 - MUSCL

Control de discretización espacial en OpenFOAM

Tipos de esquemas de discretización espacial

- Interpolación general (obtiene valores sobre aristas/caras) interpolationSchemes
- Discretización de términos convectivos:
 - divSchemes
- Discretización de términos difusivos:
 - laplacianSchemes
- Discretización de términos en gradiente:
 - gradSchemes

Esquemas de interpolación sobre aristas/cara

Centred schemes			
linear	Linear interpolation (central differencing)		
cubicCorrection	Cubic scheme		
midPoint	Linear interpolation with symmetric weighting		
Upwinded convection schemes			
upwind	Upwind differencing		
linearUpwind	Linear upwind differencing		
skewLinear	Linear with skewness correction		
filteredLinear2	Linear with filtering for high-frequency ringing		
TVD schemes			
limitedLinear	limited linear differencing		
vanLeer	van Leer limiter		
MUSCL	MUSCL limiter		
limitedCubic	Cubic limiter		
NVD schemes			
SFCD	Self-filtered central differencing		
$\texttt{Gamma}~\psi$	Gamma differencing		

Términos convectivos: divSchemes

• Discretización de términos de forma $\operatorname{div}(\rho \vec{U} \vec{U})$ mediante:

div(phi,U) Gauss InterpScheme donde phi corresponde a
$$\vec{\phi}=
ho \vec{m{U}}$$

Esquemas (usuales) de interpolación:

Scheme	Numerical behaviour
linear	Second order, unbounded
skewLinear	Second order, (more) unbounded, skewness correction
cubicCorrected	Fourth order, unbounded
upwind	First order, bounded
linearUpwind	First/second order, bounded
QUICK	First/second order, bounded
TVD schemes	First/second order, bounded
SFCD	Second order, bounded
NVD schemes	First/second order, bounded

Términos difusivos: laplacianSchemes

• Discretización de términos de forma $\operatorname{div}(\nu\vec{\nabla}U)$ mediante:

laplacian(nu,U) Gauss InterpScheme SnScheme

- Esquema de interpolación según lista general
- Esquemas de aproximación de normales:

Scheme	Numerical behaviour
corrected	Unbounded, second order, conservative
uncorrected	Bounded, first order, non-conservative
$\mathtt{limited}\; \psi$	Blend of corrected and uncorrected
bounded	First order for bounded scalars
fourth	Unbounded, fourth order, conservative

• Ejemplo:

laplacian(nu,U) Gauss linear corrected

Términos en gradiente: gradSchemes

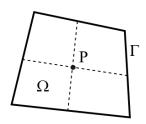
Discretisation scheme	Description
Gauss <interpolationscheme></interpolationscheme>	Second order, Gaussian integration
leastSquares	Second order, least squares
fourth	Fourth order, least squares
cellLimited < gradScheme>	Cell limited version of one of the above schemes
faceLimited <gradscheme></gradscheme>	Face limited version of one of the above schemes

Más información

- OpenFOAM User's Guide
- OpenFOAM Programmer's Guide
- OpenFOAM wiki en: http://openfoamwiki.net
- H. Jasak; Error Analysis and Estimation for the Finite Volume Method with Applications to Fluid Flows, PhD Dissertation, 1996.

Formulación de balance sobre celda Ω

$$\frac{d}{dt} \int_{\Omega} \rho \Phi dV + \int_{\Gamma} \rho \vec{U} \Phi \cdot d\vec{S} - \int_{\Gamma} \rho \Gamma_{\Phi} \vec{\nabla} \Phi \cdot d\vec{S} = \int_{\Omega} S(\Phi) dV$$



Formulación semidiscretizada en espacio

$$\rho_P V_P \frac{d\Phi_P}{dt} + \sum_f F \Phi_f - \sum_f (\rho \Gamma)_f \vec{S} \cdot (\vec{\nabla} \Phi)_f = S_0 V_P + S_1 V_P \Phi_P$$

Esquemas de discretización temporal

- Euler implícito
- Esquema BDF de orden 2
- Crank-Nicolson
- esquemas de Runge-Kutta

Método de Euler implícito

$$\rho_P V_P \frac{\Phi_P^n - \Phi_P^0}{\Delta t} + \sum_f F \Phi_f^n - \sum_f (\rho \Gamma)_f \vec{S} \cdot (\vec{\nabla} \Phi)_f^n = S_0 V_P + S_1 V_P \Phi_P^n$$

Estabilidad del esquema

- incondicionalmente estable
- sobreamortiguamiento si CFL mucho mayor que 1

Método BDF de orden 2

$$\rho_{P}V_{P}\frac{3/2\Phi_{P}^{n}-2\Phi_{P}^{0}+1/2\Phi_{P}^{00}}{\Delta t} + \sum_{f}F\Phi_{f}^{n}-\sum_{f}(\rho\Gamma)_{f}\vec{S}\cdot(\vec{\nabla}\Phi)_{f}^{n} = S_{0}V_{P}+S_{1}V_{P}\Phi_{P}^{n}$$

Método de Crank-Nicolson

$$\rho_P V_P \frac{\Phi_P^n - \Phi_P^n}{\Delta t} + \frac{1}{2} \sum_f F \Phi_f^n - \frac{1}{2} \sum_f (\rho \Gamma)_f \vec{S} \cdot (\vec{\nabla} \Phi)_f^n$$

$$+rac{1}{2}\sum_f F\Phi_f^n -rac{1}{2}\sum_f (
ho\Gamma)_f ec{S}\cdot (ec{
abla}\Phi)_f^n = S_0 V_P +rac{1}{2}S_1 V_P \Phi_P^n +rac{1}{2}S_1 V_P \Phi_P^0$$

Integración temporal

Implementación en OpenFOAM

términos implícitos (ensamblado de matriz):

fvm: finiteVolumeMethod

términos explícitos (ensamblado de vector):

fvc: finiteVolumeCalculus

Ecuación del calor en laplacianFoam

Integración con esquema implícito de

$$\frac{\partial T}{\partial t} - \operatorname{div}(D_T \vec{\nabla} T) = 0$$

solve (fvm::ddt(T) - fvm::laplacian(DT, T));

Plan

- Discretización espacial y tempora
- Algoritmos numéricos de resolución
- 3 Resolución de sistemas lineales

Ecuaciones de Stokes

$$-\mu \Delta \vec{\mathbf{v}} + \vec{\nabla} \mathbf{p} = \mathbf{0}$$
$$\operatorname{div} \vec{\mathbf{v}} = \mathbf{0}$$

Formulación sobre celda (2D)

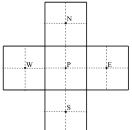
$$-\sum_{f} \int_{\Gamma} \mu \frac{\partial u}{\partial n} dS + \sum_{f} \int_{\Gamma} p n_{x} dS = 0$$

$$-\sum_{f} \int_{\Gamma} \mu \frac{\partial v}{\partial n} dS + \sum_{f} \int_{\Gamma} p n_{y} dS = 0$$

$$\sum_{f} \int_{\Gamma} \vec{v} \cdot \vec{n} dS = 0$$

Discretización de ecuación de Stokes

$$-\mu(u_E + u_W + u_N + u_S - 4u_P) + h(p_E - p_W) = 0$$
$$-\mu(v_E + v_W + v_N + v_S - 4v_P) + h(p_N - p_S) = 0$$
$$v_N - v_S + u_E - u_W = 0$$



Ecuaciones de Stokes

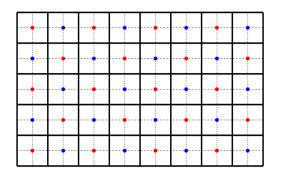
$$-\mu\Delta\vec{v} + \vec{\nabla}p = 0$$
$$\operatorname{div}\vec{v} = 0$$

Observación

Con balance nulo de fuerzas de viscosidad ($\mu\Delta\vec{v}=0$): p debe ser constante

$$-\mu(u_E + u_W + u_N + u_S - 4u_P) + h(p_E - p_W) = 0$$

$$-\mu(v_E + v_W + v_N + v_S - 4v_P) + h(p_N - p_S) = 0$$



Alternativas de esquemas numéricos estables

- uso de mallas decaladas (staggered grids):
 - presión y velocidad **no** se aproximan en los mismos puntos
 - ejemplo: MAC (Marker-and-Cell)
- métodos de proyección (o segregados):
 - las ecuaciones se resuelven en varios pasos
 - se separa conservación de momentos e incompresibilidad
 - ejemplo: PISO y SIMPLE

Semi-Implicit Method for Pressure-Linked Equations

Ecuaciones de Navier-Stokes incompresibles

$$\frac{\partial \vec{u}}{\partial t} + \operatorname{div}(\vec{u} \otimes \vec{u}) - \operatorname{div}(\nu \vec{\nabla} \vec{u}) + \vec{\nabla} p = \vec{0}$$
$$\operatorname{div} \vec{u} = 0$$

Idea del algoritmo SIMPLE (para problema estacionario)

- se itera en tiempo (linealizando en tiempo anterior)
- en capa paso de tiempo:
 - se descomponen los campos en predicción y corrección
 - se calcula una predicción de la velocidad
 (ec. de conservación de momentos con presión dada)
 - se calculan las correcciones en presión y velocidad (ec. de conservación de momentos e incompresibilidad)

Descomposición de campos (predicción + corrección)

$$\vec{u}^{n+1} = \vec{u}^* + \vec{u}'$$
 $p^{n+1} = p^n + p'$

Ecuación de conservación de momentos

Despreciando términos cuadráticos y viscosos en \vec{u}' :

$$\frac{\partial \vec{u}^*}{\partial t} + \frac{\partial \vec{u}'}{\partial t} + \operatorname{div}(\vec{u}^n \otimes \vec{u}^*) - \operatorname{div}(\nu \vec{\nabla} \vec{u}^*) + \vec{\nabla} p^n + \vec{\nabla} p' = \vec{0}$$

Segregación de cálculos

$$\frac{\partial \vec{u}^*}{\partial t} + \operatorname{div}(\vec{u}^n \otimes \vec{u}^*) - \operatorname{div}(\nu \vec{\nabla} \vec{u}^*) + \vec{\nabla} p^n = \vec{0}$$
$$\frac{\partial \vec{u}'}{\partial t} + \vec{\nabla} p' = \vec{0}$$

Etapa de predicción

• Se calcula \vec{u}^* solución de

$$\operatorname{div}(\vec{u}^n \otimes \vec{u}^*) - \operatorname{div}(\nu \vec{\nabla} \vec{u}^*) + \vec{\nabla} p^n = \vec{0}$$

Etapa de corrección

• Se calculan \vec{u}' y p' solución de

$$\frac{\partial \vec{u}'}{\partial t} + \vec{\nabla} p' = \vec{0}$$

$$\operatorname{div}(\vec{u}^* + \vec{u}') = 0$$

Resolución de etapa de corrección

$$-\Delta p' = -\frac{\partial}{\partial t}(\operatorname{div} \vec{u}^*)$$

con condiciones de contorno artificiales sobre p'

• Calculada presión p' se calcula corrección de velocidad \vec{u}' :

$$\frac{\partial \vec{u}'}{\partial t} + \vec{\nabla} p' = \vec{0}$$

Implementación del algoritmo SIMPLE

- La etapa de predicción puede simplificarse
 p.e. convertirse en explícita (se retiene sólo diagonal del operador de discretización)
- El algoritmo itera en (pseudo

)tiempo hasta convergencia
 justifica no considerar términos despreciados
- En cálculo de presión se itera para retener correcciones no-ortogonales
 - evita aumento de banda de matriz (reduce coste total)
- Se emplea relajación para mejorar la convergencia

Implementación de SIMPLE en OpenFOAM

Archivo simpleFoam.C en directorio
applications/solvers/incompressible

Predicción de velocidades

Archivo UEqn.H

```
// Momentum predictor

tmp<fvVectorMatrix> UEqn
(
    fvm::div(phi, U)
    + turbulence->divDevReff(U)
    ==
        sources(U)
);

UEqn().relax();

sources.constrain(UEqn());

solve(UEqn() == -fvc::grad(p));
```

Etapa de corrección

Archivo pEqn.H

```
p.boundaryField().updateCoeffs();
volScalarField rAU(1.0/UEqn().A());
U = rAU*UEan().H();
UEan.clear():
phi = fvc::interpolate(U, "interpolate(HbvA)") & mesh.Sf():
adjustPhi(phi, U, p);
// Non-orthogonal pressure corrector loop
while (simple.correctNonOrthogonal())
    fvScalarMatrix pEqn
        fvm::laplacian(rAU, p) == fvc::div(phi)
    pEgn.setReference(pRefCell, pRefValue);
    pEan.solve():
    if (simple.finalNonOrthogonalIter())
        phi -= pEan.flux():
#include "continuityErrs.H"
// Explicitly relax pressure for momentum corrector
p.relax():
// Momentum corrector
U -= rAU*fvc::grad(p):
U.correctBoundaryConditions():
sources.correct(U):
```

Algoritmo PISO

Pressure Implicit with Splitting of Operators

Adaptación de SIMPLE para problemas evolutivos

- términos despreciados (en cálculo de predicción \vec{u}^*) no se cancelan en transitorio
- términos truncados se incluyen en la corrección
- es preciso iterar en cálculo de correcciones

Esquema del algoritmo PISO

En cada paso de tiempo se resuelve:

- Cálculo de predicción \vec{u}^* en t_{n+1}
- Bucle de cálculo de corrección (\vec{u}', p') en t_{n+1} :
 - cálculo de p'_{k+1} a partir de \vec{u}^* y \vec{u}'_k
 - corrección de velocidad \vec{u}_{k+1}' a partir de p_{k+1}'

Implementación de PISO en OpenFOAM

Estructura de solver icoFoam

```
while (runTime.loop()) # bucle temporal
     fvVectorMatrix UEqn (fvm::ddt(U)
       +fvm::div(phi,U)-fvm::laplacian(nu,U));
     solve(UEqn == -fvc::grad(p)); # prediccion
     # inicio bucle PISO:
     for (int corr=0; corr<nCorr; corr++)
         adjustPhi(phi, U, p);
         # inicio bucle calculo presion:
         for (int nonOrth=0; nonOrth<=...
             fvScalarMatrix pEqn (
                  fvm::laplacian(rAU, p)
                  == fvc::div(phi) );
             pEqn.solve();
         U -= rAU*fvc::grad(p); # correccion
```

Plan

- Discretización espacial y temporal
- Algoritmos numéricos de resolución
- Resolución de sistemas lineales

Métodos (iterativos) de resolución

- métodos de Krylov:
 - método de gradiente conjugado
 - método de gradiente biconjugado
- métodos multimalla:
 - métodos multimalla geométricos
 - métodos multimalla algebraicos

Referencias

- http://www.openfoam.com/features
- OpenFOAM User Guide (sección 4.5)

Métodos de Krylov

Métodos disponibles

- para matrices simétricas y definidas positivas:
 - mét. de gradiente conjugado (precondicionado): PCG
- para matrices generales:
 - mét. de gradiente biconjugado (precondicionado): PBiCG

Precondicionadores

- factorizaciones incompletas: Cholesky (DIC) y LU (DILU)
- precondicionador diagonal (Jacobi): diagonal
- métodos multimalla (geométrico/algebraico): GAMG

Métodos multimalla

Métodos multimalla geométricos/algebraicos

- usuario no necesita proporcionar jerarquía de mallas
- malla grosera construida a partir de directrices en:

```
nCoarsestCells, agglomerator
```

control de suavizadores mediante:

```
smoother
```

nPreSwepng, nPostSwepng, nFinestSwepng

control de niveles de multimalla con:

```
mergeLevels
```


Un ejemplo: uso de icoFoam

Solver icoFoam

- Transient solver for incompressible, laminar flow of Newtonian fluids
- discretización basada en PISO
- usado en Lid-driven cavity flow (tutorial en User's Guide)

Código fuente de icoFoam

Archivo icoFoam. C en subdirectorio:

applications/solvers/incompressible

Un ejemplo: uso de icoFoam

Opciones en archivo fvSolution

```
solvers
        solver
                        PCG:
        preconditioner DIC;
        tolerance
                        1e-06;
        relTol
                        Θ:
        solver
                        PBiCG:
        preconditioner DILU;
        tolerance
                        1e-05;
        relTol
                        Θ:
PIS0
    nCorrectors
    nNonOrthogonalCorrectors 0:
    pRefCell
                    Θ;
    pRefValue
```

Un ejemplo: uso de icoFoam

Opciones en archivo fvSchemes

```
ddtSchemes
                    Euler:
    default
gradSchemes
                    Gauss linear:
    default
   grad(p)
                    Gauss linear:
divSchemes
    default
                    none:
   div(phi,U)
                   Gauss linear;
laplacianSchemes
    default
                    none;
   laplacian(nu,U) Gauss linear corrected;
   laplacian((1|A(U)),p) Gauss linear corrected;
interpolationSchemes
                    linear:
    default
   interpolate(HbvA) linear:
```