
The ParaView Tutorial
Version 4.2

Kenneth Moreland
Sandia National Laboratories

kmorel@sandia.gov

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly
owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy’s National Nuclear Security

Administration under contract DE-AC04-94AL85000.
SAND 2014-17513 TR

mailto:kmorel@sandia.gov

ii

Contents

1 Introduction 1
1.1 Development and Funding . 4
1.2 Basics of Visualization . 5
1.3 More Information . 7

2 Basic Usage 9
2.1 User Interface . 10
2.2 Sources . 11

Exercise 2.1: Creating a Source 11
Exercise 2.2: Interacting with a 3D View 12
Exercise 2.3: Modifying Visualization Parameters 13
Exercise 2.4: Undo and Redo 15

2.3 Loading Data . 16
Exercise 2.5: Opening a File 16
Exercise 2.6: Representation and Field Coloring 18

2.4 Filters . 19
Exercise 2.7: Apply a Filter 22
Exercise 2.8: Creating a Visualization Pipeline 23

2.5 Multiview . 25
Exercise 2.9: Using Multiple Views 26

2.6 Vector Visualization . 30
Exercise 2.10: Streamlines . 30
Exercise 2.11: Making Streamlines Fancy 31

2.7 Plotting . 33
Exercise 2.12: Plot Over a Line in Space 34
Exercise 2.13: Plot Series Display Options 36

2.8 Volume Rendering . 38
Exercise 2.14: Turning On Volume Rendering 39

iii

iv CONTENTS

Exercise 2.15: Combining Volume Rendering and Surface-
Based Visualization . 39

Exercise 2.16: Modifying Volume Rendering Transfer Functions 42
2.9 Time . 43

Exercise 2.17: Loading Temporal Data 44
Exercise 2.18: Temporal Data Pitfall 45
Exercise 2.19: Slowing Down an Animation with the Anima-

tion Mode . 47
Exercise 2.20: Temporal Interpolation 48

2.10 Text Annotation . 49
Exercise 2.21: Adding Text Annotation 49
Exercise 2.22: Adding Time Annotation 50

2.11 Save Screenshot and Save Animation 52
Exercise 2.23: Save Screenshot 52
Exercise 2.24: Export Scene 55
Exercise 2.25: Save Animation 56

2.12 Selection . 57
Exercise 2.26: Performing Query-Based Selections 58
Exercise 2.27: Data Element Selections vs. Spatial Selections . 60
Exercise 2.28: Labeling Selections 61
Exercise 2.29: Plot Over Time 62
Exercise 2.30: Extracting a Selection 63

2.13 Animations . 64
Exercise 2.31: Animating Properties 64
Exercise 2.32: Modifying Animation Track Keyframes 66
Exercise 2.33: Multiple Animation Tracks 67
Exercise 2.34: Camera Orbit Animations 68
Exercise 2.35: Following Data in an Animation 69

3 Visualizing Large Models 71
3.1 ParaView Architecture . 72
3.2 Setting up a ParaView Server 74
3.3 Parallel Visualization Algorithms 76
3.4 Ghost Levels . 77
3.5 Data Partitioning . 79
3.6 D3 Filter . 80
3.7 Matching Job Size to Data Size 81
3.8 Avoiding Data Explosion . 82

CONTENTS v

3.9 Culling Data . 85

3.10 Keeping Track of Memory . 87

3.11 Rendering . 88

3.11.1 Basic Rendering Settings 88

3.11.2 Basic Parallel Rendering 91

3.11.3 Image Level of Detail 93

3.11.4 Parallel Render Parameters 95

3.11.5 Parameters for Large Data 96

4 Batch Python Scripting 99

4.1 Starting the Python Interpreter 99

4.2 Tracing ParaView State . 101

Exercise 4.1: Creating a Python Script Trace 101

4.3 Macros . 103

Exercise 4.2: Adding a Macro 103

4.4 Creating a Pipeline . 104

Exercise 4.3: Creating and Showing a Source 105

Exercise 4.4: Creating and Showing a Filter 106

Exercise 4.5: Changing Pipeline Object Properties 106

Exercise 4.6: Branching Pipelines 108

4.5 Active Objects . 109

Exercise 4.7: Experiment with Active Pipeline Objects 110

4.6 Online Help . 110

4.7 Reading from Files . 112

Exercise 4.8: Creating a Reader 112

4.8 Querying Field Attributes . 113

Exercise 4.9: Getting Field Information 113

4.9 Representations . 114

Exercise 4.10: Coloring Data 114

4.10 Views . 115

Exercise 4.11: Controlling the View 116

4.11 Saving Results . 116

Exercise 4.12: Save Results . 117

5 Further Reading 119

Acknowledgements 123

vi CONTENTS

Index 124

List of Exercises

2.1 Creating a Source . 11
2.2 Interacting with a 3D View . 12
2.3 Modifying Visualization Parameters 13
2.4 Undo and Redo . 15
2.5 Opening a File . 16
2.6 Representation and Field Coloring 18
2.7 Apply a Filter . 22
2.8 Creating a Visualization Pipeline 23
2.9 Using Multiple Views . 26
2.10 Streamlines . 30
2.11 Making Streamlines Fancy . 31
2.12 Plot Over a Line in Space . 34
2.13 Plot Series Display Options . 36
2.14 Turning On Volume Rendering 39
2.15 Combining Volume Rendering and Surface-Based Visualization . 39
2.16 Modifying Volume Rendering Transfer Functions 42
2.17 Loading Temporal Data . 44
2.18 Temporal Data Pitfall . 45
2.19 Slowing Down an Animation with the Animation Mode 47
2.20 Temporal Interpolation . 48
2.21 Adding Text Annotation . 49
2.22 Adding Time Annotation . 50
2.23 Save Screenshot . 52
2.24 Export Scene . 55
2.25 Save Animation . 56
2.26 Performing Query-Based Selections 58
2.27 Data Element Selections vs. Spatial Selections 60
2.28 Labeling Selections . 61

vii

viii LIST OF EXERCISES

2.29 Plot Over Time . 62
2.30 Extracting a Selection . 63
2.31 Animating Properties . 64
2.32 Modifying Animation Track Keyframes 66
2.33 Multiple Animation Tracks . 67
2.34 Camera Orbit Animations . 68
2.35 Following Data in an Animation 69
4.1 Creating a Python Script Trace 101
4.2 Adding a Macro . 103
4.3 Creating and Showing a Source 105
4.4 Creating and Showing a Filter 106
4.5 Changing Pipeline Object Properties 106
4.6 Branching Pipelines . 108
4.7 Experiment with Active Pipeline Objects 110
4.8 Creating a Reader . 112
4.9 Getting Field Information . 113
4.10 Coloring Data . 114
4.11 Controlling the View . 116
4.12 Save Results . 117

Chapter 1

Introduction

ParaView is an open-source application for visualizing two- and three-
dimensional data sets. The size of the data sets ParaView can handle
varies widely depending on the architecture on which the application is run.
The platforms supported by ParaView range from single-processor worksta-
tions to multiple-processor distributed-memory supercomputers or worksta-
tion clusters. Using a parallel machine, ParaView can process very large
data sets in parallel and later collect the results. To date, ParaView has
been demonstrated to process billions of unstructured cells and to process
over a trillion structured cells. ParaView’s parallel framework has run on
over 100,000 processing cores.

ParaView’s design contains many conceptual features that make it stand
apart from other scientific visualization solutions.

• An open-source, scalable, multi-platform visualization application.

• Support for distributed computation models to process large data sets.

• An open, flexible, and intuitive user interface.

• An extensible, modular architecture based on open standards.

• A flexible BSD 3-clause license.

• Commercial maintenance and support.

1

2 CHAPTER 1. INTRODUCTION

ParaView is used by many academic, government,
and commercial institutions all over the world. Para-
View’s open license makes it impossible to track ex-
actly how many users ParaView has, but it is thought
to be many thousands large based on indirect evi-
dence. For example, ParaView is downloaded roughly
100,000 times every year. ParaView also won the
HPCwire Readers’ Choice Award in 2010 and 2012
and HPCwire Editors’ Choice Award in 2010 for Best
HPC Visualization Product or Technology.

ZSU23-4 Russian Anti-Aircraft vehicle
being hit by a planar wave. Image cour-
tesy of Jerry Clarke, US Army Research
Laboratory.

A loosely coupled SIERRA-Fuego-
Syrinx-Calore simulation with 10
million unstructured hexahedra cells of
objects-in-crosswind fire.

Simulation of a Pelton
turbine. Image courtesy
of the Swiss National Su-
percomputing Centre

Airflow around a Le Mans Race car. Image courtesy
of Renato N. Elias, NACAD/COPPE/UFRJ, Rio de
Janerio, Brazil

As demonstrated in these visualizations, ParaView is a general-purpose
tool with a wide breadth of applications. In addition to scaling from small to
large data, ParaView provides many general-purpose visualization algorithms

3

as well as some specific to particular scientific disciplines. Furthermore, the
ParaView system can be extended with custom visualization algorithms.

MPI OpenGL IceT Etc.

VTK

ParaView Server

ParaView Client pvpython Custom App

UI (Qt Widgets, Python Wrappings)

ParaWeb Catalyst

The application most people associate with ParaView is really just a
small client application built on top of a tall stack of libraries that provide
ParaView with its functionality. Because the vast majority of ParaView fea-
tures are implemented in libraries, it is possible to completely replace the
ParaView GUI with your own custom application, as demonstrated in the
following figure. Furthermore, ParaView comes with a pvpython applica-
tion that allows you to automate the visualization and post-processing with
Python scripting.

Available to each ParaView application is a library of user interface com-
ponents to maximize code sharing between them. A ParaView Server
library provides the abstraction layer necessary for running parallel, interac-
tive visualization. It relieves the client application from most of the issues
concerning if and how ParaView is running in parallel. The Visualization
Toolkit (VTK) provides the basic visualization and rendering algorithms.
VTK incorporates several other libraries to provide basic functionalities such
as rendering, parallel processing, file I/O, and parallel rendering. Although
this tutorial demonstrates using ParaView through the ParaView client ap-
plication, be aware that the modular design of ParaView allows for a great
deal of flexibility and customization.

4 CHAPTER 1. INTRODUCTION

1.1 Development and Funding

The ParaView project started in 2000 as a collaborative effort between Kit-
ware Inc. and Los Alamos National Laboratory. The initial funding was
provided by a three year contract with the US Department of Energy ASCI
Views program. The first public release, ParaView 0.6, was announced in
October 2002. Development of ParaView continued through collaboration of
Kitware Inc. with Sandia National Laboratories, Los Alamos National Lab-
oratories, the Army Research Laboratory, and various other academic and
government institutions.

In September 2005, Kitware, Sandia National Labs and CSimSoft started
the development of ParaView 3.0. This was a major effort focused on rewrit-
ing the user interface to be more user friendly and on developing a quantita-
tive analysis framework. ParaView 3.0 was released in May 2007.

Since this time, ParaView development continues. ParaView 4.0 was
release in June 2013 and introduced more cohesive GUI controls and better
multiblock interaction. Recent releases of ParaView also include the Catalyst
library for in situ integration into simulation and other applications.

Development of ParaView continues today. Sandia National Laboratories
continues to fund ParaView development through the ASC project. Para-
View is part of the SciDAC Scalable Data Management, Analysis, and Visu-
alization (SDAV) Institute Toolkit (sdav-scidac.org). The US Department of
Energy also funds ParaView through Los Alamos National Laboratories and
various SBIR projects and other contracts. The US National Science Foun-
dation also often funds ParaView through SBIR projects. Other institutions
also have ParaView support contracts: Electricity de France, Mirarco, and
oil industry customers. Also, because ParaView is an open source project,
other institutions such as the Swiss National Supercomputing Centre con-
tribute back their own development.

http://sdav-scidac.org

1.2. BASICS OF VISUALIZATION 5

1.2 Basics of Visualization

Put simply, the process of visualization is taking raw data and converting
it to a form that is viewable and understandable to humans. This allows us
to get a better cognitive understanding of our data. Scientific visualization
is specifically concerned with the type of data that has a well defined repre-
sentation in 2D or 3D space. Data that comes from simulation meshes and
scanner data is well suited for this type of analysis.

There are three basic steps to visualizing your data: reading, filtering,
and rendering. First, your data must be read into ParaView. Next, you may
apply any number of filters that process the data to generate, extract, or
derive features from the data. Finally, a viewable image is rendered from the
data.

ParaView was designed primarily to handle data with spatial representa-
tion. Thus the primary data types used in ParaView are meshes.

Uniform Rectilinear (Image Data)
A uniform rectilinear grid is a one- two-
or three- dimensional array of data. The
points are orthonormal to each other and
are spaced regularly along each direction.

6 CHAPTER 1. INTRODUCTION

Non-uniform Rectilinear (Rectilinear
Grid)
Similar to the uniform rectilinear grid ex-
cept that the spacing between points may
vary along each axis.

Curvilinear (Structured Grid)
Curvilinear grids have the same topology as
rectilinear grids. However, each point in a
curvilinear grid can be placed at an arbi-
trary coordinate (provided that it does not
result in cells that overlap or self intersect).
Curvilinear grids provide the more compact
memory footprint and implicit topology of
the rectilinear grids, but also allow for much
more variation in the shape of the mesh.

Polygonal (Poly Data)
Polygonal data sets are composed of points,
lines, and 2D polygons. Connections be-
tween cells can be arbitrary or non-existent.
Polygonal data represents the basic render-
ing primitives. Any data must be converted
to polygonal data before being rendered
(unless volume rendering is employed), al-
though ParaView will automatically make
this conversion.

1.3. MORE INFORMATION 7

Unstructured Grid
Unstructured data sets are composed of
points, lines, 2D polygons, 3D tetrahedra,
and nonlinear cells. They are similar to
polygonal data except that they can also
represent 3D tetrahedra and nonlinear cells,
which cannot be directly rendered.

In addition to these basic data types, ParaView also supports multi-
block data. A basic multi-block data set is created whenever data sets
are grouped together or whenever a file containing multiple blocks is read.
ParaView also has some special data types for representing Hierarchical
Adaptive Mesh Refinement (AMR), Hierarchical Uniform AMR,
Octree, Tablular, and Graph type data sets.

1.3 More Information

There are many places to find more information about ParaView. The Para-
View Users Manual is available as an eBook and is also available online
at at http://paraview.org/Wiki/ParaView/Users Guide/Table Of Contents.
ParaView also has an online help that can be accessed by simply clicking the

button in the application.
The ParaView web page, www.paraview.org, is also an excellent place

to find more information about ParaView. From there you can find helpful
links to mailing lists, Wiki pages, and frequently asked questions as well as
information about professional support services.

http://paraview.org/Wiki/ParaView/Users_Guide/Table_Of_Contents
http://www.paraview.org

8 CHAPTER 1. INTRODUCTION

Chapter 2

Basic Usage

Let us get started using ParaView. In order to follow along, you will need
your own installation of ParaView. Specifically, this document is based off
of ParaView version 4.2. If you do not already have ParaView 4.2, you
can download a copy from www.paraview.org (click on the download link).
ParaView launches like most other applications. On Windows, the launcher
is located in the start menu. On Macintosh, open the application bundle
that you installed. On Linux, execute paraview from a command prompt
(you may need to set your path).

The examples in this tutorial also rely on some data that is available
at http://www.paraview.org/Wiki/The ParaView Tutorial. You may install
this data into any directory that you like, but make sure that you can find
that directory easily. Any time the tutorial asks you to load a file it will be
from the directory you installed this data in.

9

http://www.paraview.org
http://www.paraview.org/Wiki/The_ParaView_Tutorial

10 CHAPTER 2. BASIC USAGE

2.1 User Interface

Menu Bar

Toolbars

Pipeline Browser

Properties Panel

3D View

Advanced Toggle

The ParaView GUI conforms to the platform on which it is running, but
on all platforms it behaves basically the same. The layout shown here is the
default layout given when ParaView is first started. The GUI comprises the
following components.

Menu Bar As with just about any other program, the menu bar allows you
to access the majority of features.

Toolbars The toolbars provide quick access to the most commonly used
features within ParaView.

Pipeline Browser ParaView manages the reading and filtering of data with
a pipeline. The pipeline browser allows you to view the pipeline struc-
ture and select pipeline objects. The pipeline browser provides a con-
venient list of pipeline objects with an indentation style that shows the
pipeline structure.

Properties Panel The properties panel allows you to view and change the
parameters of the current pipeline object. On the properties panel is an
advanced properties toggle that shows and hides advanced controls.
The properties are by default coupled with an Information tab that
shows a basic summary of the data produced by the pipeline object.

2.2. SOURCES 11

3D View The remainder of the GUI is used to present data so that you
may view, interact with, and explore your data. This area is initially
populated with a 3D view that will provide a geometric representation
of the data.

Note that the GUI layout is highly configurable, so that it is easy to
change the look of the window. The toolbars can be moved around and even
hidden from view. To toggle the use of a toolbar, use the View → Toolbars
submenu. The pipeline browser and properties panel are both dockable
windows. This means that these components can be moved around in the
GUI, torn off as their own floating windows, or hidden altogether. These two
windows are important to the operation of ParaView, so if you hide them
and then need them again, you can get them back with the View menu.

2.2 Sources

There are two ways to get data into ParaView: read data from a file or
generate data with a source object. All sources are located in the Sources
menu. Sources can be used to add annotation to a view, but they are also
very handy when exploring ParaView’s features.

Exercise 2.1: Creating a Source

Let us start with a simple one. Go to the Sources menu and select Cylinder.
Once you select the Cylinder item you will notice that an item named Cylinder1
is added to and selected in the pipeline browser. You will also notice that the
properties panel is filled with the properties for the cylinder source. Click
the Apply button to accept the default parameters.

Once you click Apply, the cylinder object will be displayed in the 3D view
window on the right. �

Now that we have created our first simple visualization, we want to in-
teract with it. There are many ways to interact with a visualization in
ParaView. We start by exploring the data in the 3D view.

12 CHAPTER 2. BASIC USAGE

Exercise 2.2: Interacting with a 3D View

This exercise is a continuation of Exercise 2.1. You will need to finish that
exercise before beginning this one.

You can manipulate the cylinder in the 3D view by dragging the mouse
over the 3D view. Experiment with dragging different mouse buttons—left,
middle, and right—to perform different rotate, pan, and zoom operations.
Also try using the buttons in conjunction with the shift and ctrl modifier
keys.

ParaView contains a couple of toolbars to help with camera manipula-
tions. The first toolbar, the Camera Controls toolbar, shown here, provides
quick access to particular camera views. The leftmost button performs a
reset camera such that it maintains the same view direction but repositions
the camera such that the entire object can be seen. The second button
performs a zoom to data. It behaves very much like reset camera except
that instead of positioning the camera to see all data, the camera is placed to
look specifically at the data currently selected in the pipeline browser. You
currently only have one object in the pipeline browser, so right now reset
camera and zoom to data will perform the same operation.

The next button in the camera controls toolbar allows you to select
a rectangular region of the screen to zoom to (a rubber-band zoom). The
following six buttons reposition the camera to view the scene straight down
one of the global coordinate’s axes in either the positive or negative direction.
Try playing with these controls now.

The second toolbar controls the location of the center of rotation and the
visibility of the orientation axes. The rightmost button allows you to pick
the center of rotation. Try clicking that button then clicking somewhere
on the cylinder. If you then drag the left button in the 3D view, you will
notice that the cylinder now rotates around this new point. The next button
to the left replaces the center of rotation to the center of the object.

The next button to the left shows or hides axes drawn at the center
of rotation. (You probably will not notice the effects when the center of

2.2. SOURCES 13

rotation is at the center of the cylinder because the axes will be hidden by
the cylinder. Use the pick center of rotation again and you should be
able to see the effects.) The final leftmost button toggles showing the
orientation axes, the always-viewable axes in the lower left corner of the
3D view. �

Although interactive 3D controls are a vital part of visualization, an
equally important ability is to modify the parameters of the data process-
ing and display. ParaView contains many GUI components for modifying
visualization parameters, which we will begin to explore in the next exercise.

Exercise 2.3: Modifying Visualization Parameters

This exercise is a continuation of Exercise 2.2. You will need to finish that
exercise before beginning this one.

You surely noticed that ParaView creates not a real cylinder but rather an
approximation of a cylinder using polygonal facets. The default parameters
for the cylinder source provide a very coarse approximation of only six facets.
(In fact, this object looks more like a prism than a cylinder.) If we want
a better representation of a cylinder, we can create one by increasing the
Resolution parameter.

Using either the slider or text edit, increase the resolution to 50 or more.
Notice that the Apply button started pulsing blue. This is because
changes you make to the object properties are not immediately enacted. The
highlighted button is a reminder that the parameters of one or more pipeline
objects are “out of sync” with the data that you are viewing. Hitting the
Apply button will accept these changes whereas hitting the Reset button

will revert the options back to the last time they were applied.
Hit the Apply button now. The resolution is changed so that it is virtually
indistinguishable from a true cylinder.

14 CHAPTER 2. BASIC USAGE

If you scroll down the properties panel, you will notice a set of Display
properties. Try these options now by clicking on the Edit button to change
the color of the cylinder. (This button is also replicated in the toolbar.) You
may notice that you do not need to hit Apply for display properties.

If you scroll down further yet to the bottom of the properties panel, you
will notice a set of View properties. Try using the view properties to change
the background of the image. Change the background from Single color to
Gradient. Using a gradient in the background can add glitz to an image, but
it can also distract from the data in the visualization. Be aware that some
of the view options and object display options can be repeated elsewhere in
the ParaView GUI for convenience.

By default many of the lesser used display properties are hidden. The
advanced properties toggle can be used to show or hide these extra
parameters. There is also a search box at the top of the properties panel that
can be used to quickly find a property. Try typing specular into this search
box now. Under the display properties you should see an option named
Specular. This controls the intensity of the specular highlight seen on shiny
objects. Set this parameter to 1 to make the cylinder shiny.

2.2. SOURCES 15

Most objects have similar display and view properties. Here are some
other common tricks you can do with most objects using parameters available
in the properties panel and that you can try now.

• Show 3D axes at the boarders of the object containing rulers show-
ing the physical distance in each direction by clicking the Show Axes
checkbox under the Cube Axes options.

• Make objects transparent by changing their Opacity parameter. An
opacity parameter of 1 is completely opaque, a parameter of 0 is
completely invisible, and values in between are varying degrees of see
through.

• The default configuration of lights in a 3D rendering are position to
provide a natural shading to best show the structure of objects. If
you want to change the lighting (for example, to brightly show a flat
surface facing the camera), you can click the Edit button under the
Lights option (an advanced property).

�

Now is a good time to note the undo and redo buttons in the
toolbar. Visualizing your data is often an exploratory process, and it is often
helpful to revert back to a previous state. You can even undo back to the
point before your data was created and redo again.

Exercise 2.4: Undo and Redo

Experiment with the undo and redo buttons. If you have not done so,
create and modify a pipeline object like what is done in Exercise 2.1. Watch
how parameter changes can be reverted and restored. Also notice how whole
pipeline objects can be destroyed and recreated.

There are also undo camera and redo camera buttons. These
allow you to go back and forth between camera angles that you have made
so that you do not have to worry about errant mouse movements ruining
that perfect view. Move the camera around and then use these buttons to
revert and restore the camera angle. �

We are done with the cylinder source now. We can delete the pipeline
object by making sure the cylinder is selected in the pipeline browser and
hitting delete in the properties panel.

16 CHAPTER 2. BASIC USAGE

2.3 Loading Data

Now that we have had some practice using the ParaView GUI, let us load
in some real data. As you would expect, the Open command is the first one
off of the File menu, and there is also toolbar button for opening a file.
ParaView currently supports over 140 distinct file formats, and the list grows
as more types get added. To see the current list of supported files, invoke
the Open command and look at the list of files in the Files of type chooser
box.

ParaView’s modular design allows for easy integration of new VTK read-
ers into ParaView. Thus, check back often for new file formats. If you are
looking for a file reader that does not seem to be included with ParaView,
check in with the ParaView mailing list (paraview@paraview.org). There
are many file readers included with VTK but not exposed within ParaView
that could easily be added. There are also many readers created that can
plug into the VTK framework but have not been committed back to VTK;
someone may have a reader readily available that you can use.

Exercise 2.5: Opening a File

Let us open our first file now. Click the Open toolbar (or menu item) and
open the file disk out ref.ex2. Note that opening a file is a two step process,
so you do not see any data yet. Instead, you see that the properties panel is
populated with several options about how we want to read the data.

mailto:paraview@paraview.org

2.3. LOADING DATA 17

Click the checkbox in the header of the variable list to turn on the loading
of all the variables. This is a small data set, so we do not have to worry about
loading too much into memory. Once all of the variables are selected, click

to load all of the data. When the data are loaded you will see
that the geometry looks like a cylinder with a hollowed out portion in one
end. These data are the output of a simulation for the flow of air around a
heated and spinning disk. The mesh you are seeing is the air around the disk
(with the cylinder shape being the boundary of the simulation). The hollow
area in the middle is where the heated disk would be were it meshed for the
simulation. �

Most of the time ParaView will be able to determine the appropriate
method to read your file based on the file extension and underlying data, as
was the case in Exercise 2.5. However, with so many file formats supported
by ParaView there are some files that cannot be fully determined. In this
case, ParaView will present a dialog box asking what type of file is being
loaded. The following image is an example from opening a netCDF file, which
is a generic file format for which ParaView has many readers for different
conventions.

18 CHAPTER 2. BASIC USAGE

Before we continue on to filtering the data, let us take a quick look at
some of the ways to represent the data. The most common parameters for
representing data are located in a pair of toolbars. (They can also be found
in the Display group of the properties panel.)

Toggle Color
Legend

Mapped
Variable Representation

Vector
Component

Edit
Colors

Reset Scalar
Range

Custom Scalar
Range

Exercise 2.6: Representation and Field Coloring

Play with the data representation a bit. Make sure disk out ref.ex2 is se-
lected in the pipeline browser. (If you do not have the data loaded, repeat
Exercise 2.5.) Use the variable chooser to color the surface by the Pres vari-
able. Then turn the color legend on to see the actual pressure values. To see
the structure of the mesh, change the representation to Surface With Edges.
You can view both the cell structure and the interior of the mesh with the
Wireframe representation.

�

2.4. FILTERS 19

2.4 Filters

We have now successfully read in some data and gleaned some information
about it. We can see the basic structure of the mesh and map some data
onto the surface of the mesh. However, as we will soon see, there are many
interesting features about these data that we cannot determine by simply
looking at the surface of these data. There are many variables associated
with the mesh of different types (scalars and vectors). And remember that
the mesh is a solid model. Most of the interesting information is on the
inside.

We can discover much more about our data by applying filters. Filters
are functional units that process the data to generate, extract, or derive
features from the data. Filters are attached to readers, sources, or other filters
to modify its data in some way. These filter connections form a visualization
pipeline. There are a great many filters available in ParaView. Here are
the most common, which are all available by clicking on the respective icon
in the filters toolbar.

Calculator Evaluates a user-defined expression on a per-point or per-
cell basis.

Contour Extracts the points, curves, or surfaces where a scalar field
is equal to a user-defined value. This surface is often also called an
isosurface.

Clip Intersects the geometry with a half space. The effect is to remove
all the geometry on one side of a user-defined plane.

Slice Intersects the geometry with a plane. The effect is similar to clip-
ping except that all that remains is the geometry where the plane is
located.

Threshold Extracts cells that lie within a specified range of a scalar
field.

Extract Subset Extracts a subset of a grid by defining either a volume
of interest or a sampling rate.

Glyph Places a glyph, a simple shape, on each point in a mesh. The
glyphs may be oriented by a vector and scaled by a vector or scalar.

20 CHAPTER 2. BASIC USAGE

Stream Tracer Seeds a vector field with points and then traces those
seed points through the (steady state) vector field.

Warp (vector) Displaces each point in a mesh by a given vector field.

Group Datasets Combines the output of several pipeline objects into
a single multi block data set.

Extract Level Extract one or more items from a multi block data set.

These eleven filters are a small sampling of what is
available in ParaView. In the Filters menu are a great many
more filters that you can use to process your data. Para-
View currently exposes more than one hundred filters, so
to make them easier to find the Filters menu is organized
into submenus. These submenus are organized as follows.

Recent The list of most recently used filters sorted with the most recently
used filters on top.

AMR A set of filters designed specifically for data in an adaptive mesh
refinement (AMR) structure.

CTH Filters used to process results from a CTH simulation.

Common The most common filters. This is the same list of filters available
in the filters toolbar and listed previously.

CosmoTools This contains filters developed at LANL for cosmology re-
search.

Data Analysis The filters designed to retrieve quantitative values from the
data. These filters compute data on the mesh, extract elements from
the mesh, or plot data.

Material Analysis Filters for processing data from volume fractions of ma-
terials.

Quadrature Points Filters to support simulation data given as integra-
tion points that can be used for numerical integration with Gaussian
quadrature.

2.4. FILTERS 21

Statistics This contains filters that provide descriptive statistics of data,
primarily in tabular form.

Temporal Filters that analyze or modify data that changes over time. All
filters can work on data that changes over time because they are ex-
ecuted on each time snapshot. However, filters in this category will
retrieve the available time extents and examine how data changes over
time.

Alphabetical An alphabetical listing of all the filters available. If you are
not sure where to find a particular filter, this list is guaranteed to have
it. There are also many filters that are not listed anywhere but in this
list.

Searching through these lists of
filters, particularly the full alpha-
betical list, can be cumbersome. To
speed up the selection of filters, you
should use the quick launch dialog.
Pressing the ctrl and space keys to-
gether on Windows or Linux or the
alt and space keys together on Mac-
intosh, ParaView brings up a small,
lightweight dialog box like the one
shown here. Type in words or word
fragments that are contained in the
filter name, and the box will list only those sources and filters that match
the terms. Hit enter to add the object to the pipeline browser. Press Esc a
couple of times to cancel the dialog.

You have probably noticed that some of the filters are grayed out. Many
filters only work on a specific types of data and therefore cannot always be
used. ParaView disables these filters from the menu and toolbars to indicate
(and enforce) that you cannot use these filters.

Throughout this tutorial we will explore many filters. However, we cannot
explore all the filters in this forum. Consult the Filters Menu chapter of
ParaView’s on-line or built-in help for more information on each filter.

22 CHAPTER 2. BASIC USAGE

Exercise 2.7: Apply a Filter

Let us apply our first filter. If you do not have the disk out ref.ex2 data
loaded, do so know (Exercise 2.5). Make sure that disk out ref.ex2 is selected
in the pipeline browser and then select the contour filter from the filter
toolbar or Filters menu. Notice that a new item is added to the pipeline
filter underneath the reader and that the properties panel updates to the
parameters of the new filter. As with reading a file, applying a filter is a
two step process. After creating the filter you get a chance to modify the
parameters (which you will almost always do) before applying the filter.

Change to Temp

Change to 400

We will use the contour filter to create an isosurface where the tempera-
ture is equal to 400 K. First, change the Contour By parameter to the Temp
variable. Then, change the isosurface value to 400. Finally, hit .
You will see the isosurface appear inside of the volume. If disk out ref.ex2
was still colored by pressure from Exercise 2.6, then the surface is colored by
pressure to match.

2.4. FILTERS 23

�

In the preceding exercise, we applied a filter that processed the data and
gave us the results we needed. For most common operations, a single filter
operation is sufficient to get the information we need. However, filters are
of the same class as readers. That is, the general operations we apply to
readers can also be applied to filters. Thus, you can apply one filter to the
data that is generated by another filter. These readers and filters connected
together form what we call a visualization pipeline. The ability to form
visualization pipelines provides a powerful mechanism for customizing the
visualization to your needs.

Let us play with some more filters. Rather than show the mesh surface in
wireframe, which often interferes with the view of what is inside it, we will
replace it with a cutaway of the surface. We need two filters to perform this
task. The first filter will extract the surface, and the second filter will cut
some away.

Exercise 2.8: Creating a Visualization Pipeline

The images and some of the discussion in this exercise assume you are starting
with the state right after finishing Exercise 2.7. If you have had to restart
ParaView since or your state does not match up well enough, it is sufficient
to simply have disk out ref.ex2 loaded.

Start by adding a filter that will extract the surfaces. We do that with
the following steps.

1. Select disk out ref.ex2 in the pipeline browser.

2. From the menu bar, select Filters → Alphabetical → Extract Surface.
Or bring up the quick launch (ctrl+space Win/Linux, alt+space Mac),
type extract surface, and select that filter.

3. Hit the button.

24 CHAPTER 2. BASIC USAGE

When you apply the Extract Surface filter, you will once again see the
surface of the mesh. Although it looks like the original mesh, it is different
in that this data is hollow whereas the original data were solid throughout.

If you were showing the results of the contour filter, you cannot see the
contour anymore, but do not worry. It is still in there hidden by the surface.
If you are showing the contour but you did not see any effect after applying
the filter, you may have forgotten step one and applied the filter to the wrong
object. If the ExtractSurface1 object is not connected directly to the disk -
out ref.ex2, then this is what went wrong. If so, you can delete the filter and
try again.

Now we will cut away the external surface to expose the internal structure
and isosurface underneath (if you have one).

4. Verify that ExtractSurface1 is selected in the pipeline browser.

5. Create a clip filter from the toolbar or Filters menu.

6. Uncheck the Show Plane checkbox in the properties panel.

7. Click the button.

2.5. MULTIVIEW 25

If you have a contour, you should now see the isosurface contour within
a cutaway of the mesh surface. You will probably have to rotate the mesh
to see the contour clearly. �

disk_out_ref.ex2

Contour1 ExtractSurface1

Clip1

Now that we have added several filters to our pipeline, let us take a look
at the layout of these filters in the pipeline browser. The pipeline browser
provides a convenient list of pipeline objects that we have created. This
makes it easy to select pipeline objects and change their visibility by clicking
on the eyeball icons next to them. But also notice the indentation of the
entries in the list and the connecting lines toward the left. These features
reveal the connectivity of the pipeline. It shows the same information as
the traditional graph layout on the right, but in a much more compact space.
The trouble with the traditional layout of pipeline objects is that it takes a
lot of space, and even moderately sized pipelines require a significant portion
of the GUI to see fully. The pipeline browser, however, is complete and
compact.

2.5 Multiview

Occasionally in the pursuit of science we can narrow our focus down to one
variable. However, most interesting physical phenomena rely on not one but
many variables interacting in certain ways. It can be very challenging to
present many variables in the same view. To help you explore complicated
visualization data, ParaView contains the ability to present multiple views
of data and correlate them together.

So far in our visualization we are looking at two variables: We are coloring
with pressure and have extracted an isosurface with temperature. Although
we are starting to get the feel for the layout of these variables, it is still
difficult to make correlations between them. To make this correlation easier,

26 CHAPTER 2. BASIC USAGE

we can use multiple views. Each view can show an independent aspect of the
data and together they may yield a more complete understanding.

On top of each view is a small toolbar, and the buttons controlling the
creating and deletion of views are located on the right side of this tool bar.
There are four buttons in all. You can create a new view by splitting an ex-
isting view horizontally or vertically with the and buttons, respectively.
The button deletes a view, whose space is consumed by an adjacent view.
The temporarily fills view space with the selected view until is pressed.

Exercise 2.9: Using Multiple Views

We are going to start a fresh visualization, so if you have been following along
with the exercises so far, now is a good time to reset ParaView. The easiest
way to do this is to select Edit → Reset Session from the menu. This option
deletes all of your current work and resets ParaView back to its initial state.
It is roughly the equivalent of restarting ParaView.

First, we will look at one variable. We need to see the variable through
the middle of the mesh, so we are going to clip the mesh in half.

1. Open the file disk out ref.ex2, load all variables, (see Exer-
cise 2.5).

2. Add the Clip filter to disk out ref.ex2.

3. Uncheck the Show Plane checkbox in the properties panel.

4. Click the button.

5. Color the surface by pressure by changing the variable chooser (in the
toolbar) from Solid Color to Pres.

Now we can see the pressure in a plane through the middle of the mesh.
We want to compare that to the temperature on the same plane. To do that,
we create a new view to build another visualization.

6. Press the button.

2.5. MULTIVIEW 27

The current view is split in half and the right side is blank, ready to be
filled with a new visualization. Notice that the view in the right has a blue
border around it. This means that it is the active view. Widgets that
give information about and controls for a single view, including the pipeline
browser and properties panel, follow the active view. In this new view we
will visualize the temperature of the mesh.

7. Make sure the blue border is still around the new, blank view (to the
right). You can make any view the active view by simply clicking on
it.

8. Turn on the visibility of the clipped data by clicking the eyeball
next to Clip1 in the pipeline browser.

9. Color the surface by temperature by selecting Clip1 in the pipeline
browser and changing the variable chooser (in the toolbar) from Solid
Color to Temp.

28 CHAPTER 2. BASIC USAGE

We now have two views: one showing information about pressure and the
other information about temperature. We would like to compare these, but it
is difficult to do because the orientations are different. How are we to know
how a location in one correlates to a location in the other? We can solve
this problem by adding a camera link so that the two views will always be
drawn from the same viewpoint. Linking cameras is easy.

10. Right click on one of the views and select Link Camera... from the pop
up menu. (If you are on a Mac with no right mouse button, you can
perform the same operation with the menu option Tools→ Add Camera
Link....)

11. Click in a second view.

12. Try moving the camera in each view.

Voilà! The two cameras are linked; each will follow the other. With the
cameras linked, we can make some comparisons between the two views. Click
the button to get a straight-on view of the cross section.

Notice that the temperature is highest at the interface with the heated
disk. That alone is not surprising. We expect the air temperature to be
greatest near the heat source and drop off away from it. But notice that at
the same position the pressure is not maximal. The air pressure is maximal
at a position above the disk. Based on this information we can draw some
interesting hypotheses about the physical phenomenon. We can expect that
there are two forces contributing to air pressure. The first force is that of
gravity causing the upper air to press down on the lower air. The second force

2.5. MULTIVIEW 29

is that of the heated air becoming less dense and therefore rising. We can
see based on the maximal pressure where these two forces are equal. Such an
observation cannot be drawn without looking at both the temperature and
pressure in this way. �

Multiview in ParaView is of course not limited to simply two windows.
Note that each of the views has its own set of multiview buttons. You can
create more views by using the split view buttons to arbitrarily divide
up the working space. And you can delete views at any time.

The location of each view is also not fixed. You are also able to swap two
views by clicking on one of the view toolbars (somewhere outside of where
the buttons are), holding down the mouse button, and dragging onto one of
the other view toolbars. This will immediately swap the two views.

You can also change the size of the views by clicking on the space in
between views, holding down the mouse button, and dragging in the direction
of either one of the views. The divider will follow the mouse and adjust the
size of the views as it moves.

30 CHAPTER 2. BASIC USAGE

2.6 Vector Visualization

Let us see what else we can learn about this simulation. The simulation has
also outputted a velocity field describing the movement of the air over the
heated rotating disk. We will use ParaView to determine the currents in the
air.

A common and effective way to characterize a vector field is with stream-
lines. A streamline is a curve through space that at every point is tangent to
the vector field. It represents the path a weightless particle will take through
the vector field (assuming steady-state flow). Streamlines are generated by
providing a set of seed points.

Exercise 2.10: Streamlines

We are going to start a fresh visualization, so if you have been following along
with the exercises so far, now is a good time to select Edit → Reset Session
from the menu.

1. Open the file disk out ref.ex2, load all variables, (see Exer-
cise 2.5).

2. Add the stream tracer filter to disk out ref.ex2.

3. Click the button to accept the default parameters.

The surface of the mesh is replaced with some swirling lines. These lines
represent the flow through the volume. Notice that there is a spinning motion
around the center line of the cylinder. There is also a vertical motion in the
center and near the edges.

2.6. VECTOR VISUALIZATION 31

The new geometry is off-center from the previous geometry. We can
quickly center the view on the new geometry with the reset camera
command. This command centers and fits the visible geometry within the
current view and also resets the center of rotation to the middle of the visible
geometry. �

One issue with the streamlines as they stand now is that the lines are
difficult to distinguish because there are many close together and they have no
shading. Lines are a 1D structure and shading requires a 2D surface. Another
issue with the streamlines is that we cannot be sure in which direction the
flow is.

In the next exercise, we will modify the streamlines we created in Exer-
cise 2.10 to correct these problems. We can create a 2D surface around our
stream traces with the tube filter. This surface adds shading and depth cues
to the lines. We can also add glyphs to the lines that point in the direction
of the flow.

Exercise 2.11: Making Streamlines Fancy

This exercise is a continuation of Exercise 2.10. You will need to finish that
exercise before beginning this one.

1. Use the quick launch (ctrl+space Win/Linux, alt+space Mac) to add
the Tube filter to the streamlines.

2. Hit the button.

You can now see the streamlines much more clearly. As you look at the
streamlines from the side, you should be able to see circular convection as

32 CHAPTER 2. BASIC USAGE

air heats, rises, cools, and falls. If you rotate the streams to look down the Z
axis at the bottom near where the heated plate should be, you will also see
that the air is moving in a circular pattern due to the friction of the rotating
disk.

Now we can get a little fancier. We can add glyphs to the streamlines to
show the orientation and magnitude.

3. Select StreamTracer1 in the pipeline browser.

4. Add the glyph filter to StreamTracer1.

5. In the properties panel, change the Glyph Type option to Cone.

6. In the properties panel, change the Vectors option to V.

7. Scrolling down a bit, change Scale Mode to vector.

8. Click the reset button next to Scale Factor.

9. Hit the button.

10. Color the glyphs with the Temp variable.

Now the streamlines are augmented with little pointers. The pointers
face in the direction of the velocity, and their size is proportional to the
magnitude of the velocity. Try using this new information to answer the
following questions.

• Where is the air moving the fastest? Near the disk or away from it?
At the center of the disk or near its edges?

2.7. PLOTTING 33

• Which way is the plate spinning?

• At the surface of the disk, is air moving toward the center or away from
it?

�

2.7 Plotting

ParaView’s plotting capabilities provide a mechanism to drill down into your
data to allow quantitative analysis. Plots are usually created with filters,
and all of the plotting filters can be found in the Data Analysis submenu of
Filters. There is also a data analysis toolbar containing the most common
data analysis filters, some of which are used to generate plots.

Extract Selection Extracts any data selected into its own object. Se-
lections are described in Section 2.12.

Plot Global Variables Over Time Data sets sometimes capture in-
formation in “global” variables that apply to an entire dataset rather
than a single point or cell. This filter plots the global information over
time. ParaView’s handling of time is described in Section 2.9.

Plot Over Line Allows you to define a line segment in 3D space and
then plot field information over this line.

Plot Selection Over Time Takes the fields in selected points or cells
and plots their values over time. Selections are described in Section 2.12
and time is described in Section 2.9.

Probe Provides the field values in a particular location in space.

In the next exercise, we create a filter that will plot the values of the
mesh’s fields over a line in space.

34 CHAPTER 2. BASIC USAGE

Exercise 2.12: Plot Over a Line in Space

We are going to start a fresh visualization, so if you have been following along
with the exercises so far, now is a good time to reset ParaView. The easiest
way to do this is to select Edit → Reset Session from the menu.

1. Open the file disk out ref.ex2, load all variables, (see Exer-
cise 2.5).

2. Add the Clip filter to disk out ref.ex2, Uncheck the Show Plane
checkbox in the properties panel, and click (like
in Exercise 2.9). This will make it easier to see and manipulate the line
we are plotting over.

3. Click on disk out ref.ex2 in the pipeline browser to make that the active
object.

4. From the toolbars, select the plot over line filter.

In the active view you will see a line through your data with a ball at
each end. If you move your mouse over either of these balls, you can drag the
balls through the 3D view to place them. Notice that each time you move
the balls some of the fields in the properties panel also change. You can also
place the balls by hovering your mouse over the target location and hitting
the p key. This will alternatively place each ball at the surface underneath
the mouse cursor. This was the purpose of adding the clip filter: It allows us
to easily add the endpoints to this plane. Note that placing the endpoints in
this manner only works when rendering solid surfaces. It will not work with
a volume rendered image or transparent surfaces.

2.7. PLOTTING 35

This representation is called a 3D widget because it is a GUI component
that is manipulated in 3D space. There are many examples of 3D widgets
in ParaView. This particular widget, the line widget, allows you to specify a
line segment in space. Other widgets allow you to specify points or planes.

5. Adjust the line so that it goes from the base of the disk straight up
to the top of the mesh using the 3D widget manipulators, the p key
shortcut, or the properties panel parameters.

6. Once you have your line satisfactorily located, click the button.

There are several interactions you can do with the plot. Roll the mouse
wheel up and down to zoom in and out. Drag with the middle button to do
a rubber band zoom. Drag with the left button to scroll the plot around.
You can also use the reset camera command to restore the view to the
full domain and range of the plot. �

Plots, like 3D renderings, are considered views. Both provide a repre-
sentation for your data; they just do it in different ways. Because plots are
views, you interact with them in much the same ways as with a 3D view.
If you look in the Display section of the properties panel, you will see many
options on the representation for each line of the plot including colors, line
styles, vector components, and legend names.

36 CHAPTER 2. BASIC USAGE

If you scroll down further to the View section of the properties panel, you
to change plot-wide options such as labels, legends, and axes ranges.

Like any other views, you can capture the plot with the File → Save
Screenshot. Additionally, if you choose File→ Export Scene... you can export
a file with vector graphics that will scale properly for paper-quality images.
We will discuss these image capture features later in Section 2.11. You can
also resize and swap plots in the GUI like you can other views.

In the next exercise, we modify the display to get more information out
of our plot. Specifically, we use the plot to compare the pressure and tem-
perature variables.

Exercise 2.13: Plot Series Display Options

This exercise is a continuation of Exercise 2.12. You will need to finish that
exercise before beginning this one.

2.7. PLOTTING 37

1. Choose a place in your GUI that you would like the plot to go and try
using the split, delete, resize, and swap view features to move it there.

2. Make the plot view active, go to the Display section of the properties
panel, and turn off all variables except Temp and Pres.

The Temp and Pres variables have different units. Putting them on the
same scale is not useful. We can still compare them in the same plot by
placing each variable on its own scale. The line plot in ParaView allows for
a different scale on the left and right axis, and you can scale each variable
individually on each axis.

3. Select the Pres variable in the Display options.

4. Change the Chart Axis to Bottom - Right

From this plot we can verify some of the observations we made in Sec-
tion 2.5. We can see that the temperature is maximal at the plate surface
and falls as we move away from the plate, but the pressure goes up and then
back down. In addition, we can observe that the maximal pressure (and
hence the location where the forces on the air are equalized) is about 3 units
away from the disk. �

The ParaView framework is designed to accommodate any number of
different types of views. This is to provide researchers and developers a way
to deliver new ways of looking at data. To see another example of view,
select disk out ref.ex2 in the pipeline browser, and then select Filters → Data
Analysis → Histogram . Make the histogram for the Temp variable, and
then hit the button.

38 CHAPTER 2. BASIC USAGE

2.8 Volume Rendering

ParaView has several ways to represent data. We have already seen some
examples: surfaces, wireframe, and a combination of both. ParaView can
also render the points on the surface or simply draw a bounding box of the
data.

Points Wireframe Surface Surface with
Edges

Volume

A powerful way that ParaView lets you represent your data is with a
technique called volume rendering. With volume rendering, a solid mesh
is rendered as a translucent cloud with the scalar field determining the color
and density at every point in the cloud. Unlike with surface rendering, volume
rendering allows you to see features all the way through a volume.

Volume rendering is enabled by simply changing the representation of the
object. Let us try an example of that now.

2.8. VOLUME RENDERING 39

Exercise 2.14: Turning On Volume Rendering

We are going to start a fresh visualization, so if you have been following along
with the exercises so far, now is a good time to reset ParaView. The easiest
way to do this is to select Edit → Reset Session from the menu.

1. Open the file disk out ref.ex2, load all variables, (see Exer-
cise 2.5).

2. Make sure disk out ref.ex2 is selected in the pipeline browser. Change
the variable viewed to Temp and change the representation to Volume.

The solid opaque mesh is replaced with a translucent volume. You may
notice that when rotating your object that the rendering is temporarily re-
placed with a simpler transparent surface for performance reasons. We dis-
cuss this behavior in more detail later in Chapter 3. �

A useful feature of ParaView’s volume rendering is that it can be mixed
with the surface rendering of other objects. This allows you to add context
to the volume rendering or to mix visualizations for a more information-rich
view. For example, we can combine this volume rendering with a streamline
vector visualization like we did in Exercise 2.10.

Exercise 2.15: Combining Volume Rendering and
Surface-Based Visualization

This exercise is a continuation of Exercise 2.14. You will need to finish that
exercise before beginning this one.

40 CHAPTER 2. BASIC USAGE

1. Add the stream tracer filter to disk out ref.ex2.

2. Click the button to accept the default parameters.

You should now be seeing the streamlines embedded within the volume
rendering. The following additional steps add geometry to make the stream-
lines easier to see much like in Exercise 2.11. They are optional, so you can
skip them if you wish.

3. Use the quick launch (ctrl+space Win/Linux, alt+space Mac) to apply
the Tube filter and hit .

4. If the streamlines are colored by Temp, change that to Solid Color.

5. Select StreamTracer1 in the pipeline browser.

6. Add the glyph filter to StreamTracer1.

7. In the properties panel, change the Glyph Type option to Cone.

8. In the properties panel, change the Vectors option to V.

9. Scrolling down a bit, change Scale Mode to vector.

10. Click the reset button next to Scale Factor.

11. Hit the button.

12. Color the glyphs with the Temp variable.

2.8. VOLUME RENDERING 41

The streamlines are now shown in context with the temperature through-
out the volume. �

By default, ParaView will render the volume with the same colors as used
on the surface with the transparency set to 0 for the low end of the range
and 1 for the high end of the range. ParaView also provides an easy way to
change the transfer function, how scalar values are mapped to color and
transparency. You can access the transfer function editor by selecting the
volume rendered-pipeline object (in this case disk out ref.ex2) and clicking on
the edit color map button.

The first time you bring up the color map editor, it should appear at
the right side of the ParaView GUI window. Like most of the panels in
ParaView, this is a dockable window that you can move around the GUI or
pull off and place elsewhere on your desktop. Like the properties panel, some
of the advanced options are hidden to simplify the interface. To access these
hidden features, toggle the button in the upper right or type a search
string.

The two colorful boxes at the top represent the transfer function. The first
box with a function plot with colors underneath represents the transparency

42 CHAPTER 2. BASIC USAGE

whereas the long box at the bottom represents the colors.1 The dots on the
transfer functions represent the control points. The control points are the
specific color and opacity you set at particular scalar values, and the colors
and transparency are interpolated between them. Clicking on a blank spot
in either bar will create a new control point. Clicking on an existing control
point will select it. The selected control point can be dragged throughout
the box to change its scalar value and transparency (if applicable). Double
clicking on a color control point will allow you to change the color. The
selected control point will be deleted when you hit the backspace or delete
key.

Directly below the color and transparency bars is a text entry widget to
numerically specify the Data Value of the selected control point. Below this
are checkbox options to Use log scale when mapping data to colors, to Enable
opacity mapping for surfaces, and to Automatically rescale transfer functions to
fit data. (Note that this last option causes the data range to be resized under
most operations that change data, but not when the time value changes. See
Section 2.9 for more details.)

The following Color Space parameter changes how colors are interpolated.
This parameter has no effect on the color at the control points, but can
drastically affect the colors between the control points. Finally, the Nan
Color allows you to select a color for “invalid” values. A NaN is a special
floating point value used to represent something that is not a number (such
as the result of 0/0).

Setting up a transfer function can be tedious, so you can save it by clicking
the Save to preset button. The Choose preset button brings up a dialog
that allows you to manage and apply the color maps that you have created
as well as many provided by ParaView.

Exercise 2.16: Modifying Volume Rendering Transfer
Functions

This exercise is a continuation of Exercise 2.15. You will need to finish that
exercise (or minimally Exercise 2.14) before beginning this one.

1. Click on disk out ref.ex2 in the pipeline browser to make that the active
object.

1For surface rendering, the transparency controls have no effect unless “Enable opacity
mapping for surfaces” is enabled.

2.9. TIME 43

2. Click on the edit color map button.

3. Change the volume rendering to be more representative of heat. Press
Choose preset , select Black-Body Radiation in the dialog box, and
then click Close.

4. Try adding and changing control points and observe their effect on
the volume rendering. Click the Update button or turn on the update
automatically toggle to see the effects of your changes.

Notice that not only did the color mapping in the volume rendering
change, but all the color mapping for Temp changed including the cone glyphs
if you created them. This ensures consistency between the views and avoids
any confusion from mapping the same variable with different colors or differ-
ent ranges. �

2.9 Time

Now that we have thoroughly analyzed the disk out ref simulation, we will
move to a new simulation to see how ParaView handles time. In this section
we will use a new data set from another simple simulation, this time with
data that changes over time.

44 CHAPTER 2. BASIC USAGE

Exercise 2.17: Loading Temporal Data

We are going to start a fresh visualization, so if you have been following along
with the exercises so far, now is a good time to reset ParaView. The easiest
way to do this is to select Edit → Reset Session from the menu.

1. Open the file can.ex2.

2. As before, click the checkbox in the header of the variable list to turn
on the loading of all the variables and hit the button.

3. Press the button to orient the camera to the mesh.

4. Press the play button in the toolbars and watch ParaView animate
the mesh to crush the can with the falling brick.

�

That is really all there is to dealing with data that is defined over time.
ParaView has an internal concept of time and automatically links in the time
defined by your data. Become familiar with the toolbars that can be used to
control time.

First
Frame

Previous
Frame Play

Next
Frame

Last
Frame

Loop
Animation Current Time Current Time Step

2.9. TIME 45

Saving an animation is equally as easy. From the menu, select File →
Save Animation. ParaView provides dialogs specifying how you want to save
the animation, and then automatically iterates and saves the animation.

Exercise 2.18: Temporal Data Pitfall

The biggest pitfall users run into is that with mapping a set of colors whose
range changes over time. To demonstrate this, do the following.

1. If you are not continuing from Exercise 2.17, open the file can.ex2, load
all variables, .

2. Go to the first time step .

3. Color by the EQPS variable.

4. Play through the animation (or skip to the last time step).

The coloring is not very useful. To quickly fix the problem:

5. While at the last time step, click the Rescale to Data Range button.

6. Play the animation again.

The colors are more useful now. �

Although this behavior seems like a bug, it is not. It is the consequence
of two unavoidable behaviors. First, when you turn on the visibility of a
scalar field, the range of the field is set to the range of values in the current
time step. Ideally, the range would be set to the max and min over all time
steps in the data.

However, this requires ParaView to load in all of the data on the initial
read, and that is prohibitively slow for large data. Second, when you animate
over time, it is important to hold the color range fixed even if the range in the
data changes. Changing the scale of the data as an animation plays causes
a misrepresentation of the data. It is far better to let the scalars go out of
the original color map’s range than to imply that they have not. There are
several workarounds to this problem:

• If for whatever reason your animation gets stuck on a poor color range,
simply go to a representative time step and hit . This is what we
did in the previous exercise.

46 CHAPTER 2. BASIC USAGE

• Open the settings dialog box accessed in the menu from Edit→ Settings
(ParaView → Preferences on the Mac). Under the General tab, find the
option labeled Any time a new dataset with timesteps is opened, set
the timestep the application should go to by default and change it to
Go to last timestep. (If you have trouble finding this option, try typing
timestep into the setting’s search box.) When this is selected, ParaView
will automatically go to the last time step when loading any data set
with time. For many data (such as in can), the field ranges are more
representative at the last time step than at the beginning. Thus, as
long as you color by a field before changing the time, the color range
will be adequate.

• Click the Rescale to Custom Data Range toolbar button. This is a
good choice if you cannot find, or do not know, a “representative” time
step or if you already know a good range to use.

• If you are willing to wait or have small data, you can use the Rescale to
data range over all timesteps button on the edit color map dialog
and ParaView will compute this overall temporal range automatically.
Keep in mind that this option will require ParaView to load your entire
data set over all time steps. Although ParaView will not hold more than
one time step in memory at a time, it will take a long time to pull all
that memory off of disk for large data sets.

ParaView has many powerful options for controlling time and animation.
The majority of these are accessed through the animation view. From the
menu, click on View → Animation View.

For now we will examine the controls at the top of the animation view.
(We will examine the use of the tracks in the rest of the animation view
later in Section 2.13.) The animation mode parameter determines how
ParaView will step through time during playback. There are three modes
available.

2.9. TIME 47

Sequence Given a start and end time, break the animation into a specified
number of frames spaced equally apart.

Real Time ParaView will play back the animation such that it lasts the
specified number of seconds. The actual number of frames created
depends on the update time between frames.

Snap To TimeSteps ParaView will play back exactly those time steps that
are defined by your data.

Whenever you load a file that contains time, ParaView will automatically
change the animation mode to Snap To TimeSteps. Thus, by default you can
load in your data, hit play , and see each time step as defined in your
data. This is by far the most common use case.

A counter use case can occur when a simulation writes data at variable
time intervals. Perhaps you would like the animation to play back relative to
the simulation time rather than the time index. No problem. We can switch
to one of the other two animation modes. Another use case is the desire to
change the playback rate. Perhaps you would like to speed up or slow down
the animation. The other two animation modes allow us to do that.

Exercise 2.19: Slowing Down an Animation with the
Animation Mode

We are going to start a fresh visualization, so if you have been following along
with the exercises so far, now is a good time to reset ParaView. The easiest
way to do this is to select Edit → Reset Session from the menu.

1. Open the file can.ex2, load all variables, (see Exercise 2.17).

2. Press the button to orient the camera to the mesh.

3. Press the play button in the toolbars.

During this animation, ParaView is visiting each time step in the original
data file exactly once. Note the speed at which the animation plays.

4. If you have not done so yet, make the animation view visible: View →
Animation View.

48 CHAPTER 2. BASIC USAGE

5. Change the animation mode to Real Time. By default the animation is
set up with the time range specified by the data and a duration of 10
seconds.

6. Play the animation again.

The result looks similar to the previous Snap To TimeSteps animation,
but the animation is now a linear scaling of the simulation time and will
complete in 10 seconds.

7. Change the Duration to 60 seconds.

8. Play the animation again.

The animation is clearly playing back more slowly. Unless your computer
is updating slowly, you will also notice that the animation appears jerkier
than before. This is because we have exceeded the temporal resolution of the
data set. �

Often showing the jerky time steps from the original data is the desired
behavior; it is showing you exactly what is present in the data. However,
if you wanted to make an animation for a presentation, you may want a
smoother animation.

There is a filter in ParaView designed for this purpose. It is called the
temporal interpolator. This filter will interpolate the positional and field
data in between the time steps defined in the original data set.

Exercise 2.20: Temporal Interpolation

This exercise is a continuation of Exercise 2.14. You will need to finish that
exercise before beginning this one.

1. Make sure can.ex2 is highlighted in the pipeline browser.

2. Select Filters → Temporal → Temporal Interpolator or apply the Tem-
poral Interpolator filter using the quick launch (ctrl+space Win/Linux,
alt+space Mac).

3. .

2.10. TEXT ANNOTATION 49

4. Split the view , show the TemporalInterpolator1 in one, show can.ex2
in the other, and link the cameras.

5. Play the animation.

You should notice that the output from the temporal interpolator ani-
mates much more smoothly than the original data. �

It is worth noting that the temporal interpolator can (and often does)
introduce artifacts in the data. It is because of this that ParaView will never
apply this type of interpolation automatically; you will have to explicitly add
the Temporal Interpolator. In general, mesh deformations often interpolate
well but moving fields through a static mesh do not. Also be aware that
the Temporal Interpolator only works if the topology remains consistent. If
you have an adaptive mesh that changes from one time step to the next, the
Temporal Interpolator will give errors.

2.10 Text Annotation

When using ParaView as a communication tool it is often helpful to annotate
the images you create with text. With ParaView it is very easy to create
text annotation wherever you want in a 3D view. There is a special text
source that simply places some text in the view.

Exercise 2.21: Adding Text Annotation

If you are continuing this exercise after finishing Exercise 2.20, feel free to
simply continue. If you have had to restart ParaView since or your state
does not match up well enough, it is also fine to start with a fresh state.

1. From the menu bar, select Sources → Text.

2. In the text edit box of the properties panel, type a message.

3. Hit the button.

50 CHAPTER 2. BASIC USAGE

The text you entered appears in the 3D view. You can place this text
wherever you want by simply dragging it with the mouse. The Display group
in the properties panel provides options for the size, font, and color of the
text. It also has additional controls for placing the text in the most common
locations.

�

Often times you will need to put the current time value into the text
annotation. Typing the correct time value can be tedious and error prone
with the standard text source and impossible when making an animation.
Therefore, there is a special annotate time source that will insert the
current animation time into the string.

Exercise 2.22: Adding Time Annotation

1. If you do not already have it loaded from a previous exercise, open the
file can.ex2, .

2.10. TEXT ANNOTATION 51

2. Add an Annotate Time source (Sources → Annotate Time or use the
quick launch: ctrl+space Win/Linux, alt+space Mac), .

3. Move the annotation around as necessary.

4. Play and observe how the time annotation changes.

There are instances when the current animation time is not the same as
the time step read from a data file. Often it is important to know what the
time stored in the data file is, and there is a special version of annotate time
that acts as a filter.

5. Select can.ex2 in the pipeline browser.

6. Use the quick launch (ctrl+space Win/Linux, alt+space Mac) to apply
the Annotate Time Filter.

7. .

8. Move the annotation around as necessary.

9. Check the animation mode in the Animation View. If it is set to Snap
to TimeSteps, change it to Real Time.

10. Play and observe how the time annotation changes.

52 CHAPTER 2. BASIC USAGE

�

You can close the animation view. We are done with it for now, but we
will revisit it again in Section 2.13.

2.11 Save Screenshot and Save Animation

One of the most important products of any visualization is screenshots and
movies that can be used in presentations and reports. In this section we save
a screenshot (picture) and animation (movie). Once again, we will use the
can.ex2 dataset.

Exercise 2.23: Save Screenshot

We are going to start a fresh visualization, so if you have been following along
with the exercises so far, now is a good time to reset ParaView. The easiest
way to do this is to select Edit → Reset Session from the menu.

1. Open the file can.ex2, load all variables, (see Exercise 2.17).

2. Press the button to orient the camera to the mesh.

3. Color by GlobalNodeId. We use GlobalNodeId so that the 3D object has
some color.

4. Select File → Save Screenshot .

2.11. SAVE SCREENSHOT AND SAVE ANIMATION 53

The Save Screenshot window includes numerous important controls.
In the upper left of this window is the checkbox Save only selected view.

If you have multiple views open, clicking on this checkbox will only write the
selected one to an image file. Unselecting it will write all views to the image
file.

The Select resolution for the image to save entries allow you to create an
image that is larger (or smaller) than the current size of the 3d view. The
Override Color Palette pulldown menu allows a user to use the default color
scheme or one with a white color motif for printing. Finally, the Stereo Mode
(if applicable) menu allows you to create stereo screenshots.

5. Press the OK button.

This brings us to the file selection screen. If you pull down the menu Files
of type: at the bottom of the dialog box, you will see several file types sup-
ported including portable network graphics (PNG), and joint photographic
experts group (JPEG).

Select a File name for your file, and place it somewhere you can later
find and delete. We usually recommend saving images as PNG files. The
lossy compression of JPEG often creates noticeable artifacts in the images
generated by ParaView, and the compression of PNG is better than most
other raster formats.

54 CHAPTER 2. BASIC USAGE

6. Press the OK button.

Using your favorite image viewer, find and load the image you created.
If you have no image viewer, ParaView itself is capable of loading PNG files.

�

The colors used for the color palettes (as chosen, for example, with the
Override Color Palette in the previous exercise), are part of ParaView’s set-
tings. You can see and set all of these colors in the Edit→ Settings (ParaView
→ Preferences on the Mac) under the Color Palette tab.

The save screenshot function saves the image as a raster graphic. This
means that the image is represented by a rectangular grid of pixels with a
corresponding color for each pixel. This is natural for rendered images and
very efficient for images from large data sets. However, elements like text and
other labels often become disfigured, especially if the image is resized. These
elements are better represented as vector graphics, which use geometrical
primitives to draw the shapes. This geometry allows these elements to remain
smooth after image transformations and tend to look much nicer when used
in paper publications.

2.11. SAVE SCREENSHOT AND SAVE ANIMATION 55

Images with vector graphics are created using the export scene function,
which is similar but separate to the save screenshot function.

Exercise 2.24: Export Scene

1. If you do not already have it loaded from the previous exercise, open
the file can.ex2, load all variables, and (see Exercise 2.17).

2. Press the button to orient the camera to the mesh.

3. Color by GlobalNodeId. We use GlobalNodeId so that the 3D object has
some color.

4. Turn on the Cube Axes around the can. (The checkbox is in the prop-
erties panel under the display options. You can type axes in the search
box to quickly find it.) This will add some vector graphics to the scene.

5. Select File → Export Scene.

This brings us to the file selection screen. If you pull down the menu
Files of type: at the bottom of the dialog box, you will see several file types
supported including portable document format (PDF), postscript (PS), en-
capsulated postscript (EPS), and scalable vector graphics (SVG).

6. Select PDF as the file format (unless you have a convenient reader for
a different format) and enter a File name for your file. Then press OK.

One final dialog box is presented to allow you to set options on how
the data is saved in the particular format. The default values are usually
sufficient. Although it may be tempting to turn off the option to rasterize
the 3D geometry (thereby vectorizing everything in the image), we usually
discourage using this option. The vector graphics for 3D geometry tend to
have non-portable elements, and large geometry can cause lots of problems.

7. Press the Save button.

Open the saved file in your favorite PDF viewer. Zoom in on the cube
axes labels and the color legend. Note that the lines and text remain crisp
and readable no matter how far you zoom in. �

56 CHAPTER 2. BASIC USAGE

The export scene feature is particularly useful for saving charts like those
described in Section 2.7.

Next, we will save an animation.

Exercise 2.25: Save Animation

1. If you do not already have it loaded from the previous exercise, open
the file can.ex2, load all variables, and (see Exercise 2.17).

2. Select File → Save Animation .

The Save Screenshot window includes numerous important controls.
The Resolution (pixels) entries allow you to create an animation that is

larger (or smaller) than the current size of the 3d view.
The Stereo Mode (if applicable) menu allows you to create stereo movies.

3. Press the Save Animation button.

This brings us to the file selection screen. If you pull down the menu Files
of type: at the bottom of the dialog box, you will see the several file types
including Ogg/Theora, AVI, JPEG, and PNG.

Select a File name for your file, and place it somewhere you can later find
and delete. AVI will create a movie format that can be used on windows, and
with some open source viewers. Ogg/Theora is used in many open source

2.12. SELECTION 57

viewers. Otherwise, you can create a flipbook, or series of images. These
images can be stitched together to form a movie using numerous open source
tools. For now, try creating an AVI.

4. Press the OK button.

Using your favorite movie viewer, find and load the image you created.
�

2.12 Selection

The goal of visualization is often to find the important details within a large
body of information. ParaView’s selection abstraction is an important sim-
plification of this process. Selection is the act of identifying a subset of some
dataset. There are a variety of ways that this selection can be made, most of
which are intuitive to end users, and a variety of ways to display and process
the specific qualities of the subset once it is identified.

More specifically the subset identifies particular select points, cells, or
blocks within any single data set. There are multiple ways of specifying which
elements to include in the selection including Id lists of multiple varieties,
spatial locations, and scalar values and scalar ranges.

In ParaView, selection can take place at any time, and the program main-
tains a current selected set that is linked between all views. That is, if you
select something in one view, that selection is also shown in all other views
that display the same object.

The most direct means to create a selection is via the Find Data dialog.
Launch this dialog from the toolbar or the Edit menu. From this dialog you
can enter characteristics of the data that you are seraching for. For example,
you could look for points whose velocity magnitude is near terminal velocity.
Or you could look for cells whose strain exceeds the failure of the material.
The following exercise provides a quick example of using the Find Data
dialog box.

58 CHAPTER 2. BASIC USAGE

Exercise 2.26: Performing Query-Based Selections

In this exercise we will find all cells with a large equivalent plastic strain
(EQPS).

We are going to start a fresh visualization, so if you have been following
along with the exercises so far, now is a good time to reset ParaView. The
easiest way to do this is to select Edit → Reset Session from the menu.

1. Open the file can.ex2, load all variables, (see Exercise 2.17).

2. Go to the last time step .

3. Open the find data dialog .

4. From the top combo box, choose to find Cells.

5. In the next row of widgets, choose EQPS from the first combo box,
is >= from the second combo box, and enter 1.5 in the final text box.

6. Click the Run Selection Query button.

Observe the spreadsheet below the Run Selection Query button that gets
populated with the results of your query. Each row represents a cell and each
column represents a field value or property (such as an identifier).

You may also notice that several cells are highlighted in the 3D view of
the main ParaView window. These highlights represent the selection that
your query created. Close the Find Data dialog and note that the selection
remains. �

Another way of creating a selection is to pick elements right inside the
3D view. Most of the 3D view selections are performed with a rubber-band

2.12. SELECTION 59

selection. That is, by clicking and dragging the mouse in the 3D view, you
will create a boxed region that will select elements underneath it. There
are also some 3D view selections that allow you to select within a polygonal
region drawn on the screen. There are several types of interactive selections
that can be performed, and you initiate one by selecting one of the icons in
the small toolbar over the 3D view or using one of the shortcut keys. The
following 3D selections are possible.

Select Cells On (Surface) Selects cells that are visible in the view un-
der a rubber band. (Shortcut: s)

Select Points On (Surface) Selects points that are visible in the view
under a rubber band.

Select Cells Through (Frustum) Selects all cells that exist under a
rubber band.

Select Points Through (Frustum) Selects all points that exist under
a rubber band.

Select Cells With Polygon Like Select Cells On except that you draw
a polygon by dragging the mouse rather than making a rubber-band
selection.

Select Points With Polygon Like Select Points On except that you
draw a polygon by dragging the mouse rather than making a rubber-
band selection.

Select Blocks Selects blocks in a multiblock data set. (Shortcut: b)

The shortcuts s and b allow you to quickly select a cell or block, respec-
tively. Use them by placing the mouse cursor somewhere in the currently
selected 3D view and hitting the appropriate key. Then click on the cell or
block you want selected (or drag a rubber band over multiple elements).

Feel free to experiment with the selections now.
You can manage your selection with the Find Data dialog even if the

selection was created with one of these 3D interactions rather than directly
with a find data query. The find data dialog allows you to view all the points
and cells in the selection as well as perform simple operations on the selec-
tion. These include inverting the selection (a checkbox just over the spread-
sheet), adding labels (Exercise 2.28), freezing selections (Exercise 2.27), and

60 CHAPTER 2. BASIC USAGE

shortcuts for the Plot Selection Over Time and Extract Selection filters
(Exercises 2.29 and 2.30, respectively).

Experiment with selections in Find Data a bit. Open the Find Data
dialog box. Then make selections using the rubber-band selection and see
the results in the Find Data dialog box. Also experiment with altering the
selection by inverting selections with the Invert selection checkbox.

It should be noted that selections can be internally represented in different
ways. Some are recorded as a list of data element ids. Others are specified
as a region in space or by query parameters. Although the selections all look
the same, they can behave differently, especially with respect to changes
in time. The following exercise demonstrates how these different selection
mechanisms can behave differently.

Exercise 2.27: Data Element Selections vs. Spatial Se-
lections

1. If you do not already have it loaded from the previous exercise, open
the file can.ex2, load all variables, (see Exercise 2.17).

2. Make a selection using the Select Cells Through tool.

3. If it is not already visible, show the Find Data dialog box.

4. Click on the Show Frustum checkbox in the Find Data dialog and
rotate the 3D view. (Yes, the Show Frustum button has the same icon
as the Select Cells Through button.)

2.12. SELECTION 61

5. Play the animation a bit. Notice that the region remains fixed and
the selection changes based on what cells move in or out of the region.

6. Go to a timestep where some data is selected. In the Find Data dialog
box, click the Freeze Selection button.

7. Play again. Notice that the cells selected are fixed regardless of
position.

In summary, a spatial selection (created with one of the select through
tools) will re-perform the selection at each time step as elements move in and
out of the selected region. Likewise, other queries such as field range queries
will also re-execute as the data changes. However, when you select the Freeze
Selection button, ParaView captures the identifiers of the currently selected
elements so that they will remain the same throughout the animation. �

The spreadsheet in the find dialog provides a readable way to inspect field
data. However, sometimes it is helpful to place the field data directly in the
3D view. The next exercise describes how we can do that.

Exercise 2.28: Labeling Selections

1. If you do not already have it loaded from the previous exercise, open
the file can.ex2, load all variables, (see Exercise 2.17).

2. Go to the last time step .

3. If it is not already visible, show the Find Data dialog box.

4. Using the controls at the top of the find data dialog box, create a
selection where Global ID is min. Click Run Selection Query.

5. In the Cell Labels chooser, select EQPS.

62 CHAPTER 2. BASIC USAGE

ParaView places the values for the EQPS field near the selected cell that
contains that value. You should be able to see it in the 3D view. It is also
possible to change the look of the font with respect to type, size, and color
by clicking the button to the right of the label choosers.

You can turn off the labels by unchecking the entry in the Cell Labels
chooser. �

ParaView provides the ability to plot field data over time. Because you
seldom want to plot everything over all time, these plots work against a
selection.

Exercise 2.29: Plot Over Time

1. If you do not already have it loaded from the previous exercise, open
the file can.ex2, load all variables, (see Exercise 2.17).

2. If it is not already visible, show the Find Data dialog box.

3. Using the controls at the top of the find data dialog box, create a
selection where EQPS is max. Click Run Selection Query.

4. Click the Plot Selection Over Time button at the bottom of the find
data dialog box to add that filter. This filter is also easily accessible
by the toolbar button in the main ParaView window.

5. In the properties panel in the main ParaView window, click .

2.12. SELECTION 63

ParaView has created a plot of the field values of the cell with the max-
imum EQPS over time. Right now the plot is messy because ParaView is
reporting statistics for all field values of the selection (for example, what is
the element identifier for the cell with the highest EQPS). However, all we
want right now is information about the EQPS field itself.

6. In the display controls of the properties panel, turn off all plot series
except for max(EQPS).

Note that the selection you had was automatically added as the selection
to use in the Properties panel when the Plot Selection Over Time filter was
created. If you want to change the selection, simply make a new one and
click Copy Active Selection in the Properties panel.

Also note that the plot was for the maximum EQPS value at each
timestep, which could potentially be from a different cell at every timestep.
If the desire is to identify a cell with a maximum value at some timestep and
then plot that cell’s value at every timestep, then use the Freeze Selection
feature demonstrated in Exercise 2.27. �

You can also extract a selection in order to view the selected points or
cells separately or perform some independent processing on them. This is
done through the Extract Selection filter.

Exercise 2.30: Extracting a Selection

We are going to start a fresh visualization, so if you have been following along
with the exercises so far, now is a good time to reset ParaView. The easiest
way to do this is to select Edit → Reset Session from the menu.

64 CHAPTER 2. BASIC USAGE

1. Open the file can.ex2, load all variables, (see Exercise 2.17).

2. Make a sizable cell selection for example, with Select Cells Through .

3. Create an Extract Selection filter (available on the toolbar).

4. .

The object in the view is replaced with the cells that you just selected.
(Note that in this image I added a translucent surface and a second view with
the original selection to show the extracted cells in relation to the full data.)
You can perform computations on the extracted cells by simply adding filters
to the extract selection pipeline object. �

2.13 Animations

We have already seen how to animate a data set with time in it (hit) and
other ways to manipulate temporal data in Section 2.9. However, ParaView’s
animation capabilities go far beyond that. With ParaView you can animate
nearly any property of any pipeline object.

Exercise 2.31: Animating Properties

We are going to start a fresh visualization, so if you have been following along
with the exercises so far, now is a good time to reset ParaView. The easiest
way to do this is to select Edit → Reset Session from the menu.

1. Create a sphere source (Sources → Sphere) and it.

2.13. ANIMATIONS 65

2. If you have not done so yet, make the animation view visible: View →
Animation View.

3. Change the No. Frames option to 50 (10 will go far too quickly).

4. Find the property selection widgets at the bottom of the animation
view and select Sphere1 in the first box and Start Theta in the second
box.

Hit the button.

If you play the animation, you will see the sphere open up then even-
tually wrap around itself and disappear.

�

What you have done is created a track for the Start Theta property of the
Sphere1 object. A track is represented as horizontal bars in the animation
view. They hold key frames that specify values for the property at a specific
time instance. The value for the property is interpolated between the key
frames. When you created a track two key frames were created automatically:

66 CHAPTER 2. BASIC USAGE

a key frame at the start time with the minimal value and a key frame at the
end time with the maximal value. The property you set here defines the start
range of the sphere.

You can modify a track by double clicking on it. That will bring up a
dialog box that you can use to add, delete, and modify key frames.

We use this feature to create a new key frame in the animation in the
next exercise.

Exercise 2.32: Modifying Animation Track Keyframes

This exercise is a continuation of Exercise 2.31. You will need to finish that
exercise before beginning this one.

1. Double-click on the Sphere1 – Start Theta track.

2. In the Animation Keyframes dialog, click the New button. This will
create a new key frame.

3. Modify the first key frame value to be 360.

4. Modify the second key frame time to be 0.5 and value to be 0.

5. Click OK.

2.13. ANIMATIONS 67

When you play the animation, the sphere will first get bigger and then
get smaller again. �

You are not limited to animating just one property. You can animate
any number of properties you wish. Now we will create an animation that
depends on modifying two properties.

Exercise 2.33: Multiple Animation Tracks

This exercise is a continuation of Exercises 2.31 and 2.32. You will need to
finish those exercises before beginning this one.

1. Double-click on the Sphere1 – Start Theta track.

2. In the Animation Keyframes dialog, Delete the first track (at time step
0).

3. Click OK.

4. In the animation view, create a track for the Sphere1 object, End Theta
property.

5. Double-click on the Sphere1 – End Theta track.

6. Change the time for the second key frame to be 0.5.

The animation will show the sphere creating and destroying itself, but
this time the range front rotates in the same direction. It makes for a very
satisfying animation when you loop the animation. �

In addition to animating properties for pipeline objects, you can animate
the camera. ParaView provides methods for animating the camera along

68 CHAPTER 2. BASIC USAGE

curves that you specify. The most common animation is to rotate the camera
around an object, always facing the object, and ParaView provides a means
to automatically generate such an animation.

Exercise 2.34: Camera Orbit Animations

For this exercise, we will orbit the camera around whatever data you have
loaded. If you are continuing from the previous exercise, you are set up. If
not, simply load or create some data. To see the effects, it is best to have
asymmetry in the geometry you load. can.ex2 is a good data set to load for
this exercise.

1. Place the camera where you want the orbit to start. The camera will
move to the right around the viewpoint.

2. Make sure the animation view panel is visible (View → Animation View
if it is not).

3. In the property selection widgets, select Camera in the first box and
Orbit in the second box.

Hit the button.

Before the new track is created, you will be presented with a dialog box
that specifies the parameters of the orbit. The default values come from the
current camera position, which is usually what you want.

4. Click OK.

2.13. ANIMATIONS 69

5. Play .

The camera will now animate around the object. �

Another common camera annotation is to follow an object as it moves
through space. Imagine a simulation of a traveling bullet or vehicle. If we
hold the camera steady, then the object will quickly move out of view. To
help with this situation, ParaView provides a special track that allows the
camera to follow the data in the scene.

Exercise 2.35: Following Data in an Animation

We are going to start a fresh visualization, so if you have been following along
with the exercises so far, now is a good time to reset ParaView. The easiest
way to do this is to select Edit → Reset Session from the menu.

1. Open the file can.ex2, load all variables, (see Exercise 2.17).

2. Press the button to orient the camera to the mesh.

3. Make sure the animation view panel is visible (View → Animation View
if it is not).

4. In the property selection widgets, select Camera in the first box and
Follow Data in the second box.

Hit the button.

5. Play .

Note that instead of the can crushing to the bottom of the view, the
animation shows the can lifted up to be continually centered in the image.
This is because the camera is following the can down as it is crushed. �

70 CHAPTER 2. BASIC USAGE

Chapter 3

Visualizing Large Models

ParaView is used frequently at Sandia National Laboratories and other in-
stitutions for visualizing data from large-scale simulations run on the world’s
largest supercomputers including the examples shown here.

CTH shock physics simulation with
over 1 billion cells of a 10 megaton ex-
plosion detonated at the center of the
Golevka asteroid.

SEAM Climate Modeling simulation with
1 billion cells modeling the breakdown of
the polar vortex, a circumpolar jet that
traps polar air at high latitudes.

71

72 CHAPTER 3. VISUALIZING LARGE MODELS

A CTH simulation that generates AMR
data. We have used ParaView to visualize
CTH simulation AMR data comprising bil-
lions of cells, 100’s of thousands of blocks,
and eleven levels of hierarchy (not shown).

A PHASTA simulation of 3.3 billion
tetrahedral cells involving the flow
over a full wing where a synthetic jet
issues an unsteady crossflow jet.

In this section we discuss visualizing large meshes like these using the
parallel visualization capabilities of ParaView. This section is less “hands-
on” than the previous section. You will learn the conceptual knowledge
needed to perform large parallel visualization instead. We present the basic
ParaView architecture and parallel algorithms and demonstrate how to apply
this knowledge.

3.1 ParaView Architecture

ParaView is designed as a three-tier client-server architecture. The three
logical units of ParaView are as follows.

Data Server The unit responsible for data reading, filtering, and writing.
All of the pipeline objects seen in the pipeline browser are contained
in the data server. The data server can be parallel.

Render Server The unit responsible for rendering. The render server can
also be parallel, in which case built in parallel rendering is also enabled.

Client The unit responsible for establishing visualization. The client con-
trols the object creation, execution, and destruction in the servers, but
does not contain any of the data (thus allowing the servers to scale
without bottlenecking on the client). If there is a GUI, that is also in
the client. The client is always a serial application.

3.1. PARAVIEW ARCHITECTURE 73

These logical units need not be physically separated. Logical units are
often embedded in the same application, removing the need for any com-
munication between them. There are three modes in which you can run
ParaView.

Client

Data
Server

Render
Server

The first mode, which you are already familiar with, is standalone mode.
In standalone mode, the client, data server, and render server are all com-
bined into a single serial application. When you run the paraview applica-
tion, you are automatically connected to a builtin server so that you are
ready to use the full features of ParaView.

Client Data
Server

Render
Server

The second mode is client-server mode. In client-server mode, you ex-
ecute the pvserver program on a parallel machine and connect to it with
the paraview client application. The pvserver program has both the data
server and render server embedded in it, so both data processing and render-
ing take place there. The client and server are connected via a socket, which
is assumed to be a relatively slow mode of communication, so data transfer
over this socket is minimized.

74 CHAPTER 3. VISUALIZING LARGE MODELS

Client Data
Server

Render
Server

The third mode is client–render-server–data-server mode. In this
mode, all three logical units are running in separate programs. As before,
the client is connected to the render server via a single socket connection.
The render server and data server are connected by many socket connections,
one for each process in the render server. Data transfer over the sockets is
minimized.

Although the client-render server-data server mode is supported, we al-
most never recommend using it. The original intention of this mode is to
take advantage of heterogeneous environments where one might have a large,
powerful computational platform and a second smaller parallel machine with
graphics hardware in it. However, in practice we find any benefit is almost
always outstripped by the time it takes to move geometry from the data
server to the render server. If the computational platform is much bigger
than the graphics cluster, then use software rendering on the large compu-
tational platform. If the two platforms are about the same size just perform
all the computation on the graphics cluster.

3.2 Setting up a ParaView Server

Setting up standalone ParaView is usually trivial. You can download a pre-
compiled binary, install it on your computer, and go. Setting up a ParaView
server, however, is intrinsically harder. First, you will have to compile the
server yourself. Because there are so many versions of MPI, the library that
makes parallel programming possible, and each version of MPI may be altered
to match the communication hardware of a parallel computer, it is impossible
to reliably provide binary files to match every possible combination.

To compile ParaView on a parallel machine, you will need the following.

3.2. SETTING UP A PARAVIEW SERVER 75

• CMake cross-platform build setup tool (www.cmake.org)

• MPI

• OpenGL (or use Mesa 3D www.mesa3d.org if otherwise unavailable)

• Qt 4.7 (optional)

• Python +NumPy +Matplotlib (optional)

Compiling without one of the optional libraries means a feature will not
be available. Compiling without Qt means that you will not have the GUI
application and compiling without Python means that you will not have
scripting available.

To compile ParaView, you first run CMake, which will allow you to set
up compilation parameters and point to libraries on your system. This will
create the make files that you then use to build ParaView. For more details
on building a ParaView server, see the ParaView Wiki.

http://www.paraview.org/Wiki/Setting up a ParaView Server#Compiling

Running ParaView in parallel is also intrinsically more difficult than run-
ning the standalone client. It typically involves a number of steps that change
depending on the hardware you are running on: logging in to remote com-
puters, allocating parallel nodes, launching a parallel program, establishing
connections, and tunneling through firewalls.

Client-server connections are established through the paraview client ap-
plication. You connect to servers and disconnect from servers with the
and buttons. When ParaView starts, it automatically connects to the
builtin server. It also connects to builtin whenever it disconnects from a
server.

When you hit the button, ParaView presents you with a dialog box
containing a list of known servers you may connect to. This list of servers
can be both site- and user-specific.

http://www.cmake.org
http://www.mesa3d.org
http://www.paraview.org/Wiki/Setting_up_a_ParaView_Server#Compiling

76 CHAPTER 3. VISUALIZING LARGE MODELS

You can specify how to connect to a server either through the GUI by
pressing the Add Server button or through an XML definition file. There
are several options for specifying server connections, but ultimately you are
giving ParaView a command to launch the server and a host to connect to
after it is launched. Consult the ParaView Wiki for more information on
establishing server connections.

http://www.paraview.org/Wiki/Setting up a ParaView Server#Running the Server

3.3 Parallel Visualization Algorithms

We are fortunate in that once you have a parallel framework, performing
parallel visualization tasks is straightforward. The data we deal with is
contained in a mesh, which means the data is already broken into little
pieces by the cells. We can do visualization on a distributed parallel machine
by first dividing the cells among the processes. For demonstrative purposes,
consider this very simplified mesh.

Now let us say we want to perform visualizations on this mesh using three
processes. We can divide the cells of the mesh as shown below with the blue,
yellow, and pink regions.

Once partitioned, some visualization algorithms will work by simply al-
lowing each process to independently run the algorithm on its local collection

http://www.paraview.org/Wiki/Setting_up_a_ParaView_Server#Running_the_Server

3.4. GHOST LEVELS 77

of cells. For example, take clipping (which is demonstrated in multiple exer-
cises including 2.9). Let us say that we define a clipping plane and give that
same plane to each of the processes.

Each process can independently clip its cells with this plane. The end
result is the same as if we had done the clipping serially. If we were to bring
the cells together (which we would never actually do for large data for obvious
reasons) we would see that the clipping operation took place correctly.

3.4 Ghost Levels

Unfortunately, blindly running visualization algorithms on partitions of cells
does not always result in the correct answer. As a simple example, con-
sider the external faces algorithm. The external faces algorithm finds all
cell faces that belong to only one cell, thereby identifying the boundaries of
the mesh. What happens when we run external faces independently on our
partitions?

78 CHAPTER 3. VISUALIZING LARGE MODELS

Oops. We see that when all the processes ran the external faces algorithm
independently, many internal faces were incorrectly identified as being exter-
nal. This happens where a cell in one partition has a neighbor in another
partition. A process has no access to cells in other partitions, so there is no
way of knowing that these neighboring cells exist.

The solution employed by ParaView and other parallel visualization sys-
tems is to use ghost cells (sometimes also called halo regions). Ghost
cells are cells that are held in one process but actually belong to another.
To use ghost cells, we first have to identify all the neighboring cells in each
partition. We then copy these neighboring cells to the partition and mark
them as ghost cells, as indicated with the gray colored cells in the following
example.

When we run the external faces algorithm with the ghost cells, we see that
we are still incorrectly identifying some internal faces as external. However,
all of these misclassified faces are on ghost cells, and the faces inherit the
ghost status of the cell it came from. ParaView then strips off the ghost
faces and we are left with the correct answer.

In this example we have shown one layer of ghost cells: only those cells
that are direct neighbors of the partition’s cells. ParaView also has the

3.5. DATA PARTITIONING 79

ability to retrieve multiple layers of ghost cells, where each layer contains the
neighbors of the previous layer not already contained in a lower ghost layer
or the original data itself. This is useful when we have cascading filters that
each require their own layer of ghost cells. They each request an additional
layer of ghost cells from upstream, and then remove a layer from the data
before sending it downstream.

3.5 Data Partitioning

Since we are breaking up and distributing our data, it is prudent to address
the ramifications of how we partition the data. The data shown in the pre-
vious example has a spatially coherent partitioning. That is, all the cells
of each partition are located in a compact region of space. There are other
ways to partition data. For example, you could have a random partitioning.

Random partitioning has some nice features. It is easy to create and is
friendly to load balancing. However, a serious problem exists with respect to
ghost cells.

80 CHAPTER 3. VISUALIZING LARGE MODELS

In this example, we see that a single level of ghost cells nearly replicates
the entire data set on all processes. We have thus removed any advantage
we had with parallel processing. Because ghost cells are used so frequently,
random partitioning is not used in ParaView.

3.6 D3 Filter

The previous section described the importance of load balancing and ghost
levels for parallel visualization. This section describes how to achieve that.

Load balancing and ghost cells are handled automatically by ParaView
when you are reading structured data (image data, rectilinear grid, and struc-
tured grid). The implicit topology makes it easy to break the data into
spatially coherent chunks and identify where neighboring cells are located.

It is an entirely different matter when you are reading in unstructured
data (poly data and unstructured grid). There is no implicit topology and
no neighborhood information available. ParaView is at the mercy of how the
data was written to disk. Thus, when you read in unstructured data there
is no guarantee about how well load balanced your data will be. It is also
unlikely that the data will have ghost cells available, which means that the
output of some filters may be incorrect.

Fortunately, ParaView has a filter that will both balance your unstruc-
tured data and create ghost cells. This filter is called D3, which is short
for distributed data decomposition. Using D3 is easy; simply attach the fil-
ter (located in Filters → Alphabetical → D3) to whatever data you wish to
repartition.

3.7. MATCHING JOB SIZE TO DATA SIZE 81

The most common use case for D3 is to attach it directly to your unstruc-
tured grid reader. Regardless of how well load balanced the incoming data
might be, it is important to be able to retrieve ghost cells so that subsequent
filters will generate the correct data. The example above shows a cutaway
of the extract surface filter on an unstructured grid. On the left we see that
there are many faces improperly extracted because we are missing ghost cells.
On the right the problem is fixed by first using the D3 filter.

3.7 Matching Job Size to Data Size

How many cores should I have in my ParaView server? This is a common
question with many important ramifications. It is also an enormously difficult
question. The answer depends on a wide variety of factors including what
hardware each processor has, how much data is being processed, what type
of data is being processed, what type of visualization operations are being
done, and your own patience.

Consequently, we have no hard answer. We do however have several rules
of thumb.

If you are loading structured data (image data, rectilinear grid, struc-
tured grid), try to have a minimum of one core per 20 million cells. If you
can spare the cores, one core for every 5 to 10 million cells is usually plenty.

If you are loading unstructured data (poly data, unstructured grid),
try to have a minimum of one core per 1 million cells. If you can spare the
cores, one core for every 250 to 500 thousand cells is usually plenty.

As stated before, these are just rules of thumb, not absolutes. You should
always try to experiment to gage what your core to data size should be. And,
of course, there will always be times when the data you want to load will
stretch the limit of the resources you have available. When this happens,

82 CHAPTER 3. VISUALIZING LARGE MODELS

you will want to make sure that you avoid data explosion and that you cull
your data quickly.

3.8 Avoiding Data Explosion

The pipeline model that ParaView presents is very convenient for exploratory
visualization. The loose coupling between components provides a very flexi-
ble framework for building unique visualizations, and the pipeline structure
allows you to tweak parameters quickly and easily.

The downside of this coupling is that it can have a larger memory foot-
print. Each stage of this pipeline maintains its own copy of the data. When-
ever possible, ParaView performs shallow copies of the data so that dif-
ferent stages of the pipeline point to the same block of data in memory.
However, any filter that creates new data or changes the values or topology
of the data must allocate new memory for the result. If ParaView is filtering
a very large mesh, inappropriate use of filters can quickly deplete all avail-
able memory. Therefore, when visualizing large data sets, it is important to
understand the memory requirements of filters.

Please keep in mind that the following advice is intended only for when
dealing with very large amounts of data and the remaining available memory
is low. When you are not in danger of running out of memory, ignore all of
the following advice.

When dealing with structured data, it is absolutely important to know
what filters will change the data to unstructured. Unstructured data has a
much higher memory footprint, per cell, than structured data because the
topology must be explicitly written out. There are many filters in ParaView
that will change the topology in some way, and these filters will write out
the data as an unstructured grid, because that is the only data set that will
handle any type of topology that is generated. The following list of filters
will write out a new unstructured topology in its output that is roughly
equivalent to the input. These filters should never be used with structured
data and should be used with caution on unstructured data.

• Append Datasets

• Append Geometry

• Clean

• Clean to Grid

• Connectivity

• D3

3.8. AVOIDING DATA EXPLOSION 83

• Delaunay 2D/3D

• Extract Edges

• Linear Extrusion

• Loop Subdivision

• Reflect

• Rotational Extrusion

• Shrink

• Smooth

• Subdivide

• Tessellate

• Tetrahedralize

• Triangle Strips

• Triangulate

Technically, the Ribbon and Tube filters should fall into this list. However,
as they only work on 1D cells in poly data, the input data is usually small
and of little concern.

This similar set of filters also output unstructured grids, but they also
tend to reduce some of this data. Be aware though that this data reduction
is often smaller than the overhead of converting to unstructured data. Also
note that the reduction is often not well balanced. It is possible (often likely)
that a single process may not lose any cells. Thus, these filters should be
used with caution on unstructured data and extreme caution on structured
data.

• Clip

• Decimate

• Extract Cells by Region

• Extract Selection

• Quadric Clustering

• Threshold

Similar to the items in the preceding list, Extract Subset performs data
reduction on a structured data set, but also outputs a structured data set.
So the warning about creating new data still applies, but you do not have to
worry about converting to an unstructured grid.

This next set of filters also outputs unstructured data, but it also performs
a reduction on the dimension of the data (for example 3D to 2D), which
results in a much smaller output. Thus, these filters are usually safe to use
with unstructured data and require only mild caution with structured data.

84 CHAPTER 3. VISUALIZING LARGE MODELS

• Cell Centers

• Contour

• Extract CTH Fragments

• Extract CTH Parts

• Extract Surface

• Feature Edges

• Mask Points

• Outline (curvilinear)

• Slice

• Stream Tracer

These filters do not change the connectivity of the data at all. Instead,
they only add field arrays to the data. All the existing data is shallow copied.
These filters are usually safe to use on all data.

• Block Scalars

• Calculator

• Cell Data to Point Data

• Curvature

• Elevation

• Generate Surface Normals

• Gradient

• Level Scalars

• Median

• Mesh Quality

• Octree Depth Limit

• Octree Depth Scalars

• Point Data to Cell Data

• Process Id Scalars

• Python Calculator

• Random Vectors

• Resample with dataset

• Surface Flow

• Surface Vectors

• Texture Map to...

• Transform

• Warp (scalar)

• Warp (vector)

This final set of filters are those that either add no data to the output
(all data of consequence is shallow copied) or the data they add is generally
independent of the size of the input. These are almost always safe to add
under any circumstances (although they may take a lot of time).

3.9. CULLING DATA 85

• Annotate Time

• Append Attributes

• Extract Block

• Extract Datasets

• Extract Level

• Glyph

• Group Datasets

• Histogram

• Integrate Variables

• Normal Glyphs

• Outline

• Outline Corners

• Plot Global Variables Over Time

• Plot Over Line

• Plot Selection Over Time

• Probe Location

• Temporal Shift Scale

• Temporal Snap-to-Time-Steps

• Temporal Statistics

There are a few special case filters that do not fit well into any of the pre-
vious classes. Some of the filters, currently Temporal Interpolator and Particle
Tracer, perform calculations based on how data changes over time. Thus,
these filters may need to load data for two or more instances of time, which
can double or more the amount of data needed in memory. The Temporal
Cache filter will also hold data for multiple instances of time. Also keep in
mind that some of the temporal filters such as the temporal statistics and
the filters that plot over time may need to iteratively load all data from disk.
Thus, it may take an impractically long amount of time even though it does
not require any extra memory.

The Programmable Filter is also a special case that is impossible to
classify. Since this filter does whatever it is programmed to do, it can fall
into any one of these categories.

3.9 Culling Data

When dealing with large data, it is clearly best to cull out data whenever
possible, and the earlier the better. Most large data starts as 3D geometry
and the desired geometry is often a surface. As surfaces usually have a much
smaller memory footprint than the volumes that they are derived from, it is

86 CHAPTER 3. VISUALIZING LARGE MODELS

best to convert to a surface soon. Once you do that, you can apply other
filters in relative safety.

A very common visualization operation is to extract isosurfaces from a
volume using the Contour filter. The Contour filter usually outputs geom-
etry much smaller than its input. Thus, the Contour filter should be applied
early if it is to be used at all. Be careful when setting up the parameters
to the Contour filter because it still is possible for it to generate a lot of
data. This obviously can happen if you specify many isosurface values. High
frequencies such as noise around an isosurface value can also cause a large,
irregular surface to form.

Another way to peer inside of a volume is to perform a Slice on it.
The Slice filter will intersect a volume with a plane and allow you to see
the data in the volume where the plane intersects. If you know the relative
location of an interesting feature in your large data set, slicing is a good way
to view it.

If you have little a-priori knowledge of your data and would like to explore
the data without paying the memory and processing time for the full data
set, you can use the Extract Subset filter to subsample the data. The
subsampled data can be dramatically smaller than the original data and
should still be well load balanced. Of course, be aware that you may miss
small features if the subsampling steps over them and that once you find a
feature you should go back and visualize it with the full data set.

There are also several features that can pull out a subset of a volume:
Clip , Threshold , Extract Selection, and Extract Subset can all extract
cells based on some criterion. Be aware, however, that the extracted cells are
almost never well balanced; expect some processes to have no cells removed.
Also, all of these filters with the exception of Extract Subset will convert
structured data types to unstructured grids. Therefore, they should not be
used unless the extracted cells are of at least an order of magnitude less than
the source data.

When possible, replace the use of a filter that extracts 3D data with one
that will extract 2D surfaces. For example, if you are interested in a plane
through the data, use the Slice filter rather than the Clip filter. If
you are interested in knowing the location of a region of cells containing a
particular range of values, consider using the Contour filter to generate
surfaces at the ends of the range rather than extract all of the cells with
the Threshold filter. Be aware that substituting filters can have an effect
on downstream filters. For example, running the Histogram filter after

3.10. KEEPING TRACK OF MEMORY 87

Threshold will have an entirely different effect than running it after the
roughly equivalent Contour filter.

3.10 Keeping Track of Memory

When working with very large models, it is important to keep track of mem-
ory usage on your computer. One of the most common and frustrating prob-
lems encountered with large models is running out of memory. This in turn
will lead to thrashing in the virtual memory system or an outright program
fault.

Sections 3.8 and 3.9 provide suggestions to reduce your memory usage.
Even so, it is wise to keep an eye on the memory available in your system.
ParaView provides a tool called the memory inspector designed to do just
that.

To access the memory inspector, select in the menu bar View → Memory
Inspector. The memory inspector provides information for both the client you
are running on and any server you might be connected to. It will tell you
the total amount of memory used on the system and the amount of memory
ParaView is using. For servers containing multiple nodes, information both
for the conglomerate job and for each individual node are given. Note that a
memory issue in any single node can cause a problem for the entire ParaView
job.

88 CHAPTER 3. VISUALIZING LARGE MODELS

3.11 Rendering

Rendering is the process of synthesizing the images that you see based on your
data. The ability to effectively interact with your data depends highly on
the speed of the rendering. Thanks to advances in 3D hardware acceleration,
fueled by the computer gaming market, we have the ability to render 3D
quickly even on moderately priced computers. But, of course, the speed of
rendering is proportional to the amount of data being rendered. As data gets
bigger, the rendering process naturally gets slower.

To ensure that your visualization session remains interactive, ParaView
supports two modes of rendering that are automatically flipped as necessary.
In the first mode, still render, the data is rendered at the highest level
of detail. This rendering mode ensures that all of the data is represented
accurately. In the second mode, interactive render, speed takes precedence
over accuracy. This rendering mode endeavors to provide a quick rendering
rate regardless of data size.

While you are interacting with a 3D view, for example rotating, panning,
or zooming with the mouse, ParaView uses an interactive render. This is
because during the interaction a high frame rate is necessary to make these
features usable and because each frame is immediately replaced with a new
rendering while the interaction is occurring so that fine details are less im-
portant during this mode. At any time when interaction of the 3D view is
not taking place, ParaView uses a still render so that the full detail of the
data is available as you study it. As you drag your mouse in a 3D view to
move the data, you may see an approximate rendering while you are moving
the mouse, but the full detail will be presented as soon as you release the
mouse button.

The interactive render is a compromise between speed and accuracy. As
such, many of the rendering parameters concern when and how lower levels
of detail are used.

3.11.1 Basic Rendering Settings

Some of the most important rendering options are the LOD parameters.
During interactive rendering, the geometry may be replaced with a lower
level of detail (LOD), an approximate geometry with fewer polygons.

3.11. RENDERING 89

The resolution of the geometric approximation can be controlled. In the
proceeding images, the left image is the full resolution; the middle image
is the default decimation for interactive rendering, and the right image is
ParaView’s maximum decimation setting.

The 3D rendering parameters are located in the settings dialog box which
is accessed in the menu from Edit→ Settings (ParaView→ Preferences on the
Mac). The rendering options in the dialog are in the Render View tab.

The options pertaining to the geometric decimation for interactive ren-
dering are located in a section labeled Interactive Rendering Options. Some of
these options are considered advanced, so to access them you have to either
toggle on the advanced options with the button or search for the option

90 CHAPTER 3. VISUALIZING LARGE MODELS

using the edit box at the top of the dialog. The interactive rendering options
include the following.

• Set the data size at which to use a decimated geometry in interactive
rendering. If the geometry size is under this threshold, ParaView al-
ways renders the full geometry. Increase this value if you have a decent
graphics card that can handle larger data. Try decreasing this value if
your interactive renders are too slow.

• Set the factor that controls how large the decimated geometry should
be. This control is set to a value between 0 and 1. 0 produces a
very small number of triangles but possibly with a lot of distortion. 1
produces more detailed surfaces but with larger geometry.

• Add a delay between an interactive render and a still render. ParaView
usually performs a still render immediately after an interactive motion
is finished (for example, releasing the mouse button after a rotation).
This option can add a delay that can give you time to start a second
interaction before the still render starts, which is helpful if the still
render takes a long time to complete.

• Use an outline in place of decimated geometry. The outline is an alter-
native for when the geometry decimation takes too long or still produces
too much geometry. However, it is more difficult to interact with just
an outline.

ParaView contains many more rendering settings. Here is a summary of
some other settings that can effect the rendering performance regardless of
whether ParaView is run in client-server mode or not. These options are
spread among several categories, and several are considered advanced.

Geometry Mapper Options

• Enable or disable the use of display lists. Display lists are internal
structures built by graphics systems. They can potentially speed
up rendering but can also take up memory.

Translucent Rendering Options

3.11. RENDERING 91

• Enable or disable depth peeling. Depth peeling is a technique
ParaView uses to properly render translucent surfaces. With it,
the top surface is rendered and then “peeled away” so that the
next lower surface can be rendered and so on. If you find that
making surfaces transparent really slows things down or renders
completely incorrectly, then your graphics hardware may not be
implementing the depth peeling extensions well; try shutting off
depth peeling.

• Set the maximum number of peels to use with depth peeling. Us-
ing more peels allows more depth complexity but allowing less
peels runs faster. You can try adjusting this parameter if translu-
cent geometry renders too slow or translucent images do not look
correct.

Miscellaneous

• When creating very large datasets, default to the outline repre-
sentation. Surface representations usually require ParaView to
extract geometry of the surface, which takes time and memory.
For data with size above this threshold, use the outline represen-
tation, which has very little overhead, by default instead.

• Show or hide annotation providing rendering performance infor-
mation. This information is handy when diagnosing performance
problems.

Note that this is not a complete list of ParaView rendering settings. We
have left out settings that do not significantly effect rendering performance.
We have also left out settings that are only valid for parallel client-server
rendering, which are discussed in Section 3.11.4.

3.11.2 Basic Parallel Rendering

When performing parallel visualization, we are careful to ensure that the
data remains partitioned among all of the processes up to and including
the rendering processes. ParaView uses a parallel rendering library called
IceT. IceT uses a sort-last algorithm for parallel rendering. This parallel
rendering algorithm has each process independently render its partition of
the geometry and then composites the partial images together to form the
final image.

92 CHAPTER 3. VISUALIZING LARGE MODELS

The preceding diagram is an oversimplification. IceT contains multiple
parallel image compositing algorithms such as binary tree, binary swap,
and radix-k that efficiently divide work among processes using multiple
phases.

The wonderful thing about sort-last parallel rendering is that its efficiency
is completely insensitive to the amount of data being rendered. This makes it
a very scalable algorithm and well suited to large data. However, the parallel
rendering overhead does increase linearly with the number of pixels in the

3.11. RENDERING 93

image. Consequently, some of the rendering parameters deal with the image
size.

IceT also has the ability to drive tiled displays, large, high-resolution
displays comprising an array of monitors or projectors. Using a sort-last
algorithm on a tiled display is a bit counterintuitive because the number of
pixels to composite is so large. However, IceT is designed to take advantage
of spatial locality in the data on each process to drastically reduce the amount
of compositing necessary. This spatial locality can be enforced by applying
the D3 filter to your data.

Because there is an overhead associated with parallel rendering, ParaView
has the ability to turn off parallel rendering at any time. When parallel
rendering is turned off, the geometry is shipped to the location where display
occurs. Obviously, this should only happen when the data being rendered is
small.

3.11.3 Image Level of Detail

The overhead incurred by the parallel rendering algorithms is proportional
to the size of the images being generated. Also, images generated on a server
must be transfered to the client, a cost that is also proportional to the image

94 CHAPTER 3. VISUALIZING LARGE MODELS

size. To help increase the frame rate during interaction, ParaView introduces
a new LOD parameter that controls the size of the images.

During interaction while parallel rendering, ParaView can optionally sub-
sample the image. That is, ParaView will reduce the resolution of the image
in each dimension by a factor during interaction. Reduced images will be
rendered, composited, and transfered. On the client, the image is inflated to
the size of the available space in the GUI.

The resolution of the reduced images is controlled by the factor with which
the dimensions are divided. In the proceeding images, the left image has
the full resolution. The following images were rendered with the resolution
reduced by a factor of 2, 4, and 8, respectively.

ParaView also has the ability to compress images before transferring them
from server to client. Compression, of course, reduces the amount of data
transferred and therefore makes the most of the available bandwidth. How-
ever, the time it takes to compress and decompress the images adds to the
latency.

ParaView contains two different image compression algorithms for client-
server rendering. The first is a custom algorithm called Squirt, which stands
for Sequential Unified Image Run Transfer. Squirt is a run-length encoding
compression that reduces color depth to increase run lengths. The second
algorithm uses the Zlib compression library, which implements a variation of
the Lempel-Ziv algorithm. Zlib typically provides better compression than
Squirt, but takes longer to perform and hence adds to the latency.

3.11. RENDERING 95

3.11.4 Parallel Render Parameters

Like the other 3D rendering parameters, the parallel rendering parameters
are located in the settings dialog box, which is accessed in the menu from
Edit→ Settings (ParaView→ Preferences on the Mac). The parallel rendering
options in the dialog are in the Render View tab (intermixed with several other
rendering options such as those described in Section 3.11.1). The parallel
and client-server options are divided among several categories, and several
are considered advanced.

Remote/Parallel Rendering Options

• Set the data size at which to render remotely in parallel or to ren-
der locally. If the geometry is over this threshold (and ParaView
is connected to a remote server), the data is rendered in parallel
remotely and images are sent back to the client. If the geometry
is under this threshold, the geometry is sent back to the client and
images are rendered locally on the client.

• Set the sub-sampling factor for still (non-interactive) rendering.
Some large displays have more resolution than is really necessary,
so this sub-sampling reduces the resolution of all images displayed.

96 CHAPTER 3. VISUALIZING LARGE MODELS

Client/Server Rendering Options

• Set the interactive subsampling factor. The overhead of paral-
lel rendering is proportional to the size of the images generated.
Thus, you can speed up interactive rendering by specifying an im-
age subsampling rate. When this box is checked, interactive ren-
ders will create smaller images, which are then magnified when
displayed. This parameter is only used during interactive renders.

Image Compression

• Before images are shipped from server to client, they option-
ally can be compressed using one of two compression algorithms:
Squirt or Zlib. To make the compression more effective, either al-
gorithm can reduce the color resolution of the image before com-
pression. The sliders determine the amount of color bits saved.
Full color resolution is always used during a still render.

• Suggested image compression presets are provided for several com-
mon network types. When attempting to select the best image
compression options, try starting with the presets that best match
your connection.

3.11.5 Parameters for Large Data

The default rendering parameters are suitable for most users. However, when
dealing with very large data, it can help to tweak the rendering parameters.
The optimal parameters depend on your data and the hardware ParaView is
running on, but here are several pieces of advice that you should follow.

• Try turning off display lists. Turning this option off will prevent the
graphics system from building special rendering structures. If you have
graphics hardware, these rendering structures are important for feeding
the GPUs fast enough. However, if you do not have GPUs, these
rendering structures do not help much.

• If there is a long pause before the first interactive render of a particular
data set, it might be the creation of the decimated geometry. Try using

3.11. RENDERING 97

an outline instead of decimated geometry for interaction. You could
also try lowering the factor of the decimation to 0 to create smaller
geometry.

• Avoid shipping large geometry back to the client. The remote rendering
will use the power of entire server to render and ship images to the
client. If remote rendering is off, geometry is shipped back to the
client. When you have large data, it is always faster to ship images
than to ship data (although if your network has a high latency, this
could become problematic for interactive frame rates).

• Adjust the interactive image sub-sampling for client-server rendering as
needed. If image compositing is slow, if the connection between client
and server has low bandwidth, or if you are rendering very large im-
ages, then a higher subsample rate can greatly improve your interactive
rendering performance.

• Make sure Image Compression is on. It has a tremendous effect on
desktop delivery performance, and the artifacts it introduces, which are
only there during interactive rendering, are minimal. Lower bandwidth
connections can try using Zlib instead of Squirt compression. Zlib will
create smaller images at the cost of longer compression/decompression
times.

• If the network connection has a high latency, adjust the parameters to
avoid remote rendering during interaction. In this case, you can try
turning up the remote rendering threshold a bit, and this is a place
where using the outline for interactive rendering is effective.

• If the still (non-interactive) render is slow, try turning on the delay
between interactive and still rendering to avoid unnecessary renders.

98 CHAPTER 3. VISUALIZING LARGE MODELS

Chapter 4

Batch Python Scripting

Python scripting can be leveraged in two ways within ParaView. First,
Python scripts can automate the setup and execution of visualizations by
performing the same actions as a user at the GUI. Second, Python scripts
can be run inside pipeline objects, thereby performing parallel visualization
algorithms. This chapter describes the first mode, batch scripting for au-
tomating the visualization.

Batch scripting is a good way to automate mundane or repetitive tasks,
but it is also a critical component when using ParaView in situations
where the GUI is undesired or unavailable. The automation of Python
scripts allows you to leverage ParaView as a scalable parallel post-processing
framework. We are also leveraging Python scripting to establish in situ
computation within simulation code. (ParaView supports an in situ li-
brary called Catalyst, which is not documented in this tutorial. See
http://catalyst.paraview.org/ for more information on Catalyst).

This tutorial gives only a brief introduction to Python scripting. More
comprehensive documentation on scripting is given in the ParaView User’s
Guide. There are also further links on ParaView’s documentation web page
(http://www.paraview.org/documentation) including a complete reference to
the ParaView Python API.

4.1 Starting the Python Interpreter

There are many ways to invoke the Python interpreter. The method you
use depends on how you are using the scripting. The easiest way to get a

99

http://catalyst.paraview.org/
http://www.paraview.org/documentation

100 CHAPTER 4. BATCH PYTHON SCRIPTING

python interpreter, and the method we use in this tutorial, is to select Tools
→ Python Shell from the menu. This will bring up a dialog box containing
controls for ParaView’s Python shell. This is the Python interpreter, where
you directly control ParaView via the interface described below.

If you are most interested in getting started on writing scripts, feel free
to skip to the next section past the discussion of the other ways to invoke
scripting.

ParaView comes with two command line programs that execute Python
scripts: pvpython and pvbatch. They are similar to the python executable
that comes with Python distributions in that they accept Python scripts
either from the command line or from a file and they feed the scripts to the
Python interpreter.

The difference between pvpython and pvbatch is subtle and has to do
with the way they establish the visualization service. pvpython is roughly
equivalent to the paraview client GUI with the GUI replaced with the
Python interpreter. It is a serial application that connects to a ParaView
server (which can be either builtin or remote). pvbatch is roughly equivalent
to pvserver except that commands are taken from a Python script rather
than from a socket connection to a ParaView client. It is a parallel applica-
tion that can be launched with mpirun (assuming it was compiled with MPI),
but it cannot connect to another server; it is its own server. In general, you
should use pvpython if you will be using the interpreter interactively and
pvbatch if you are running in parallel.

It is also possible to use the ParaView Python modules from programs
outside of ParaView. This can be done by pointing the PYTHONPATH environ-
ment variable to the location of the ParaView libraries and Python modules
and pointing the LD LIBRARY PATH (on Unix/Linux), DYLD LIBRARY PATH (on
Mac), or PATH (on Windows) environment variable to the ParaView libraries.

4.2. TRACING PARAVIEW STATE 101

Running the Python script this way allows you to take advantage of third-
party applications such as IDLE. For more information on setting up your
environment, consult the ParaView Wiki.

4.2 Tracing ParaView State

Before diving into the depths of the Python scripting features, let us take
a moment to explore the automated facilities for creating Python scripts.
The ParaView GUI’s Python Trace feature allows one to very easily create
Python scripts for many common tasks. To use Trace, one simply begins a
trace recording via Start Trace, found in the Tools menu, and ends a trace
recording via Stop Trace, also found in the Tools menu. This produces a
Python script that reconstructs the actions taken in the GUI. That script
contains the same set of operations that we are about to describe. As such,
Trace recordings are a good resource when you are trying to figure out how
to do some action via the Python interface, and conversely the following
descriptions will help in understanding the contents of any given Trace script.

Exercise 4.1: Creating a Python Script Trace

If you have been following an exercise in a previous section, now is a good
time to reset ParaView. The easiest way to do this is to select Edit → Reset
Session from the menu.

1. Click the Start Trace in the Tools menu.

2. A dialog box with options for the trace is presented. We will discuss
the meaning of these options later. For now, just click OK.

3. Build a simple pipeline in the main ParaView GUI. For example, create
a sphere source and then clip it.

4. Click Stop Trace in the Tools menu.

5. An editing window will open populated with a Python script that repli-
cates the operations you just made.

Even if you have not been exposed to ParaView’s Python bindings, the
commands being performed in the traced script should be familiar. Once

102 CHAPTER 4. BATCH PYTHON SCRIPTING

saved to your hard drive, you can of course edit the script with your favorite
editor. The final script can be interpreted by the pvpython or pvbatch

program for totally automated visualization. It is also possible to run this
script in the GUI. The Python Shell dialog has a Run Script button that
invokes a saved script. �

It should be noted that there is also a way to capture the current Para-
View state as a Python script without tracing actions. Simply select Save
State... from the ParaView File menu and choose to save as a Python .py
state file (as opposed to a ParaView .pvsm state file). We will not have an ex-
ercise on state Python scripts, but suffice it to say they can be used in much
the same way as traced Python scripts. You are welcome to experiment with
this feature as you like.

As noted earlier in the exercise, Python tracing has some options that are
presented in a dialog box before the tracing starts. The first option selections
what properties are saved to the trace. Some properties you explicitly set
through the GUI, such as a value entered in a GUI widget. Some properties
are set internally by the ParaView application, such as the initial position of
a clip plane based on the bounds of the object it is being applied to. Many
other properties are left at some default value. You can choose one of the
following classes of properties to save:

all properties Traces the values of all properties even if they remain at the
default. This can be helpful to introspect all possible properties or to
ensure a consistent state regardless of the settings for other users. This
also yields a very verbose output that can be hard to read.

any *modified* properties Ignores any properties that do not change from
their defaults. This is a good option for most use cases.

4.3. MACROS 103

only *user-modified* properties Ignores any properties that are not explic-
itly set by the user. Traces of this nature rely on any internally set
properties being reapplied when the script is run.

The next option has to do with supplemental objects that are managed
by the ParaView GUI (or client) rather than in the server’s state. Check this
box to capture all of the state associated with these objects, which includes
color maps, color bars, and other annotation.

Finally, ParaView provides the option to show the trace file as it is being
generated. This can be a helpful option to use when learning what Python
commands can be used to replicate particular actions in the ParaView GUI.

4.3 Macros

A simple but powerful way to customize the behavior of ParaView is to add
your Python script as a macro. A macro is simply an automated script that
can be invoked through its button in a toolbar or its entry in the menu bar.
Any Python script can be assigned to a macro.

Exercise 4.2: Adding a Macro

This exercise is a continuation of Exercise 4.1. You will need to finish that
exercise before beginning this one. You should have the editing window
containing the Python script created in Exercise 4.1 open.

1. In the menu bar (of the editing window), select File→ Save As Macro....

2. Choose a descriptive name for the macro file and save it in the default
directory provided by the browser. You should now see your macro on
the Macro toolbar at the top of the ParaView GUI.

At this point, you should now see your macro added to the toolbars. By
default, macro toolbar buttons are placed in the middle row all the way to the
left. If you are short on space in your GUI, you may need to move toolbars
around to see it. You will also see that your macro has been added to the
Macros menu.

3. Close the Python editor window.

104 CHAPTER 4. BATCH PYTHON SCRIPTING

4. Delete the pipeline you have created by either selecting Edit → Delete
All from the menu or selecting Edit → Reset Session from the menu.

5. Activate your macro by clicking on the toolbar button or selecting it
in the Macros menu.

In this example our macro created something from scratch. This is helpful
if you often load some data in the same way every time. You can also trace
the creation of filters that are applied to existing data. A macro from a trace
of this nature allows you to automate the same visualization on different
data. �

4.4 Creating a Pipeline

As described in the previous two sections, the ParaView GUI’s Python Trace
feature provides a simple mechanism to create scripts. In this section we
will begin to describe the basic bindings for ParaView scripting. This is
important information in building Python scripts, but you can always fall
back on producing traces with the GUI.

The first thing any ParaView Python script must do is load the para-

view.simple module. This is done by invoking

from paraview.simple import *

In general, this command needs to be invoked at the beginning of any Para-
View batch Python script. This command is automatically invoked for you
when you bring up the scripting dialog in ParaView, but you must add it
yourself when using the Python interpreter in other programs (including
pvpython and pvbatch).

The paraview.simple module defines a function for every source, reader,
filter, and writer defined in ParaView. The function will be the same name
as shown in the GUI menus with spaces and special characters removed. For
example, the Sphere function corresponds to Sources → Sphere in the GUI
and the PlotOverLine function corresponds to Filters → Data Analysis →
Plot Over Line. Each function creates a pipeline object, which will show up
in the pipeline browser (with the exception of writers), and returns an object
that is a proxy that can be used to query and manipulate the properties of
that pipeline object.

4.4. CREATING A PIPELINE 105

There are also several other functions in the paraview.simple module
that perform other manipulations. For example, the pair of functions Show

and Hide turn on and off, respectively, the visibility of a pipeline object in a
view. The Render function causes a view to be redrawn.

To obtain a concise list of the functions available in paraview.simple,
invoke dir(paraview.simple). Alternatively, as explained in Section 4.6
you can get a verbose listing via help(paraview.simple).

Exercise 4.3: Creating and Showing a Source

If you have been following an exercise in a previous section, now is a good
time to reset ParaView. The easiest way to do this is to select Edit → Reset
Session from the menu.

If you have not already done so, open the Python shell in the ParaView
GUI by selecting Tools → Python Shell from the menu. You will notice that

from paraview.simple import *

has been added for you.

Create and show a Sphere source by typing the following in the Python
shell.

sphere = Sphere()

Show()

Render()

The Sphere command creates a sphere pipeline object. Once it is exe-
cuted you will see an item in the pipeline browser created. We save a proxy
to the pipeline object in the variable sphere. We are not using this variable
(yet), but it is good practice to save references to your pipeline objects.

The subsequent Show command turns on visibility of this object in the
view, and the subsequent Render causes the results to be seen. At this point
you can interact directly with the GUI again. Try changing the camera angle
in the view with the mouse. �

106 CHAPTER 4. BATCH PYTHON SCRIPTING

Exercise 4.4: Creating and Showing a Filter

Creating filters is almost identical to creating sources. By default, the last
created pipeline object will be set as the input to the newly created filter,
much like when creating filters in the GUI.

This exercise is a continuation of Exercise 4.3. You will need to finish
that exercise before beginning this one.

Type in the following script in the Python shell that hides the sphere and
then adds the shrink filter to the sphere and shows that.

Hide()

shrink = Shrink()

Show()

Render()

The sphere should be replaced with the output of the Shrink filter, which
makes all of the polygons smaller to give the mesh an exploded type of
appearance. �

So far as we have built pipelines we have accepted the default parameters
for the pipeline objects. As we have seen in the exercises of Chapter 2, it is
common to have to modify the parameters of the objects using the properties
panel.

In Python scripting, we use the proxy returned from the creation func-
tions to manipulate the pipeline objects. These proxies are in fact Python
objects with class attributes that correspond to the same properties you set
in the properties panel. They have the same names as those in the properties
panel with spaces and other illegal characters removed. Use dir(variable)

or help(variable) to get a list of all attributes on any variable that you
have access to. In most cases, simply assign values to an object’s attributes
in order to change them.

Exercise 4.5: Changing Pipeline Object Properties

This exercise is a continuation of Exercises 4.3 and 4.4. You will need to
finish those exercises before beginning this one.

Recall that we have so far created two Python variables, sphere and
shrink, that are proxies to the corresponding pipeline objects. First, enter
the following command into the Python shell to get a concise listing of all
attributes of the sphere.

4.4. CREATING A PIPELINE 107

dir(sphere)

Next, enter the following command into the Python shell to get the cur-
rent value of the Theta Resolution property of the sphere.

print sphere.ThetaResolution

The Python interpreter should respond with the result 8. (Note that
using the print keyword, which instructs Python to output the arguments
to standard out, is superfluous here as the Python shell will output the result
of any command anyway.) Let us double the number of polygons around the
equator of the sphere by changing this property.

sphere.ThetaResolution = 16

Render()

The shrink filter has only one property, Shrink Factor. We can adjust this
factor to make the size of the polygons larger or smaller. Let us change the
factor to make the polygons smaller.

shrink.ShrinkFactor = 0.25

Render()

You may have noticed that as you type in Python commands to change
the pipeline object properties, the GUI in the properties panel updates ac-
cordingly. �

So far we have created only non-branching pipelines. This is a simple and
common case and, like many other things in the paraview.simple module,
is designed to minimize the amount of work for the simple and common case
but also provide a clear path to the more complicated cases. As we have
built the non-branching pipeline, ParaView has automatically connected the
filter input to the previously created object so that the script reads like the
sequence of operations it is. However, if the pipeline has branching, we need
to be more specific about the filter inputs.

108 CHAPTER 4. BATCH PYTHON SCRIPTING

Exercise 4.6: Branching Pipelines

This exercise is a continuation of Exercises 4.3 through 4.5. You will need
to finish Exercises 4.3 and 4.4 before beginning this one (Exercise 4.5 is
optional).

Recall that we have so far created two Python variables, sphere and
shrink, that are proxies to the corresponding pipeline objects. We will now
add a second filter to the sphere source that will extract the wireframe from
it. Enter the following in the Python shell.

wireframe = ExtractEdges(Input=sphere)

Show()

Render()

An Extract Edges filter is added to the sphere source. You should now see
both the wireframe of the original sphere and the shrunken polygons.

Notice that we explicitly set the input for the Extract Edges filter by pro-
viding Input=sphere as an argument to the ExtractEdges function. What
we are really doing is setting the Input property upon construction of the
object. Although it would be possible to create the object with the default
input, and then set the input later, it is not recommended. The problem is
that not all filters accept all input. If you initially create a filter with the
wrong input, you could get error messages before you get a chance to change
the Input property to the correct input.

The sphere source having two filters connected to its output is an example
of fan out in the pipeline. It is always possible to have multiple filters
attached to a single output. Some filters, but not all, also support having
multiple filters connected to their input. Multiple filters are attached to
an input is known as fan in. In ParaView’s Python scripting, fan in is
handled much like fan out, by explicitly defining a filter’s inputs. When
setting multiple inputs (on a single port1), simply set the input to a list
of pipeline objects rather than a single one. For example, let us group the
results of the shrink and extract edges filters using the Group Datasets filter.
Type the following line in the Python shell.

group = GroupDatasets(Input=[shrink,wireframe])

Show()

1 Filters that have multiple input ports, like ResampleWithDataset, use different names
to distinguish amongst the input properties instead. The ports are typically called “Input”
and “Source” but consult Trace or help to be sure.

4.5. ACTIVE OBJECTS 109

There is now no longer any reason for showing the shrink and extract
edges filters, so let us hide them. By default, the Show and Hide functions
operate on the last pipeline object created (much like the default input when
creating a filter), but you can explicitly choose the object by giving it as an
argument. To hide the shrink and extract edges filters, type the following in
the Python shell.

Hide(shrink)

Hide(wireframe)

Render()

�

In the previous exercise, we saw that we could set the Input property by
placing Input=〈input object〉 in the arguments of the creator function. In
general we can set any of the properties at object construction by specifying
〈property name〉=〈property value〉. For example, we can set both the Theta
Resolution and Phi Resolution when we create a sphere with a line like this.

sphere = Sphere(ThetaResolution=360, PhiResolution=180)

4.5 Active Objects

If you have any experience with the ParaView GUI, then you should already
be familiar with the concept of an active object. As you build and manipulate
visualizations within the GUI, you first have to select an object in the pipeline
browser. Other GUI panels such as the properties panel will change based
on what the active object is. The active object is also used as the default
object to use for some operations such as adding a filter.

The batch Python scripting also understands the concept of the active
object. In fact, when running together, the GUI and the Python interpreter
share the same active object. When you created filters in the previous section,
the default input they were given was actually the active object. When you
created a new pipeline object, that new object became the active one (just
like when you create an object in the GUI).

You can get and set the active object with the GetActiveSource and Se-

tActiveSource functions, respectively. You can also get a list of all pipeline
objects with the GetSources function. When you click on a new object in

110 CHAPTER 4. BATCH PYTHON SCRIPTING

the GUI pipeline browser, the active object in Python will change. Likewise,
if you call SetActiveSource in python, you will see the corresponding entry
become highlighted in the pipeline browser.

Exercise 4.7: Experiment with Active Pipeline Objects

This exercise is a continuation of the exercises in the previous section. How-
ever, if you prefer you can create any pipeline you want and follow along.

Play with active objects by trying the following.

• Get a list of objects by calling GetSources(). Find the sources and
filters you created in that list.

• Get the active object by calling GetActiveSource(). Compare that
to what is selected in the pipeline browser.

• Select something new in the pipeline browser and call GetAc-

tiveSource() again.

• Change the active object with the SetActiveSource() function. You
can use one of the proxy objects you created earlier as an argument to
SetActiveSource. Observe the change in the pipeline browser.

�

In addition to maintaining an active pipeline object, ParaView Python
scripting also maintains an active view. As a ParaView user, you should also
already be familiar with multiple views and the active view. The active view
is marked in the GUI with a blue border. The Python functions GetActive-
View and SetActiveView allow you to query and change the active view. As
with pipeline objects, the active view is synchronized between the GUI and
the Python interpreter.

4.6 Online Help

This tutorial, as well as similar instructions in the ParaView book and Wiki,
is designed to give the key concepts necessary to understand and create batch
Python scripts. The detailed documentation including complete lists of func-
tions, classes, and properties available is maintained by the ParaView build

4.6. ONLINE HELP 111

process and provided as online help from within the ParaView application.
In this way we can ensure that the documentation is up to date for whatever
version of ParaView you are using and that it is easily accessible.

The ParaView Python bindings make use of the help built-in function.
This function takes as an argument any Python object and returns some
documentation on it. For example, typing

help(paraview.simple)

returns a brief description of the module and then a list of all the functions
included in the module with a brief synopsis of what each one does. For
example

help(Sphere)

sphere = Sphere()

help(sphere)

will first give help on the Sphere function, then use it to create an object,
and then give help on the object that was returned (including a list of all the
properties for the proxy).

Most of the widgets displayed in the properties panel’s Properties group
are automatically generated from the same introspection that builds the
Python classes. (There are a small number of exceptions where a custom
panel was created for better usability.) Thus, if you see a labeled widget in
the properties panel, there is a good chance that there is a corresponding
property in the Python object with the same name.

Regardless of whether the GUI contains a custom panel for a pipeline
object, you can still get information about that object’s properties from the
GUI’s online help. As always, bring up the help with the toolbar button.
You can find documentation for all the available pipeline objects under the
Sources, Filters, Readers, and Writers entries in the help Contents. Each entry
gives a list of objects of that type. Clicking on any one of the objects gives
a list of the properties you can set from within Python.

112 CHAPTER 4. BATCH PYTHON SCRIPTING

4.7 Reading from Files

The equivalent to opening a file in the ParaView GUI is to create a reader
in Python scripting. Reader objects are created in much the same way as
sources and filters; paraview.simple has a function for each reader type that
creates the pipeline object and returns a proxy object. One can instantiate
any given reader directly as described below, or more simply call reader =

OpenDataFile(〈filename〉)
All reader objects have at least one property (hidden in the GUI) that

specifies the file name. This property is conventionally called either FileName
or FileNames. You should always specify a valid file name when creating a
reader by placing something like FileName=〈full path〉 in the arguments of
the construction object. Readers often do not initialize correctly if not given
a valid file name.

Exercise 4.8: Creating a Reader

We are going to start a fresh visualization, so if you have been following along
with the exercises so far, now is a good time to reset ParaView. The easiest
way to do this is to select Edit→ Reset Session from the menu. You will also
need the Python shell. If you have not already done so, open it with Tools
→ Python Shell from the menu.

In this exercise we are loading the disk out ref.ex2 file from the Python
shell. Locate this file on your computer and be ready to type or copy it into
the Python shell. We will reference it as 〈path〉/disk out ref.ex2.

Create the reader while specifying the file name by entering the following
in the Python shell.

4.8. QUERYING FIELD ATTRIBUTES 113

reader = OpenDataFile(’〈path〉/disk_out_ref.ex2’)
Show()

Render()

ResetCamera()

Note that we have added a ResetCamera to the end of these commands
because the disk out ref.ex2 data does not fit in the standard view. The
GUI automatically resets the camera when adding data to an empty view,
but Python scripting does not. �

4.8 Querying Field Attributes

In addition to having properties specific to the class, all proxies for pipeline
objects share a set of common properties and methods. Two very important
such properties are the PointData and CellData properties. These proper-
ties act like dictionaries, an associative array type in Python, that maps
variable names (in strings) to ArrayInformation objects that hold some
characteristics of the fields. Of particular note are the ArrayInformation

methods GetName, which returns the name of the field, GetNumberOfCom-

ponents, which returns the size of each field value (1 for scalars, more for
vectors), and GetRange, which returns the minimum and maximum values
for a particular component.

Exercise 4.9: Getting Field Information

This exercise is a continuation of Exercise 4.8. You will need to finish that
exercise before beginning this one.

To start with, get a handle to the point data and print out all of the point
fields available.

pd = reader.PointData

print pd.keys()

Get some information about the “Pres” and “V” fields.

print pd[’Pres’].GetNumberOfComponents()

print pd[’Pres’].GetRange()

print pd[’V’].GetNumberOfComponents()

114 CHAPTER 4. BATCH PYTHON SCRIPTING

Now let us get fancy. Use the Python for construct to iterate over all of
the arrays and print the ranges for all the components.

for ai in pd.values():

print ai.GetName(), ai.GetNumberOfComponents(),

for i in xrange(ai.GetNumberOfComponents()):

print ai.GetRange(i),

print

�

4.9 Representations

Representations are the “glue” between the data in a pipeline object and a
view. The representation is responsible for managing how a data set is drawn
in the view. The representation defines and manages the underlying render-
ing objects used to draw the data as well as other rendering properties such
as coloring and lighting. Parameters made available in the Display group of
the GUI are managed by representations. There is a separate representation
object instance for every pipeline-object–view pair. This is so that each view
can display the data differently.

Representations are created automatically by the GUI. In python script-
ing they are created with the Show function instead. In fact Show returns a
proxy to the representation. Therefore you can save Show’s return value in a
variable as we’ve done above for sources, filters and readers. If you neglect
to save it, you can always get it back with the GetRepresentation function.
With no arguments, this function will return the representation for the active
pipeline object and the active view. You can also specify a pipeline object
or view or both.

Exercise 4.10: Coloring Data

This exercise is a continuation of Exercise 4.8 (and optionally Exercise 4.9).
If you do not have the exodus file open, you will need to finish that exercise
before beginning this one.

Let us change the color of the geometry to blue and give it a very pro-
nounced specular highlight (that is, make it really shiny). Type in the follow-

4.10. VIEWS 115

ing into the Python shell to get the representation and change the material
properties.

readerRep = GetRepresentation()

readerRep.DiffuseColor = [0, 0, 1]

readerRep.SpecularColor = [1, 1, 1]

readerRep.SpecularPower = 128

readerRep.Specular = 1

Render()

Now rotate the camera with the mouse in the GUI to see the effect of the
specular highlighting.

We can also use the representation to color by a field variable. Enter the
following into the Python shell to color the mesh by the “Pres” field variable.

readerRep.ColorArrayName = ’Pres’

readerRep.LookupTable = \

AssignLookupTable(reader.PointData[’Pres’], ’Cool to Warm’)

Render()

�

4.10 Views

Drawing areas or windows are called Views in ParaView. As with readers,
sources, filters, and representations, views are wrapped into python objects
and these can be created, obtained and controlled via scripts.

Views are usually created for you by the GUI, but in python you have to
create views more intentionally. The most convenient way to do so is to rely
on the way that Render returns a view, creating one first if necessary. If you
prefer, you can create specific view types via CreateView(’〈viewname〉’)
or CreateRenderView, CreateXYPlotView and the like. However you make
them, call GetRenderView to get a list of all Views, or GetActiveView get
access to the currently active view

Once you have a view you have access to all of the properties that you see
on the View group of the GUI. For instance you can easily turn on and off
the orientation widget, change the background color, alter the lighting and

116 CHAPTER 4. BATCH PYTHON SCRIPTING

more. Besides these first level properties, the view also gives you access to
other scene wide controls such as the camera, animation time, and when not
running alongside the GUI, the view’s size.

Exercise 4.11: Controlling the View

This exercise is a continuation of Exercise 4.8 (and optionally Exercises 4.9
and 4.10). If you do not have the exodus file open, you will need to finish
that exercise before beginning this one.

Let us change the background color of the scene from ParaView’s default
gray to a nice gradient instead. Type the following into the Python shell to
get a hold of the View and change it.

view = GetActiveView()

view.Background = [0, 0, 0]

view.Background2 = [0, 0, 0.6]

view.UseGradientBackground = True

Render()

Next, let us ask the view what position the camera is sitting at, and then
move it within a for loop to create a short animation.

x,y,z = view.CameraPosition

print x,y,z

for iter in xrange(0,10):

x = x + 1

y = y + 1

z = z + 1

view.CameraPosition = [x,y,z]

print x,y,z

Render()

�

4.11 Saving Results

Within a script it is easy to save out results, and by saving your data and your
scripts it becomes easy to create reproducible visualization with ParaView.

4.11. SAVING RESULTS 117

As within the GUI, there are several products that you might like to save
out when you are working with ParaView.

• To save out the data produced by a filter, get a hold of the source that
you want to save, then create, assign a file name to and update a writer
proxy. This is analogous to clicking on a pipeline element and selecting
File → Save Data.

• Saving images is as simple as typing SaveScreen-

shot(’〈path〉/filename.still extension’).

• Assuming your ParaView is linked to an encoder and codecs, sav-
ing compressed animations is as simple as typing WriteAnima-

tion(’〈path〉/filename.animation extension’).

In all cases ParaView uses the file name extension to determine the specific
file type to create.

Exercise 4.12: Save Results

This exercise is a continuation of Exercise 4.8 (and optionally Exercises 4.9
through 4.11). If you do not have the exodus file open, you will need to finish
that exercise before beginning this one.

Let us first probe the data to get something compact out of it. Then we
will save out the result of the probe in the form of a comma separated values
file so that we can look at it in a text editor and import it into any other
tool we choose.

plot = PlotOverLine()

plot.Source.Point1 = [0,0,0]

plot.Source.Point2 = [0,0,10]

writer = CreateWriter(’〈path〉/plot.csv’)
writer.UpdatePipeline()

Next, lets create a LineChartView to show the plot in and then save out a
screenshot of our results.

plotView = CreateView(’XYChartView’)

Show(plot)

Render()

SaveScreenshot(’〈path〉/plot.png’)

118 CHAPTER 4. BATCH PYTHON SCRIPTING

�

As you can see, ParaView’s scripting interface is quite powerful, and once
you know the fundamentals and are familiar with Python’s syntax, it is fairly
easy to get up and running with it. We have just touched on the higher level
aspects of ParaView scriptability in this tutorial. More details, including
how to run python scripted filters, how to work with numpy and other tools,
and how to package your scripts for execution under batch schedulers can be
found online.

Chapter 5

Further Reading

Thank you for participating in this tutorial. Hopefully you have learned
enough to get you started visualizing large data with ParaView. Here are
some sources for further reading.

The documentation page on ParaView’s web site contains a list of re-
sources available for further learning and questions.

http://www.paraview.org/documentation

The ParaView Guide is a good resource to have with ParaView. It pro-
vides many other instructions and more detailed descriptions on many fea-
tures. The ParaView guide can be accessed from the ParaView documenta-
tion page.

The ParaView Wiki is full of information that you can use to help you
set up and use ParaView.

http://www.paraview.org/Wiki/ParaView

In particular, those of you who wish to install a parallel ParaView server
should consult the appropriate build and install pages.

http://www.paraview.org/Wiki/Setting up a ParaView Server

If you are interested in learning more about visualization or more specifics
about the filters available in ParaView, consider picking up the following
visualization textbook.

Will Schroeder, Ken Martin, and Bill Lorensen. The Visualization Toolkit.
Kitware, Inc., fourth edition, 2006. ISBN 1-930934-19-X.

119

http://www.paraview.org/documentation
http://www.paraview.org/Wiki/ParaView
http://www.paraview.org/Wiki/Setting_up_a_ParaView_Server

120 CHAPTER 5. FURTHER READING

If you plan on customizing ParaView, the previous books and web pages
have lots of information. For more information about using VTK, the un-
derlying visualization library, and Qt, the GUI library, consider the following
books have more information.

Kitware Inc. The VTK User’s Guide. Kitware, Inc., 2006.

Jasmin Blanchette and Mark Summerfield. C++ GUI Programming with
Qt 4. Prentice Hall, 2006. ISBN 0-13-187249-4.

If you are interested about the design of parallel visualization and other
features of the VTK pipeline, there are several technical papers available.

Kenneth Moreland. “A Survey of Visualization Pipelines.” IEEE Trans-
actions on Visualization and Computer Graphics, 19(3), March 2013.
DOI 10.1109/TVCG.2012.133.

James Ahrens, Charles Law, Will Schroeder, Ken Martin, and Michael
Papka. “A Parallel Approach for Efficiently Visualizing Extremely
Large, Time-Varying Datasets.” Technical Report #LAUR-00-1620,
Los Alamos National Laboratory, 2000.

James Ahrens, Kristi Brislawn, Ken Martin, Berk Geveci, C. Charles Law,
and Michael Papka. “Large-Scale Data Visualization Using Parallel
Data Streaming.” IEEE Computer Graphics and Applications, 21(4):
34–41, July/August 2001.

Andy Cedilnik, Berk Geveci, Kenneth Moreland, James Ahrens, and Jean
Farve. “Remote Large Data Visualization in the ParaView Frame-
work.” Eurographics Parallel Graphics and Visualization 2006, pg.
163–170, May 2006.

James P. Ahrens, Nehal Desai, Patrick S. McCormic, Ken Martin, and
Jonathan Woodring. “A Modular, Extensible Visualization System Ar-
chitecture for Culled, Prioritized Data Streaming.” Visualization and
Data Analysis 2007, Proceedings of SPIE-IS&T Electronic Imaging, pg
64950I1-1–12, January 2007.

John Biddiscombe, Berk Geveci, Ken Martin, Kenneth Moreland, and
David Thompson. “Time Dependent Processing in a Parallel Pipeline
Architecture.” IEEE Visualization 2007. October 2007.

121

If you are interested in the algorithms and architecture for ParaView’s
parallel rendering, there are also many technical articles on this as well.

Kenneth Moreland, Brian Wylie, and Constantine Pavlakos. “Sort-Last
Parallel Rendering for Viewing Extremely Large Data Sets on Tile Dis-
plays.” Proceedings of IEEE 2001 Symposium on Parallel and Large-
Data Visualization and Graphics, pg. 8592, October 2001.

Kenneth Moreland and David Thompson. “From Cluster to Wall with
VTK.” Proceddings of IEEE 2003 Symposium on Parallel and Large-
Data Visualization and Graphics, pg. 2531, October 2003.

Kenneth Moreland, Lisa Avila, and Lee Ann Fisk. “Parallel Unstructured
Volume Rendering in ParaView.” Visualization and Data Analysis
2007, Proceedings of SPIE-IS&T Electronic Imaging, pg. 64950F-112,
January 2007.

122 CHAPTER 5. FURTHER READING

Acknowledgements

Thanks to Amy Squillacote, David DeMarle, and W. Alan Scott for con-
tributing material to the tutorial. And, of course, thanks to everyone at Kit-
ware, Sandia National Laboratories, Los Alamos National Laboratory, and
all other contributing organizations for their hard work in making ParaView
what it is today.

This work was supported by the Director, Office of Advanced Scientific
Computing Research, Office of Science, of the U.S. Department of Energy
under Contract No. 12-015215, through the Scientific Discovery through Ad-
vanced Computing (SciDAC) Institute of Scalable Data Management, Anal-
ysis and Visualization.

Sandia National Laboratories is a multi-program laboratory managed and
operated by Sandia Corporation, a wholly owned subsidiary of Lockheed
Martin Corporation, for the U.S. Department of Energy’s National Nuclear
Security Administration under contract DE-AC04-94AL85000.

123

Index

3D View, 11
3D widget, 35

active view, 27
advanced properties, 14
AMR, 7, 20
animation mode, 46
animation save, 56–57
animation view, 46
annotate time, 50
annotate time filter, 51
annotate time source, 50
apply button, 11
ArrayInformation, 113
AVI, 56
axes

center of rotation, 12
cube, see cube axes
orientation, see orientation axes

background color, 14
background gradient, 14
binary swap, 92
binary tree, 92
builtin, 73

calculator, 19, 84
camera link, 28
camera controls toolbar, see toolbar,

camera controls
can, 44

Catalyst, 99
CellData, 113
center of rotation, 12

pick, 12
reset, 12
show, 12

center axes toolbar, see toolbar, cen-
ter axes

client, 72
client–render-server–data-server, 74
client-server, 73
clip, 19, 24, 26, 34, 83, 86
color legend, 18
color palette, 54
color space, 42
colors

custom range, 46
edit, 18, 41
rescale, 45

common filters, 19–20
composites, 91
connectivity, 25
contour, 19, 22–23, 84, 86, 87
control points, 42
CreateRenderView, 115
CreateView(’hAviewnameB’), 115
CreateXYPlotView, 115
CTH, 20
cube axes, 15
Curvilinear (Structured Grid), 6

124

INDEX 125

custom data range, 46
cut, see slice

data analysis, 33
data server, 72
data types, 5
delete button, 15
depth peeling, 91
dictionaries, 113
dir(variable), 106
disk out ref, 16out

disk

126 INDEX

GroupDatasets, 108

halo regions, 78
help, 108, 111
help(variable), 106
Hide, 105, 106, 109
Hierarchical Adaptive Mesh Refine-

ment, 7
Hierarchical Uniform AMR, 7
histogram, 37, 85, 86

IceT, 91
immediate mode rendering, 90
Information, 10
interactive render, 88

delay, 90
outline, 90
subsample, 96

isosurface, 19

joint photographic experts group, 53
JPEG, 53, 56

key frames, 65

labels, 61–62
level of detail, 88
lighting, 15
LOD, 88
LOD Resolution, 90
LOD Threshold, 90
logarithmic scale, 42

macro, 103–104
memory inspector, 87
menu

file, 16
filters, 20–21
sources, 11

menu bar, 10

movie, 56–57
mpirun, 100
multi-block, 7

NaN, 42
netCDF, 17
Non-uniform Rectilinear (Rectilinear

Grid), 6

Octree, 7
Ogg/Theora, 56
opacity, 15, 42
open, 16
orientation axes, 13

ParaView, 1
paraview, 9, 73, 100
ParaView Server, 3, 72
PDF, 55
pipeline browser, 10, 25
plot global variables over time, 33
plot over line, 33, 34, 85
plot selection over time, 33, 60, 62,

63, 85
PlotOverLine, 104
PNG, 53, 56
PointData, 113
Polygonal (Poly Data), 6
portable document format, 55
portable network graphics, 53, 56
postscript, 55
probe location, 33, 85
properties panel, 10

search, 14
proxy, see also Python, proxy, 104,

106
PS, 55
pvbatch, 100, 102, 104
pvpython, 3, 100, 102, 104

INDEX 127

pvserver, 73, 100
Python, 99–118

ArrayInformation, 113
CellData, 113
CreateRenderView, 115
CreateView(’hAviewnameB’),

115
CreateXYPlotView, 115
dir(variable), 106
ExtractEdges, 108
GetActiveSource, 109, 110
GetActiveView, 110, 115
GetName, 113
GetNumberOfComponents, 113
GetRange, 113
GetRenderView, 115
GetRepresentation, 114
GetSources, 109, 110
GroupDatasets, 108
help, 108, 111
help(variable), 106
Hide, 105, 106, 109
macro, 103–104
PlotOverLine, 104
PointData, 113
proxy, 104–106, 111, 112, 114
Render, 105, 106, 115
ResetCamera, 113
SetActiveSource, 109, 110
SetActiveView, 110
Show, 105, 106, 109, 114
Shrink, 106
Sphere, 104, 105, 111
trace, 101–103

python, 100

quick launch, 21

radix-k, 92

raster graphic, 54
real time (animation mode), 47
redo, 15
redo camera, 15
remote render threshold, 95
Render, 105, 106, 115
render server, 72
rendering, 88–97

interactive, see interactive render
parallel, 91–96
performance, 91
still, see still render

representation, 18, 114
rescale colors, 45
reset camera, 12, 31
reset session, 26
ResetCamera, 113
reset button, 13
rubber-band selection, 58
rubber-band zoom, 12

save animation, 56–57
save screenshot, 36, 52–56
Saving Results, 116
scalable vector graphics, 55
scalar range, 18
screenshot, 36, 52–56
seed points, 30
select

block, 59
cells on surface, 59
cells through, 59, 60, 64
cells with polygon, 59
frustum, 59, 60, 64
points on surface, 59
points through, 59
points with polygon, 59
polygon, 59

128 INDEX

sequence (animation mode), 47
SetActiveSource, 109, 110
SetActiveView, 110
shallow copies, 82
shiny, 14, 114
Show, 105, 106, 109, 114
Shrink, 106
slice, 19, 84, 86
Snap To TimeSteps (animation

mode), 47
sort-last, 91
source, 11

annotate time, 50
text, 49

sources, 11–15
sources menu, 11
spatially coherent, 79
specular highlight, 14, 114
Sphere, 104, 105, 111
Squirt, 94, 96
standalone, 73
still render, 88
stream tracer, 20, 30, 40, 84

seed points, 30
streamlines, 30
subsample, 94, 96
SVG, 55

Tablular, 7
temporal interpolator, 48
text, 49
text source, 49
threshold, 19, 83, 86, 87
toolbar

camera controls, 12
center axes, 12
common filters, 19
data analysis, 33

toolbars, 10
trace, 101
track, 65
transfer function, 41
transparency, 15
tube, 31, 40

undo, 15
undo camera, 15
Uniform Rectilinear (Image Data), 5
Unstructured Grid, 7

vector graphics, 54
view properties, 14
views, 115
visibility, 25
visualization pipeline, 19, 23
Visualization Toolkit, 3
volume rendering, 38
VTK, 3

warp
vector, 20, 84

Zlib, 94, 96
zoom to data, 12

	Introduction
	Development and Funding
	Basics of Visualization
	More Information

	Basic Usage
	User Interface
	Sources
	Exercise 2.1: Creating a Source
	Exercise 2.2: Interacting with a 3D View
	Exercise 2.3: Modifying Visualization Parameters
	Exercise 2.4: Undo and Redo

	Loading Data
	Exercise 2.5: Opening a File
	Exercise 2.6: Representation and Field Coloring

	Filters
	Exercise 2.7: Apply a Filter
	Exercise 2.8: Creating a Visualization Pipeline

	Multiview
	Exercise 2.9: Using Multiple Views

	Vector Visualization
	Exercise 2.10: Streamlines
	Exercise 2.11: Making Streamlines Fancy

	Plotting
	Exercise 2.12: Plot Over a Line in Space
	Exercise 2.13: Plot Series Display Options

	Volume Rendering
	Exercise 2.14: Turning On Volume Rendering
	Exercise 2.15: Combining Volume Rendering and Surface-Based Visualization
	Exercise 2.16: Modifying Volume Rendering Transfer Functions

	Time
	Exercise 2.17: Loading Temporal Data
	Exercise 2.18: Temporal Data Pitfall
	Exercise 2.19: Slowing Down an Animation with the Animation Mode
	Exercise 2.20: Temporal Interpolation

	Text Annotation
	Exercise 2.21: Adding Text Annotation
	Exercise 2.22: Adding Time Annotation

	Save Screenshot and Save Animation
	Exercise 2.23: Save Screenshot
	Exercise 2.24: Export Scene
	Exercise 2.25: Save Animation

	Selection
	Exercise 2.26: Performing Query-Based Selections
	Exercise 2.27: Data Element Selections vs. Spatial Selections
	Exercise 2.28: Labeling Selections
	Exercise 2.29: Plot Over Time
	Exercise 2.30: Extracting a Selection

	Animations
	Exercise 2.31: Animating Properties
	Exercise 2.32: Modifying Animation Track Keyframes
	Exercise 2.33: Multiple Animation Tracks
	Exercise 2.34: Camera Orbit Animations
	Exercise 2.35: Following Data in an Animation

	Visualizing Large Models
	ParaView Architecture
	Setting up a ParaView Server
	Parallel Visualization Algorithms
	Ghost Levels
	Data Partitioning
	D3 Filter
	Matching Job Size to Data Size
	Avoiding Data Explosion
	Culling Data
	Keeping Track of Memory
	Rendering
	Basic Rendering Settings
	Basic Parallel Rendering
	Image Level of Detail
	Parallel Render Parameters
	Parameters for Large Data

	Batch Python Scripting
	Starting the Python Interpreter
	Tracing ParaView State
	Exercise 4.1: Creating a Python Script Trace

	Macros
	Exercise 4.2: Adding a Macro

	Creating a Pipeline
	Exercise 4.3: Creating and Showing a Source
	Exercise 4.4: Creating and Showing a Filter
	Exercise 4.5: Changing Pipeline Object Properties
	Exercise 4.6: Branching Pipelines

	Active Objects
	Exercise 4.7: Experiment with Active Pipeline Objects

	Online Help
	Reading from Files
	Exercise 4.8: Creating a Reader

	Querying Field Attributes
	Exercise 4.9: Getting Field Information

	Representations
	Exercise 4.10: Coloring Data

	Views
	Exercise 4.11: Controlling the View

	Saving Results
	Exercise 4.12: Save Results

	Further Reading
	Acknowledgements
	Index

