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Abstract

In this paper we show how to iterate weak crossed products with common monoid. More concretely, if (A ®
V,pagyv) and (A ® W, uagw) are weak crossed products, we find sufficient conditions to obtain a new weak
crossed product (A® V ® W, uagvew) that, in general, it is not linked with distributive laws.
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INTRODUCTION

Let A be a monoid and let V' be an object living in a strict monoidal category C where every idempotent
morphism splits. In [2] an associative product, called the weak crossed product of A and V, was defined
on the tensor product A®V working with quadruples Ay = (A, V, i}, 0{) where ¢{} : V® A — A®V and
cré VeV - A®V are morphisms satisfying some twisted-like and cocycle-like conditions. Associated
to these morphisms we define an idempotent morphism V gy : AQV — A ® V whose image, denoted
by A x V, inherits the associative product from A ® V. In order to define a unit for A x V', and hence
to obtain a monoid structure in this object, we complete the theory in [14] using the notion of preunit
introduced by Caenepeel and De Groot in [10]. The theory presented in [2] and [14] contains, as particular
instances, crossed products where V gy = idagy, for example the one defined by Brzezinski in [9] or
the notion of unified crossed product introduced by Agore and Militaru in [1], as well as crossed products
where V ggyv # idagy like, for example, the weak smash product given by Caenepeel and De Groot in
[10], the notion of weak wreath products that we can find in [27], the weak crossed products for weak
bialgebras given in [25] (see also [14]) and, as was proved in [16], the partial crossed products introduced
by Alves, Batista, Dokuchaev and Paques in [23]. Also, Bohm showed in [5] that a monad in the weak
version of the Lack and Street’s 2-category of monads in a 2-category is identical to a crossed product
system in the sense of [2]. Finally, weak crossed products appears in a natural way in the study of bilinear
factorizations of algebras [7], double crossed products of weak bialgebras [8], and weak projections of weak
Hopf algebras [15].

The purpose of this paper is to find an alternative iteration process for weak crossed products with
common monoid. Our main motivation comes from some interesting examples that can be found in
the recent literature. For example, in [17], Jara, Lopez, Panaite and Van Oystaeyen, motivated by the
problem of defining a suitable representative for the product of spaces in noncommutative geometry,
introduced the notion of iterated twisted tensor products of algebras. A good particular case of this
iterated twisted tensor product can be found in [22], where Majid constructed an iterated sequence of
double cross products of certain bialgebras. On the other hand, in [24], Panaite proved that under suitable
conditions a Brzezinski crossed product may be iterated with a mirror version obtaining a new algebra
structure. This construction contains as examples the iterated twisted tensor product of algebras and the
quasi-Hopf two-sided smash product. Finally, in [12], Cheng developed the iteration process for wreath
products and, on the other hand, using the 2-category of weak distributive laws, Bhm describe in [6] a
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method of iterating Street’s weak wreath product construction (see [27]). Note that in the first examples
of this paragraph the crossed products that we considered are cases where the associated idempotent is
the identity and in the last one it is not the identity.

An outline of the paper is as follows. In the first section we resume the basic facts about weak crossed
products proved in [14]. Also, in this section, if K is the one-object 2-category corresponding with a strict
monoidal category C, following [5], we describe in detail the 2-category EM" (K) and the relation between
monads in EM"(K) and weak crossed products in C. More concretely, in this setting the conclusion is
the following: a monad in EM"(K) is a weak crossed product with preunit in the category C, and every
weak crossed product with preunit can be interpreted as a monad in EM™(K). Then, we can apply the
general theory of composite monads and (weak) distributive laws (see [3], [12], [27]) to obtain iterations
of weak crossed products. In Theorem 1.6 (Theorem 1.7), we give a concrete description of the (weak)
distributive laws between monads in EM"(K) and, as a corollary, we obtain that, if Ay = (A, V,¥{, oi})
and Ay = (A, W, i, 0it,) are quadruples satisfying the suitable conditions that permit to obtain two
weak crossed products (A ® V, uagy) and in (A ® W, pagw ), a (weak) distributive law of the monad
induced by (A ® V,uagyv) in EM¥(K) over the corresponding monad induced by (A @ W, uagw), is
a morphism A : W@V - A®V ® W satisfying some suitable conditions contained in Corollary 1.8
(Corollary 1.9). As a consequence, we obtain a iterated weak crossed product induced by A that we called
the A-iteration of (A ® V, pagy) and (A @ W, pagw ).

In section 3, we introduce a process to iterate weak crossed products not linked with distributive laws.
Given two quadruples Ay = (A4, V,¥{, 0i}) and Ay = (A, W, i3, 0i3,), satisfying the twisted and cocycle
conditions, and (A ® V, pagyv), (A Q@ W, uagw) its associated weak crossed products, in this section we
introduce the notions of link and twisting morphism between Ay and Ay, proving that, if they exist, it is
possible to construct a new quadruple Aygw = (4, VW, 1/1é®w, a(}®w), satisfying the conditions that
guarantee the existence of a new weak crossed product (A ®V @ W, pagvew) called the iterated weak
crossed product of (AQV, pagv) and (AQW, pagw). Also, if (AQV, pagv) and (AQW, pagw ) admits
a preunit, we find conditions to construct a preunit for (A®V @ W, pagvew ). Finally, in Theorem 2.8,
we prove that the associated monad in EM"(K) for (AQV @ W, pagvew) is the canonical retract monad
induced by an idempotent 2-cell in EM™(K).

In the fourht section we discuss some examples involving wreath products, weak wreath products and
the iteration process for Brzezinski crossed products proposed recently by Daug and Panaite in [13].
Finally, in the last section, following the results proved in [15] we obtain a new characterization of the
iteration process proposed in section 3.

Throughout this paper C denotes a strict monoidal category with tensor product ®, unit object K.
There is no loss of generality in assuming that C is strict because by Theorem XI.5.3 of [18] (this result
implies the Mac Lane’s coherence theorem) we know that every monoidal category is monoidally equiva-
lent to a strict one. Then, we may work as if the constrains were all identities. We also assume that in
C every idempotent morphism splits, i.e., for any morphism ¢ : M — M such that g o ¢ = ¢ there exists
an object N, called the image of ¢, and morphisms ¢ : N — M, p : M — N such that ¢ = i op and
poi=idy. The morphisms p and ¢ will be called a factorization of ¢q. Note that Z, p and i are unique
up to isomorphism. The categories satisfying this property constitute a broad class that includes, among
others, the categories with epi-monic decomposition for morphisms and categories with (co)equalizers.
Finally, given objects A, B, D and a morphism f : B — D, we write A® f for id4 ® f and f ® A for
f®ida.

An monoid in C is a triple A = (A,n4,u4) where A is an object in C and n4 : K — A (unit),
pa s A® A — A (product) are morphisms in C such that ps o (A ® na) = ida = pa o (na @ A),
pao (A ua)=pao(ua® A). Given two monoids A = (A,na,n4) and B = (B,np,up), f : A— B is
a monoid morphism if ugo (f® f) = foua, fona =ng.

A comonoid in C is a triple D = (D,ep,dp) where D is an object in C and €p : D — K (counit),
0p : D — D ® D (coproduct) are morphisms in C such that (ep ® D) odp = idp = (D ® €p) o dp,
(bp®D)odp =(D®6p)odp. If D= (D,ep,dp) and E = (E,eg,0p) are comonoids, f : D — E is a
comonoid morphism if (f ® f)odp =dgo f,epo f=cp.
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Let A be a monoid. The pair (M, ¢ps) is a left A-module if M is an object in C and ppr : AQM — M
is a morphism in C satisfying ¢ o (na @ M) = idp, o0 (A® opr) = a0 (pa @ M). Given two left
A-modules (M, @) and (N, on), f: M — N is a morphism of left A-modules if oy o0 (A® f) = fopu.
In a similar way we can define the notions of right A-module and morphism of right A-modules. In this
case we denote the left action by ¢y,.

1. WEAK CROSSED PRODUCTS

In the first paragraphs of this section we resume some basic facts about the general theory of weak
crossed products. The complete details can be found in [14].
Let A be a monoid and V' be an object in C. Suppose that there exists a morphism

YV VRA—S ARV
such that the following equality holds

(na®V)o (A®¥y) o (vi ® A) = ¥ o (V & ua)- (1)
As a consequence of (1), the morphism Vagy : A®V — A® V defined by
Vagy = (1a® V) o (A®¥{) 0 (A@V @ na) 2)

is idempotent. Moreover, V a5 satisfies that

Vagv o (pa®V) = (ua®V)o(A®Vagy),
that is, Vagy is a left A-module morphism (see Lemma 3.1 of [14]) for the regular action pagy = pa®V.
With AX V,iagy : AxV — A®V and pagy : AQV — A x V we denote the object, the injection and

the projection associated to the factorization of V g5y . Finally, if 1/19 satisfies (1), the following identities
hold

(na®@V)o (A@ i) o (Vagy ® A) = (pa® V)0 (AR YY) = Vagv o (na®V)o (AR ¥p).  (3)
From now on we consider quadruples Ay = (A, V,i/)é, Ué) where A is a monoid, V' an object, wé :

V®A— A®V a morphism satisfiying (1) and 0} : V®V — A® V a morphism in C.
We say that Ay = (A4, V,¥i}, 0i}) satisfies the twisted condition if

(na®@V)o (A0 i) o (op @A) = (na®V)o (A®op) o (Vi @ V) o (V@ yp) (4)
and the cocycle condition holds if
(ma®V)o(A®ap)o (ot @ V) =(na®V)o(A® o) o (¥ ©V)o (V@ o). (5)

Note that, if Ay = (A,V, wépé) satisfies the twisted condition in Proposition 3.4 of [14] we prove
that the following equalities hold:

(ha®@V)o(A®op) o (¥ ®V) o (V@ Vagy) = Vagv o (pa®V)o (A®ay) o (pp@V), (6)

Vagv o (pa®@V)o(A®oy) o (Vagy ®V) = Vagy o (1a @ V) o (A o). (7)
Then, if Vagy o Jé = aé we obtain
(Ha®V)o(A@ay)o(Yp@V)o (Ve Vaay) = (a®V)o(A@oy)o Yy V), (8)
(Ha®V)o(A®o{) o (Vagy ®V) = (1a® V) o (A@ af)). )
By virtue of (4) and (5) we will consider from now on, and without loss of generality, that
Vagv o op = oy (10)

holds for all quadruples Ay = (A, V, 9}, 0}) (see Proposition 3.7 of [14]).
For Ay = (A, V,v¢{,0i) define the product

pagy = (Ha®V)o (ua®oi) o (AR ¢ ®V) (11)
and let paxy be the product

BAxV = PAgV © fagv © (Iagy ®iigy ). (12)



If the twisted and the cocycle conditions hold, the product pagy is associative and normalized with
respect to Vagy (i.e. Vagy opiagy = tagv = tagy © (Vagy ® Vagy)) and by the definition of pagy
we have

pazv © (Vagy ® AR V) = pagy (13)
and therefore
pagy 0 (A®V @ Vagy) = ptagy- (14)

Due to the normality condition, uaxy is associative as well (Propostion 3.8 of [14]). Hence we define:

Definition 1.1. If Ay = (A, V, 4}, 07}) satisfies (4) and (5) we say that (A®V, uagy) is a weak crossed
product.

The next natural question that arises is if it is possible to endow A x V with a unit, and hence with a
monoid structure. As A x V is given as an image of an idempotent, it seems reasonable to use the notion
of preunit introduced in [10] to obtain an unit. In our setting, if A is a monoid, V' an object in C and
Mgy is an associative product defined in A ® V' a preunit vy : K — A ® V is a morphism satisfying

Magy 0 (AQRV @uy) =magvo(vy ®ARV), vy =magy o (Vy @ vy). (15)
Associated to a preunit we obtain an idempotent morphism
oy =Magv o (AR Very): AV - A V.

Take A x V the image of this idempotent, p}%, the projection and i%}7 the injection. It is possible to
endow A x V with a monoid structure whose product is

1% 4 4
Mmaxv = Pagy © Magv © (Igy @ i4Gy)

and whose unit is naxy = piy o vy (see Proposition 2.5 of [14]). If moreover, magy is left A-linear for
the actions gy = pa @V, pagveaey = pagy @ A®@ V and normalized with respect to V7., the
morphism

By t A= ARV, By, = (pa®V)o (A®vy) (16)

is multiplicative and left A-linear for w4 = pa.

Although S, is not a monoid morphism, because A® V is not a monoid, we have that 8,,, ona = vy,
and thus the morphism f,, = Py © Buy + A — A XV is a monoid morphism.

In light of the considerations made in the last paragraphs, and using the twisted and the cocycle
conditions, in [14] we characterize weak crossed products with a preunit, and moreover we obtain a
monoid structure on A X V. These assertions are a consequence of the following results proved in [14].

Theorem 1.2. Let A be a monoid, V an object and magy : AQV ARV — ARV a morphism of
left A-modules for the actions pagy = A @V, Pagveiey = Pagy @ AR V.
Then the following statements are equivalent:
(i) The product magy is associative with preunit v and normalized with respect to Vi .
(ii) There exist morphisms ¥} : V@ A - AV, o} : VeV - AV andvy 1 k — A®V such
that if pagy is the product defined in (11), the pair (AQV, pagyv) is a weak crossed product with
Mmagy = pagy salisfying:

(ha®V)o(A®ap)o (b @V)o (VRwy)=Vagyo(na®V), (17)
(Ha®V)o(A®ap)o(vy ®V) = Vagy o (na®V), (18)
(a®V)o (AR Y{) o (vy ® A) = Byy, (19)

where B, is the morphism defined in (16). In this case v is a preunit for pagy, the idempotent morphism
of the weak crossed product V sy is the idempotent V}‘:‘V®V, and we say that the pair (AQV, uagv) is a
weak crossed product with preunit vy .



Remark 1.3. Note that in the proof of the previous Theorem for (i) = (ii) we define 9{} and o{} as

U =magv o (Ma®V ®By,), (20)
a(/‘:mA@)Vo(nA@V@nA@V). (21)

Also, by (19), we have
vA@V oVy = Uly. (22)

Corollary 1.4. If (A® V,pagyv) is a weak crossed product with preunit vy, then A x V is a monoid
with the product defined in (12) and unit Naxy = pagv © Vy .

Let K be a 2-category. In [5] Bohm introduced the 2-category EM™(K) as the weak version of Lack
and Street’s 2-category of monads in the 2-category K (see [19]). In the particular case of the one-object
2-category corresponding to C (i.e. the 2-category whose 0-cell is K, whose 1-cells are objects of C,
whose 2-cells are the morphisms of C, whose horizontal composition is the tensor product of C, and whose
vertical composition is the composition of C), EM™(K) consists of:

e 0O-cells are monoids S in C.
e l-cells S — T are pairs (F, wf,’T) consisting of an object F' in C and a morphism wg’T FQRT —
S ® F in C such that

Vp' o (Fopur)=(us @ F)o(S@vg")o (g T). (23)
If S =T, the 1-cell (F, w;‘,s) will be denoted by (F, 7). The composition of 1-cells (F, wg’T)
and (F’, wg’,D), is defined by
(F' ) o (F ™) = (FO F dpgp = (Wp" © F') o (Foup")).
The identity cell is (K, ids).
o 2-cells (F, wf;T) = (G,¢g’T) are morphisms in C, p: FF — S ® G, such that

(us ®G)o(S@p)ovp” = (us@G)o(S@vE ) o (peT), (24)
p=(ns@G)o(S@ysT)o(p@nr). (25)
The identity 2-cell is idj, 57y = YT o (F@np): (Fph) = (Fo2T).

It
pi (FWp") = (Gug"), o (F ") = (G 4g")
are 2-cells, the horizontal composition
pr@p: (Fp?) o (Fup") = (Fo F ige) = (Go G voge) = (G v") o (Goug)
is defined by
Pop=(s®GaG)o(SopeG)o Wy’ @G)o(Fay) (26)
Finally, the vertical composition of 2-cells p : (F, wg’T) = (G, wé’T), 7: (G, 1/12:T) = (U, wg’T) is defined
by
Tep=(us®@U)o(S®T)o0p. (27)
Following Section 2 of [5], a monad in EM"(K) is giving by a triple ((F,%), 0%, vr), consisting of a
lI-cell (F,%%) : S — S, and 2-cells o5 : (F,9%) o (F,¢3) = (F,v¢%), and vp : (K,ids) = (F,¢73) in
EM™(K) such that
O'g [ ] (I/F @ Zd(F7w§)) = Zd(Fij?‘) = Ug [ ] (Zd(F7,¢,§) @ VF).
Then, by Theorem 1.1 of [5], this means an object F, and morphisms % : F® S — S® F, 0% :
F@F—-S®Fandvyp: K — S®F,in K, subject to the following identities:
Vi o (F @ ps) = (us @ F) o (S@¢7) o (Vi @ 9), (28)
(ns @ F)o(S@ap)o (pp @ F)o(FeYp) = (us ® F)o (S®@y7) o (0p ©5), (29)



(s ® F)o(S®@ap)o(0p®F) = (us @ F)o (S®@ap)o (7 ® F)o (F®0}), (30)
op = (ps @ F) o (S @ ¢F) o (0F ®1s), (31)

(ns @ F)o (S®0p) o (Y7 ® F)o (F@vp) =¢F o (F®1ns), (32)

(bs ® F)o(S®op)o (vp @ F) = o (F®ns), (33)

)

(s ®F) o (S@vp) o (vp ®8S) = (us ® F) o (S @ vp). (34

As a consequence, by Theorem 1.2, we have that a monad in EM¥(K) is a weak crossed product
associated to the quadruple (S, F, %, 0%) with preunit vp.

By Definition 2.1 of [5] a premonad in EM"(K) is giving by a triple ((F,¢73), 0%, ur), consisting of
a l-cell (F,9%) : S — S, and 2-cells 0% : (F,¢3) o (F,¢3%) = (F,¢%), and vp : (K,ids) = (F,¢3%) in
EM™(K) such that

Ug (] (O'g ® ’Ld(F7wls;)) = O'g‘ [ (Zd(F7¢§) ® 0';9;:),
O'?v ] (VF @ Zd(F’d)g)) = O'}% [ ] (Zd(F7¢15;) @ Z/F)7
ag o (Vp ®Up) = VR,

S S id id _ S
op @ (0p ®idpys)) @ (Ve ®idpgrys,_ ) = OF-

Then, this means an object F, and morphisms 1/)15,' T FRS - S®F, ag cF®F — S®F and
vp: K — S®F,in K, subject to the identities (28), (29), (30), (31), (34) and

(s ®F)o(S®op)o(p®F)o(F®@vp)=(us ® F)o (S®0%) o (vp & F), (35)
(ns @ F) o (S® ((ns @ F) o (S® o) o (vp @ F))) o vp = vp, (36)
(s @ F)o(S®op)o((ns @ F)o(S®op)o(vp @ F))®F) = of. (37)

Definition 1.5. Let ((F,¢3),0%,vr), ((G,¥2),02,vc) be monads in EMY(K). A distributive law of
the monad ((F, %), 0%, vr) over the monad ((G,12),02,vg) is a 2-cell

A (F,98) 0 (GY2) = (G, ¥g) o (F,v7)
in EM"(K) such that

Ne (id(pys) ® 08) = (08 @ id(pys)) @ (idgps) @A) @ (A @ idg ys)), (38)
Ao (0F ®id(gys)) = (idgys) ® 0F) @ A ®id(pys)) @ (idpys) @ N), (39)
Neo (vp ® id(g ys)) = id(G ys) ® vr, (40)
Ao (idpys) ®ve) =ve ® idpys). (41)

This notion is a 2-categorical version of the one introduced by Beck in [4] (see Example 3.1). Following
[27], a weak distributive law of the monad ((F,¢3%), 0%, vr) over the monad ((G,¥2), 02, vg) is a 2-cell

A (Fyp) o (G.g) = (G vg) o (Frvp)
in EM"¥(K) satifying (38), (39), and

Xeo (vp ®id(g yg)) = (08 ®id(pys)) @ (idgys) ® (Ao (vF ® 1)), (42)

A [ ] (ld(F#)}g:) @ VG) - (Zd(vag) @ O'g) [ ] ((A [ ] (Z/F @ Z/G)) @ Zd(F,de;)) (43)
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Theorem 1.6. Let ((F,v3),0%,vr), (G,¥2),08,vc) be monads in EM™(K). A distributive law of the
monad ((F,3), 0%, vr) over the monad ((G,92),08,vc) is determined by a morphism

AMGRF SR FG
i C such that
(s ®@F@G)o(S®N) o(YG@F)o(GRYE) = (ns®F©G)o (SR®YFR®G)o(SRF 1Y) o (AR S), (44)

A=(ns @ F®G) o (S0P ®G)o (S®FRYg) o (A&mns), (45)
(s @ F@G)o(S@A)o(og @ F) (46)

= (s @F®G)o(S@Yp@G)o(us@F®02)0(S@A2G) o (W2 @ F®G)o(GoN),
(s @ FR®G)o(S®A) o (Y& ® F)o (G ap) (47)

=(us®FRG)o(us®@0p@G) o (SRYZRFRG)o(S®F®X) o (A® F),
(hs @ F@G)o(S®N) o (YE@F)o(Gavr) = (ps®F®G)o(S@Yp Q) o (vr@ (g o (G@ns))), (48)
(s @ F@G)o(S@A) o (vg@F) = (¢p®G)o (F@vg). (49)
Proof. By definition, a distributive law of the monad ((F, %), 0%, vr) over the monad ((G,¥2), 02, vg)
is a 2-cell,
A (GO FYger) = (F@ G ¥ige)
in EMY(K). Then, A : G® F = S® F ® G is a morphism in C such that (24) and (25) hold and,

equivalently, (44) and (45) hold.
On the other hand, note that

Ao (id(pys) ® 0F)
= (us @ F®G)o(us®@X) o (SQYE @ F)o (08 @ (7 o (F ©1s)))

=(s®FRG)o(S®((us®F®G) o (S®A) o (W2 ®@F)o(G® (W7o (F®nsg)))) o (ol ®F)
=(us@F®G)o(S@((us®F®G)o(S®Yp®G)o(S@F®@vYZ)o(A®ns))) o (0 @ F)
=(ps@F®@G)o(S®N) o (02 @F)

where the first equality follows by (28) for G, the second one follows by the associativity of g, the third
one is a consequence of (44), and the last one relies on (45).
Also, by (28) for G and F', by monad structure of S, (44), (29) and (31) for G, we obtain
(02 ®id(pys)) @ (idgys) ® ) @ A®id(g ys))
=(us®@F®G)o(S®@(us®F@G)o(S@Yz@G)o(S®F®c2)o((us®F®@G)o(S®N)
oy @ F) o (Goyp)) ©G)))o (Vg ® F ®9g) o (G @A 1s)
=(us@F®G)o(us@Yp ®G)o(S®S®F @ ((us ® G) o (S®0g) o (g ® G) o (G@9g)))
o(SRARGRS)o(WERFRG®S)o(GRARns)
= (us@F @ G)o(us @9z @ G) o (S®S@F @ ((us @ G) o (S@YE) 0 (08 ©1s))) 0 (S@A® G)
o(Wg®F©G)o(G®N)
=(us®FRG)o(S@Yp @G)o(us®FR02)0(SOAR®G) o (W20 F®G)o (G®N)
Therefore, (46) holds because (38) holds. Similarly, we obtain that

Ao (0f @idgys)) = (1s ® F@G) o (S@A) o ($E ® F)o (G®o})
and
(idG,pg) ® o7) @ A ®id(py)) @ (id(py8) ® N)
=(us®@FRG)o(us®@0p @G o (SRYERF2G) o (S®F®@X\)o(Aa F).
Then, (47) holds.
The proof for (48) is the following: on the one hand, by (28) for G, we have

Ao(yp(@id(G’wg)):(us®F®G)o(Ms®/\)o(5®(d)§;®(G®ns))®F)o(¢g®F)o(G®up)
= (s @ F©G) o (S@A) o (Vg & F)o(Gavr),



8

and, on the other hand, by (34),
idiGys) ®ve = (s ® F® G) o (S® 95 © G) o (v ® (1¢ o (G @1s))).
Therefore, (48) holds. Finally, the proof for (49) is similar and we leave the details to the reader.

In a similar way we can obtain

Theorem 1.7. Let ((F,¢3),0%,vr), ((G,¥2),02,va) be monads in EM™(K). A weak distributive law
of the monad ((F,3), 0%, vr) over the monad ((G,v2),08,vg) is determined by a morphism

AMGRF -SQF®G
in C satisfying (44), (45), (46), (47) and
(s @ F@G)o(ns @9p ©G)o(S@S@F®0g)o(S®(vsovr) @ G)oygo(Gans),  (50)
=(us@FRG)o(S@N) o (1@ F)o(G®vr)
(5@ F®G)o(us@Yr©G)o(S®op@Yg)o (Vi@ FOG@Ns)o (F&(ysovr)) = ysovio(F@s), (51)
where s = (15 @ F @ G) o (us @ A) o (S @ vg ® F).
As a consequence of the previous theorems we have the following results.

Corollary 1.8. Let (A®V,uagyv) and (A Q@ W, uagw) be weak crossed products with preunits vy and
vw. A distributive law of (AQV, pagy) over (AQW, uagw), i-e. a distributive law of the monad induced
by (AR V, pagy) in EMY(K) over the corresponding monad induced by (A Q@ W, pagw ), is a morphism

AWRV 5 AQVW
in C such that
(1A@V @W)o(ARN)o (¢ih ®V)o (W) = (ua®V@W)o (A0 @W)o(AQV @ik )o (AR A), (52)

A=(na@VeW)o(Agyy @W)o (A V @) o (A& na), (53)
(1A @V @W)o(A®A) o (ofy @ V) (54)

= (pa@VRW)o(ARYE@W)o(ua®@V @0i) o (AN W) o (Y @V @ W) o (W@ \),
(ha @V @W)o (A®A) o (Yiy @ V)o (W ® o) (55)

= (pa®@V@W)o(ua @t @W)o (ARUEVRW)o(AV @A) o(Aa V),
(1A®V@W)o(A@)o (i @V )o (W) = (ha®@V W )o(A@y @W)o (v ® (i o (W®na))), (56)
(a@V@W)o (AN o (vw V) = (it @ W) o (V@ vw). (57)

Corollary 1.9. Let (AQV,pagy) and (AR W, nagw) be weak crossed products with preunits vy and
vw. A weak distributive law of (A® V,pagy) over (A @ W, pagw), i-e. a weak distributive law of the
monad induced by (AR V, pagv) in EMY(K) over the corresponding monad induced by (A W, pagw ),
18 a morphism

AWV 2 AQQVW

in C satisfying (52), (53), (54), (55) and
(pa@VOW)o(ua@ it @W)o (ARARV @aiy) o (A® (yaovy) @ W) oty o (W @n4)  (58)
=(pa@VeW)o(A® N o (i @ V) o (Wawy)
(1a®VOW)o(a@yy @W)o(AQ0oy @iy )o (P @V OW @na)o(Ve(yaovy)) = yaoio(V@ia), (59)
where 74 = (ua @V @W)o (A ) o (By, @V).
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Let ((F,v3), 0, vr), (G,%2), 02, ve) be monads in EM™(K). If A is a distributive law of the monad
((F,¢3), 0%, vr) over the monad ((G,2),02,va), we can obtain a new monad (the composite monad
associated to A (see [3]))

(Fea, ¢J€“®G)a 0%@07 VFea)

where
Vree = (WF @ G) o (F®$2), (60)
0rac = (00 ®op) e (i us) ® A ®id(pys)), (61)
VPeG = VG ® VF. (62)

Therefore, it is easy to show that (61) and (62) can be written as
oPec = (s @ F @ G)o(ps @i @G)o(S®op©og) o Wp @ FRGG) o (FRARG),  (63)

vreG = (1s @ F® G) o (S@¥7 ® G) o (vF ® va). (64)

As a consequence, if (AR V,pagy) and (AR W, nagw) are weak crossed products, with preunits vy

and vy, and A: W@V — A®V @ W is a distributive law of (A ® V, pagv) over (A®@ W, pagw), we
obtain a new weak crossed product (A®V & W, uagvew) associated to the quadruple

Avew = (A V @ W, ¥l gw, 0t gw)
defined by
Prow = (U @ W) o (V ® ¢ip),

Ttew = (pa @V @W)o (s @y @W)o (Ao @ojy)o (U @ VoW @W)o (Ve W),

and with preunit
wew = (Ha®@V @W)o (A it @ W) o (vy ® vw).

Following [27], for weak distributive laws between monads in EM*(K), we have a similar construction

but in this case we do not have a monad because the unit conditions are not always fulfilled.

From now on, if A is a (weak) distributive law, the product associated to A}y, will be called the
M-iterated product of (A® V, pagy) and (A Q@ W, pagw).

2. A DIFFERENT WAY TO ITERATE WEAK CROSSED PRODUCTS

The aim of this section is to iterate weak crossed products with a common monoid, that is, weak
crossed products induced by quadruples of the form Ay = (A4,V, wv,av) where A is fixed, from a
different perspective to the one presented in the previous section.

Definition 2.1. Let Ay = (A, V,¥{,0i}) and Ay = (A, W, i, o) be two quadruples. We say that
AV®W:V®W—>V®W
is a link morphism between Ay and Ay if the following conditions hold:

I'ew = (A® Avew) o g, (65)

Tiow = Vasvew © View, (66)
where
IPow = Vvew © (Avew ® A).
and Vagvew : AQV QW — A®V ® W is the morphism defined by

Vagvew = (a®@V@W)o (AT ow) 0 (AQV @ W ®n4).

Lemma 2.2. Let Ay = (A, V, i, 08) and Aw = (A, W, i, oiy) be two quadruples. If there exists a
link morphism Ayvgw : VW — V@ W between them, the morphism I‘(}®W introduced in the previous
definition satisfies (1) and as a consequence Vagvgw s an idempotent morphism and the following
identity holds:

Fé@W = Vagvew © Fé®w- (67)
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Proof:
Using that i}, 1, satisfy (1) and Ay g satisfies (65) we obtain

(Ha®V@W)o(A® FV®W) (CPgw ® A)
= (pa®@VOW) o (AP OW) o (¥ ®¥iy) o (VO vy ® 4) o (Avew © 4)
= (vp by @W) o (V ®Piy) o (Avew @ 11a)
FV®W VoW eua)
and then (1) holds for I'{}y ;. Finally, (67) follows directly from (1) for T'{}g .
O

Let Ay = (A, V, 4}, 0}) and Aw = (A, W, ¥iy, i) be two quadruples with a link morphism Aygu
between them. Let, as in the previous section, K the one-object 2-category corresponding to C. Note
that, by the previous lemma, the pair (V @ W, F(}®W) is a 1-cell in EM"(K). Also, the morphism

p=TPewo(VaWan): VeW - AV e W

is a 2-cell in EM"(K) between (V @ W, ¢}, y,) and (V ® W,T'{ /) because, by (65) and (1) for Ay and
Aw we have

(Ha®V@W)o (AR THgw) o (p®na)
=(pa®V@W)o (A ¢ @ W) o (Vi @ i) o (V@ Yy, ® A) o (Avgw @ na @ na)
:Fé@)WO(V@W@MA)a

and, on the other hand, by (66) and (1) for I'i,
(ha @V @W) o (A®p)odigw = Tygw = (La®V @W)o (A2 Tgy) o (p® A).
Similary i = p is a 2-cell in EM"(K) between (V @ W,Ti}gy) and (V @ W,¢{lgy ), and p e i =
id(V®W’F9®W). Therefore,
Q=iep: (VW igw) = (VoW iyy) (68)
is an idempotent 2-cell in EM" (K).
Definition 2.3. Let Ay = (A4, V,9, 0i}) and Aw = (A, W, ¥, 0iy) be two quadruples. We say that
e WeV VoW

is a twisting morphism between Ay and Ay if the following conditions hold:

(i) Wy @W)o(Vayy)o(ny @A) =(Aany) o Wiy @V)o (W ).

(i) (na®V@W)o(ARo}@W)o (WP eny)o(Vaoy@V)o(meaWeV)=
(1ARV QW) o (AU @W)o(ARV @oiy ) o (AR Ty @W)o (iy @VRW)o (W Rai @W)o (W RV @1).
Theorem 2.4. Let Ay = (A, V,¥i,08), Aw = (A, V,¥ir,, 0i) be two quadruples satisfying (4) and (5)

with a link morphism Aygw : V@ W — V @ W and with a twisting morphism T‘E{, WV VoW
between them. Then if we define aé@)w VOWRVW - AV W by

oew = (LA @V @W)o (A ¥ @ W)o (o @ afy) o (V@ riy @ W) (69)
and it satisfies
Ttow = ottew o (Avew @V @ W), (70)
Vew = 0vegw o (VOW & Avew), (71)
ovew = (A® Avew) 0 opgw, (72)

the quadruple Aygw = (A,V @ W,T{ ¢y, 0t qw) satisfies the equalities (4), (5) and (10). As a conse-
quence, (AQV @ W, pagvew) is a weak crossed product with

pagvew = (pa®@V @W)o (s ® Ué@W) o(A® Fé@W @ V).
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Proof:
First we prove the twisted condition.
(a®@V) o (AR THgw) o (0Pgw @ A)
= (((pa®V)o (A0 ) @W)o (ot ® (ua @ W) o (A® i) o (o} @ A))) o (VR T, @ W @ A)
(Avew ® Avew @ A)
=((pac(A®o)o (Y @V)o (Vaud)aW)o(VaV e (ua@W)o (A ay) o (Y @ W)
(Wadi)o(Ven, oW eA)o (Avew @ Avew @ A)
(na®@V)o(na®op) ® (AR Yy @ V) o (¢ @ Pi})) © W)
(Ve ((¥y @aiy) o (Ve iy @W)o (rg @ ¢i))) o (Avew © Avegw @ A)
(Ha®V)o (A® ((ua®@V)o (A o) o (Y @ V) o (V @ 4})))) @ W)
(AeVeVeoy)o(Wieny)o(VadyaV)o(VeWayd)) eW)
o(VaW eV eyl o (Avew @ Avgw ® A)
=(pa@VaW)o(A®olgw)o Mgy @VOW)o (VW @Tigy).

In the previous calculus, the first equality follows by, (70), (71), (72), (1) for Ay and the associativity
of pa, the second one follows by the twisted condition for Ay and Ay, the third one follows by (1) for
Ay and the fourth one follows by (i) of Definition (2.3) as well as the associativity of p4. Finally, in the
last one we use the twisted condition for Ay .

The proof for the cocycle condition is the following:

(Ha®V @W)o(A®ailgw) o (0tew @V @ W)

=((pao(A@ua)@VaW)o (AR ua@yi @W)o(A® (A® o) o (@ V) A W)
oWpeVaeVaeoy)o(Ve (Wien;)o(VaoyoV)e(naWaV))oWw)
o(Aygw @V RIW RV @ W)

= (pa@VeOW)o(ua@yf @W)o(ARop @ A®W)o (4 @ V @ oiy)
o(Veal(ua@VeW)o(ArstaW)o Wit @mny)o(Veoh @ V)o(rny @We V)| W)o
o(Avew ®VOW QV @ W)

=(pa@VeW)o(ua@yif @W)o (Aol @ A W)o (¥ @V @ ai}y)
o(Velua@VeW)o(Aeyy @W)o (A V @ay)o(Aeny @W)o (i @V e W)
(Voo @W)o(WaVern)eW)o(Avgw @VeW eV e W)

= (pa@VeOW)o(ua@yp @W)o (A (ua®V)o (AR o) o (Y3 @V)o (V@) @ aiy)
AV eVas aW)oWitarn, aWaW)o (Ve eVeWeW)
o(VoaWa(cdaW)o(Vany)@W)o(Avegw @ VeW eV e W)

=(pa@VeW)o(ua @Yy @ W) o (A® (na®@ V) o (A@ ) o (07 @ V)) ® o)
ARV RVRel @W)o (Wl @r, @WaV)o(Veyd e VeWw W)
o(VoaWa(ecdaW)o(Vany)@W)o(Avgw @ VoW eV e W)

= (pa@V@W)o (ua®@ 9 @W)o (AR oy @ ((na @ W) o (A@ afy) o (o @ W)))
(@) o(VaviaV)o(VaWeei)aWeaW)o(VeaW eV eny, @ W)
o(Aygw @V IW @V @ W)

= (pa@VeaW)o(pa® Y @W)o (Ao @ (pa@W)o (AR afy) o (Vi @ W) o (W @ oi,)))
(W @my)o(VeypaV)o(VeaWeap)@WaW)o(VeaW eV en, @W)
o(Aygw @V W @V @ W)

=(pa@VRW)o(AQusa@VOW)o (AR AR Y @ W)
(AR ((ua®@V)o (A Yy) o (o ® A)) Qo) o (AQV RV @4, @ W)
oWy @y @apy) o (Vv @VeWeW)o(VeW e (op @W)o (Veny)) o W)
o(Aygw VWV W)

=(UaRVOW)o (A ua@VeW)o (A ARy @ W)
(A ((na®V)o(A@ o) o (b @ V) o (VRYy)) ofy) o (AR V @V @1y, @ W)
oWy @y @oqy) o (Ve @ VeWaW)o(VaW e ((op @W)o (Van,)eW)
o(Avew @VeW eV e W)

=(pa@VRW)o(ARusa@VaW)o(A® A® Y @ W) o (a0 oit @ oiy)
oAy @my @W)o (Wi @Yy @ VeaW)o(Veyy ayg@W)o (Ve W oy o)
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(VoaWeVern,@W)o(Avew @VaW eV e W)
=(pa@VeoW)o(A®otyy)o [Py @V)o (VO W @apgy).

In this proof, the first equality follows by (70), the associativity of u4 and the twisted condition for
Ay, the second one follows by the cocycle condition for Ay, (1) for Ay and the associativity of pa. In
the third one we used (ii) of Definition (2.3). The fourth one is a consequence of (1) for Ay and the
associativity of u4. The fifth one follows by the twisted condition for Ay and the associativity of p 4.
In the sixth one we used (1) for Ay and the associativity of pa. The seventh one follows by the cocycle
condition for Ay, and in the eight one we applied (1) for Ay and the associativity of p4 again. The ninth
one follows by the twisted condition for Ay and the tenth one follows by (i) of Definition (2.3) and the
associativity of p4. Finally, the last one was obtained using (1) for Ay and Ay .

The proof for the equality (10) is the following;:

Vagvew © 0pgw
=(pa®V@W)o (A @W)o(AxV @) o (A® Avew) o 0fgy) ®14)
= (pa®V@W)o (A Yy @ W)o (AR V @Yi}) o (¢igw @na)
— (A ®VOW) 0 (A VL ®W) o (o8 ® (Vasw 0 ofh)) o (V& © W)
= ‘7(/‘®Wa
where the first equality follows by definition, the second one by (71), the third one by (1) for ¥t and

by the associativity of p4. The last one relies on the properties of J{j‘V, that is Vagw o J{j‘v = 0{,4[,.
O

Definition 2.5. Let Ay = (A, V, 9,08, Aw = (A, W, i, 0i3) be two quadruples satisfying (4) and
(5) with a link morphism Aygw : V@W — V®@W and with a twisting morphism 7, : W@V — VoW
between them. Let (A ® V, pagy) and (A ® W, pagw) be the weak crossed products associated to Ay
and Ay and suppose that the morphism o3}y, defined in (69) satisfies (70), (71) and (72). The weak
crossed product (A®V @ W, pagvew) defined in the previous theorem will be called the iterated weak
crossed product of (A® V, pagy) and (AQ W, pagw )-

In the following theorem we introduce the conditions that implies the existence of a preunit for the
iterated weak crossed product defined previously.

Theorem 2.6. Let Ay = (A, V,yi},00), Aw = (A, W, ¥, 08) be two quadruples satisfying (4) and (5)
with a link morphism Aygw : VW — V@ W and with o twisting morphism TV‘I/, WV VW
between them. Let (AQV,pagyv) and (AQ W, pagw) be the weak crossed products associated to Ay and
Aw and suppose that vy : K - AQV and vy : K — A® W are preunits for pagy and pagw. If the
morphism o}gy, defined in (69) satisfies (70), (71), (72) and the following equalities hold

ARV @W)o (Ao} @W)o (i @my) o (Veyh @V)o(VeW awvy) (73)
= Vagvew o (na®@V e W),
(A @V OW)o (AUt @W)o (AR V @oiy)o (AR my @ W)o (v @V @ W) (74)

= Vagvew o (na®@V @ W),
the iterated weak crossed product of (AQ V, uagy) and (A W, uagw) has a preunit defined by

vwew = Vagvew o (La®@V @ W)o (A vy @ W) o (vy @ vw). (75)

Proof:
Note that to prove that vygw is a preunit we need to show that the equalities (17), (18) and (19) hold
for the quadruple Aygw = (A, V W, I‘{}®W, 0“§®W).
In this setting, the equality (19) holds because:
(Ha®@V @W)o (A Td,y) o (wew @ A)
=Vagveow o (a@VeaW)o (A us@VeaW)o (A Ay @ W) o (A Y @ ¥i)
O(VV ® vw ® A)
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= Vagvew © (B, @ W) o B,
=Vagvew o (pa®@V @ W) o (A® ((Bu, @ W) ovw))

= /BVV®W7

where the first equality follows by (3) for Aygw, (66), and the the left A-linearity of Vagygw, the
second one follows by the associativity of p4, (1) for Ay and (19) for 8,,, and S, , the third one follows
by the left A-linearity of 3,,, and the last one follows from the left A-linearity of Vagvew -

The proof for the equality (17) is the following:

(ha @V @W)o(A®ajgy) o (Tigy @VOW)o (VW @rvew)

= (pa@VOW)o(AR0i gy )o (T @VOW )o(VRW @ ((ua®@VeW )o(ARy#@W )o(vy @uw)))

= (pAaRVRW)o(ua®@ARV@W)o(ARusR0i@W)o(ARARYERV @W)o (AR @it @ W)
(ARVR®ARV ®oiy)o(AQV AR, @W)o (i @ik, @ VW) o (Vyh @vi @ W)
(VW vy uvw)

= (a®VW)o (Ao @W)o((¢ifo (V@ (uac(A®pua))@VeaW)o(VRAQAQYE QW)
o(VRARARV ®ofy)o (VAR ((AQTy)o(dfy @V)o(Wayd))@W)o(Veyj Ve AoW)
O(V®W®Vv®yw)

= (pa@VaW)o(Aad @W)o (o (V@ (uao(ARua))))@VeaW)o(VRAR Ayt @ W)
o(VRARARVR0f)o(VRAR((WE@W)o (Ve )o(ry @A) @W)o(Veyh Ve ARW)
o(VeaW evy @ uvw)

=(pa®@VeoW)o (Aol @W)o((o(Veua)@VeW)o(VeA®yy W)
o(VeoAaVa(na®W)o(A®afy)o (¥ @ W)o(Weww)))o (Ve Ae ) o(VeyyeV)
O(V QW ® Vv)

= (1a®VRW)o(ARo{@W)o (P @VaW )o(Veua@VeW )o(Ve Aoyt @W )o (Ve ARV @ii})
(VoART @A) o (Vevi @VeA) o(VeW vy @na)

= (1a@VEW)o(AR((1a®V)o(ARa})o (Y@ V )o(VRy())@W )o(ARV @V @iy Jo(vi@my @A)
o(VeayihaVeAd)oVeW vy @na)

=(pa@VeoW)o(Aoyg@W)o (A0 V & (¢ o (Wena)))o(pa®@VeoW)o (Ao @ W)
o @) o (Vayy @V)e(VeW ewy)

= (a®@VaW)o(Aoyy@W)o (AR V & (% o (W @na)))o (i @W)o (Vi) o (Avew @1a)

= Vagvew o (na®@V @ W).

In this proof, the first equality follows by (8) for Ay gw, the second one follows by (1) for Ay, Aw,
the associativity of 4, the twisted condition for Ay, (66) and by (9) for Aygw, the third one follows
by (1) for Ay and the associativity of p4. In the fourth one we applied (i) of the definition of twisting
morphism and the fifth one is a consequence of (1) for Ay. The sixth one follows by (17) for Ay, the
seventh one follows by (1) for Ay and the ssociativity of p4, the eight one relies on the associativity of
a4 and the twisted condition for Ay . Finally, the ninth one is a consequence of (73) and the last one
follows by (1) for Ay, Aw.

On the other hand, the proof for the identity (18) is

(A @V @W)o(A® o gw) o (tvaw @V @ W)

=(pa®@VeW)o (A atan) o (la@Ve@W)o (A Y@ W) o (v @uw)) @V @ W)

= (pa@V W) o ((uao(A®ua)) @it @W)o (AR AQYLQV@W) o (AR ARV @it @ W)
(ARARV @V oy )o(Ayieary @W)o(vw vy @V @ W)

= (ua®VOW)o(ua@ct@W)o(AUE VAW )o(ry @((1a@V QW )o(AYA@W )o(AQV @oi)
oAy @W)o (v @V W)

=(paRVeW)o(ua@ci@W)o (AR YtV eW)o

= (a®VOW)o(ARYj@W)o(ARV & (i o (W @n4)))
oAygw

= (1a@VaW)o(A0yd @W)o (AR V @ (b o(Wena)))o(Vagvo(na@V))@W)oAygw

=Vagvew o (na®@V e W).

(vv @ (Vagvew o (na @V @ W)))
o((pa®V)o (Ao o(vy @V)) QW)
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The first equality follows by (9) for Aygw, the second one follows by the associativity of 14 and the
twisted condition for Ay, the third one follows by (1) for Ay, the fourth one relies on (74), the fifth one
follows by the twisted condition for Ay and the associativity of 4, the sixth one is a consequence of (18)
for Ay and finally, the last one follows by (1) for Ay.

O

Remark 2.7. Note that we can obtain similar results about the iteration process if we work with
quadruples A = (V, A, 9% ,0%) where ¥ : A9V - V®Aand o : VeV — V& A satisfy the
suitable conditions that define a weak crossed product on V ® A.

Theorem 2.8. Let Ay = (A, V,yi},00), Aw = (A, W, ¥, 08,) be two quadruples satisfying (4) and (5)
with a link morphism Aygw : V@ W — V @ W and with a twisting morphism 7, : W@V — V@ W
between them. Let (AQV, pagyv) and (AQ W, pagw) be the weak crossed products associated to Ay and
Aw and suppose that vy : K - AQV and vy : K - A® W are preunits for pagy and pagw . If the
morphism o}gy, defined in (69) satisfies (70), (71), (72) and the equalities (73), (74) hold, the triple
(Vo W, ¥lew), 0 ew, vvew) is a premonad in EMY(K), where vygw is the morphism introduced in
(75). Also, the monad (V ® W,T}qw ), 0t ew, vvew) is the canonical retract monad induced by the
idempotent 2-cell Q) defined in (68).

Proof. The equality (28) follows because (V @ W, 1{}g /) is a 1-cell in EM™(K). The proofs for (29), (30)
and (31) are similar with the ones used in Theorem 2.4, for (V ® W,T{}5y,) and o{}y,, removing the
linking morphism. Also, by (1) for Ay and Ay, (3) for Fé®w, and using that vy gw is a preunit for the
iterated weak crossed product (AQ®V @ W, pagvew) (see the proof of (19) in Theorem 2.6) we have
(ra®V @W)o (AR Yigw) o (vew @ A)
= (na®VaW)o(A@yj@W)o(ARV &y )o((a®Avew)o (AR Y} @W)o (v @vw)) @A)
=pa®VeW)o (A®F(}®W) o (rvew ® A)
=(pa®@VeaW)o(A® (vvew)
and then (34) holds.
On the other hand, by (18) for the iterated weak crossed product (A® V ® W, pagvew) we have

(A @V @W)o (AR otgw) o (Wvew @V @ W) =Vagvew o (na @V @ W)
Then, (35) holds, because by (9) for i}y, (66), and (17) for the iterated weak crossed product (A ®
V@ W, uagvew), we obtain
(ha®@V @W)o(ARodg) o (Uigw @VOW)o (VW ®vvew)
=(pa®VeW)o(A®opaw) o (Vasvew o Uigw) @V @W)o (VoW ® vyew)
=(pa®VOW)o(A®opgw) o Tiew @V OW)o (VW @vvew)
=Vagvew o (na @V @W).

Moreover, using (18) for the iterated weak crossed product (A®V @ W, pagvew ), the left A-linearity
of Vagvew, and (22) for Vagvew and vygw, we prove (36). Similarly, by (18) for the iterated weak
crossed product (A® V @ W, pagvew), and (9) for otgy,

(Ha®V@W)o (AR gu) o (ha®V @W)o (AR ovgw) o (tvew @V QW) @1V @ W)
= (pa@VOW)o(A®otgy) o (Vagvew co(na@ VW)@V e W)
= ofew
and then (37) holds.

Finally, by similar arguments and the twisted condition for the iterated weak crossed product (4 ®
V @ W, pagvew ), we can prove the identities

Cyew =De®0ygy ® (i ®i),
and
Pelryvew = Vvew-
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Therefore, the monad ((V ® W,T{}q1),0{taw, ¥vew) is the canonical retract monad induced by the
idempotent 2-cell 2. O

In the previous theorem we find premonad in EM™(K) defined by (V ® W,¥{gu ), 0ttew, vew).
For this premonad the following equality holds
Ttew @ ((ldweovewss o) ® 1) = ([dayys) ® 03) o (0w ® idyya)). (76)
Indeed:
(id(W,w“;‘V) ®op) e (U(/‘@W ® id(vqu))
= (1a®VOW)o (AR ((a®V)o(A®YY)o (0} ® A) @W)o (Y @V ®4iy) o (VR a{gy ®na)
=(na®V W) o (ua®yy @W)o (AR (a®V)o (A®0(})0(1/19®A)0(A®1/)(/‘))®A®W)
oY ® Ve A®Yiy)o (Ve ((oy ®oiy) o (Ve my @ W)) @na)
= (na®VOW)o(A®((na®V)o(A® )o@ A)@W)o((a®V)o(Avop)o (W @V)
o(Vaop) @ Aa ) o (Vave (Vaoey)o(ry @ W)) @na)
@V EW) o (A YL@ W) o (1 ® V) o (A® o) o (of @ V) @ (14 & W) o (A2 6)
o(oiy @ A)) o (VRV@ry @W @114)
= (na@VOW)o(A®((1a®V)o(ABYY)o (0} ® A)@W)o(ARV RV ((ha®@W)o(A@aiy)
oYy @ A) o (A giy))) o (o @7y @ W @ 174)
= (1a®V@W)o (na® ((ha®W)o (AR aiy) o (Vi @ A) o (AR Vi) @W) 0 (AR UG @V @ oy )
ofof @ (b @W)e (Vaiy)e(ny @A) @W)e(VaVaWaVe (¢ ®A)o (Wana)))
= (pAa®VOW)o(ua®olgw)o (AU @W RV @W)o (o @ (Vi ® VW) o (W @y @ W)
o(WaV @ ((¢iy @A) o (W@1n4))))
= 0Pgw ® (id(W®V®W,¢¢‘V®V®W) ® or)

In the last equalities, the first one follows by (1) and (4) for Ay . The second and the sixth ones follow
by (1) for Ay and by the associativity of p4. The third one relies on (4) for Ay and on the associativity of
tea. In the fourth one we used (5) and (1) for Ay. The fifth one is a consequence of the the associativity
of pa and (5) for Ay,. Finally, the seventh one follows by (4) for Ay and (i) of Definition 2.3, and the
eighth one relies on (1) for Ay and Ay, and on (4) for Ay.

The previous equality is the equality (2.12) of [5]. Then, by Theorem 2.3 of [5], the premonad intro-
duced in Theorem 2.8 corresponds to a monad in EM*(EM™(K)) whose constitutent 1-cell is

U= ovew ® (idayps) ® o @ idygw,ga ow)) @ vew ®idawevewsd, o)) (77)

o(idwev,yd,,) @)
Then, by (1) for Ay and Ay, (18) and (3) for Ay, and the associativity of p4, we have
V=(pa®VeW)o(Aa (Wi eW)o(Vady)o(rny @W))o [y eV e W) (78)
oW ((pa®@V)o (AR o) o (Wit @ V) @W)o(WRV Quygw) : WaV - AV @ W.

Remark 2.9. Note that, if Ay = (A, V,¢{,00), Aw = (A, W, 'l/)W,O'W) are two quadruples such that
Ay satisfies the twisted condition (4) and there exists a morphism 7, : W @ V. — V @ W satisfying

Wy @W)o (Vaay)o(ry ®@W)o(Weny) =(Aeny)o (g V), (79)
and

(op @W)o(Vany)o(my @V)=(Aamy) o (Ui @V)o (W), (80)
the equality (ii) of Definition 2.3 holds because:

(a®@VR@W)o(A® ol @ W)o (1/)V®TW) Voo @V)o(ryaWeV)

= ((ua®V)o (AR} o (W @V)o(VRyy))@W)o(VRV ay) o (Vary, @W)o (ry @Ty)
= ((pa®V)o (AR Y} o (0 @A) @W)o (VOV @ay)o (Veny @W)o (ry ®ry)

= (paRVRW)o(ARY{ @W)o(AV @) o (AT @W)o (viy ®VeaW)o (Vo @ W)
oWV ey
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where the first equality follows by (79), the second one by (4) for the quadruple Ay and the last one
by (80).

3. SOME EXAMPLES

The aim of this section is to provide some examples of the iteration process introduced in the previous
ones.

Example 3.1. The category of endofunctors of C is a strict monoidal category with the composition
of functors, denoted by ®, as the tensor product and the identity functor as the unit. We denote this
category by End(C). The morphisms in End(C) are natural transformations between endofunctors and
we denote the composition (the vertical composition) of these morphisms by o. The tensor product of
morphisms in End(C) is defined by the horizontal composition of natural transformations and in this
paper is denoted by the same symbol used for the composition of functors (see [21] for the details of the
horizontal and vertical compositions). Note that, if C is a category where every idempotent morphism
splits it is easy to show that every idempotent morphism splits in End(C). Given objects S, T, D and a
morphism 7 : T — D, we write S ® 7 for idg © 7 and 7 ® S for 7 ® idg where ids denotes the identity
morphism for the object S.

A monad on C consists of a endofunctor S : C — C together with two natural transformations ng :
ide — S (where ide denotes the identity functor on C) and ug : S2 =S ® S — S. These are required to
fulfill the following conditions

ps o (S©ns) =pso(ns ©S) =ids, (81)

ps o (S@ps) =pso(ps®S). (82)

Then, a monad on C can alternatively be defined as a monoid in the strict monoidal category End(C).

The notion of wreath was introduced by Lack and Street in [19]. A monad S in C is a wreath if there

exist an object in T' € End(C) and morphisms in End(C), v : T©®S - S®T, 7 :idec — S ®T and
v:Te®T — S©T satisfying the following conditions:

(hs@T)o(S@)o (Y @5) =1 o(Tepus), (83)

Yo (Tens)=ns@T, (84)
(ns@T)o(S@T)=(ns@T)o(S@Y)o(T@5), (85)
(ns@T)o(Sev)o(Pp@T)o(T®Y)=(ns@T)o(S@Y)o(v®S), (86)
(hs@T)o(S@v)o(weT)=(us©@T)o(S@v)o(p@T)o(T®v), (87)

(s @T)o(S@uv)o(Te@T)=ns@T = (s @T) o (S@v)o(p@T)o (T ®T). (88)

If we put ¥ = 1 and 07 = v, we obtain that Sy = (S, T,94%,0%) is a quadruple satisfying (1), (4)
and (5) where the associated idempotent defined in (2) is Vggr = idseT because 9 satisfies the identity
(84). Then, the product induced by a wreath (wreath product) defined by

pser = (s @ T)o (us@v)o(S@y@T)
is the one defined in (11) and it is associative because satisfies (iv) (twisted condition) and (v) (cocycle
condition). Then S ® T is a monad with unit nser = 7.

An example of wreath products cames from the notion of distributive law introduced by Beck in [4]
(see also [26]). Suppose that T" and S are two monads on C. A distributive law of the monad S over the
monad 7 is a natural transformation

AMTeS—=S0T
such that
Xo(jr ®8) = (S@pur) o (A T) o (T ®N), (39)
Ao(nr®S)=Senr, (90)
Ao(T@pus)=(us@T)o(S@A)o(A@®S), (91)
Ao(T@ns)=ns@T. (92)
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Then, if 7 = ng ® ny and v = g @ pr we obtain a wreath for the monad S and also a weak crossed
product associated to the quadruple Sy = (5, T, z/)%:, 0591) where w% = A, 0591 = v and
pser = (Hs @ pr)o (S@A@T).
Suppose that S, T and D are monads in C such that there exists the following distributive laws between
them
M:TeS—=S0T, M:DeT—-TeD, M:DoS—S0D,

satisfying the compatibility identity (called the Yang-Baxter relation or the hexagon equation)
(S@X)o(A3@T)o(D@A) =M @D)o(T®A3)0(X2®S). (93)
Then, under these conditions we have two quadruples
St = (S, T,¢% = A\1,0% =15 © ur),

Sp = (S,D,¥3 = X3,0% =1s © up),
satisfying (1), (4), (5). If we put AT@ p = idrep as a link morphism (note that in this case the equalities
(70), (71) and (72) are trivial) and 75 = Ay we have that the condition (i) of Definition 2.3 holds because
we assume (93). On the other hand, the condition (ii) of the same Definition also holds because:
(ns@T@D)o(S@op©D)o (Wi e1h) @ (TeopeT)o(rp©@DeT)
=(Ms @ ((pr @ pp)o (T ® A2 @ D)o (A2 ® A2)))
=(us@T®D)o(SeYf®D)o(S©T@op)o(S©TH©@D)o (¢ @T ®D)o(D@of® D)o
o(D®T®TH).
Therefore, 75) = Ag is a twisting morphism between the quadruples Sy and Sp. As a consequence, by
Lemma 2.2 and Theorem 2.4, the quadruple

Srep = (S, T © Dﬂ/fg@Da Ug@D)v
where
Viep = (W7 © D)o (T ®¥}) = (A © D)o (T ® As)
and
o5ep = (1s ®T®D) o (S©Y$® D)o (65 ©03) o (T®TH® D) =15 © ((ur © pup) © (T ® A © D)),
satisfies the equalities (4) and (5). Then, the pair, (S©®T ® D, userep) is the iterated weak crossed of
(S©T,user) and (S ® D, usep) with associated product
pseren = (s @ T ® D)o (s ® 03¢ p) 0 (S ©@ Yep ® T @ D) =
(s © pur @ pp) o (S© (M @ A2) 0o (T@A3@T)) @ D).
In this case the preunits are units. The object S ® T ® D is a monad with unit
NseTeD = Ns @ N @ 1D

because S ® T and S ® D are also monads with unit nsgr = ns © nr and nsep = ns © Np respectively.
Therefore, (73) and (74) holds and the morphism vpgg defined in (75) is nsereD-
On the other hand, the morphism v, introduced in (77), is

P =15 © Aa.

Then, it is a distributive law of (S ©® T, pser) over (S ® D, usep). As a consequence, in this case, the
1-iterated product is the one defined in Theorem 2.4.

For example, if C is a strict monoidal category and A, B are monoids in C the twisted tensor product of
algebras introduced in [11], [28] is an example weak crossed product associated to a wreath for the monad
S=A®—. Inthiscase T = B® — and A = R® — where R: B® A - A® B is the twisting morphism.
Furthermore, the natural transformation A = R ® — is a distributive law of the monad S = A ® — over
the monad T'= B ® — if and only if R: B® A — A® B is a unital twisting morphism. Suppose that A,
B and C are monoids, let

RlB®A—)A®B, RQC@B-}B@C, R30®A—)A®C,
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unital twisting morphisms, and consider the monads S = A® —, T = B® —, D = C ® —, the induced
quadruples Sy, Sp and the twisting morphism Tg = Ry ® —. Then the iterated product defined in
Theorem 2.1 of [17] is the one associated to the quadruple

Srep = (S, T @ D, ¢ZIS”@D7 U%@D)

when we apply the functors in the unit object of the category.

Example 3.2. Given to monads S and T, the notion of weak distributive law of the monad S over the
monad T was introduced by Ross Street in [27] as follows. It consists of a natural transformation

AMTeS—=SeT
such that satisfies (89), (91) and

Ao(mr©8)=(us©T)o(S® (Ao (nr @ns))), (94)
Ao(T'ens)=(S@pur)o((Ao(nr©ns)) @T). (95)

In this definition the axioms (94) and (95) can be replaced for the identity [[27], Proposition 2.2]:
(Sopr)o((Aomre©S)@T)=(us@T)o(S©® (Ao (T @ns)))- (96)

For a weak distributive law, the weak wreath product of T" over S with respect to A\ was defined by
Street in Definition 2.5 of [27] as

pser = (s © pr) o (S®@AG®T).

The same set of axioms for monoids in category of modules over a commutative ring can be found in
[10]. Then, the conditions used in [10] define a weak wreath product associated to monads induced by
monoids.

It follows by (89) and (91) that pser is an associative product but possibly without unity. In any
case, if we take the quadruple

St = (8, T,¢7 = A of = (S@pur) o (Ao (T @ns)) ©T)),
we obtain that Sy satisfies (1), (4), (5) and (10). The associated idempotent defined in (2) is
Vser = (us @T) o (S @ (Ao (T @ns))).

Then, the weak wreath product defined by the weak distributive law is the one induced by the quadruple
St. Therefore, every weak wreath product with respect to A is a weak crossed product. In this setting
the morphism vy = Vggr 0 (s ® ) is a preunit and S x T is a monoid with unit nsxr = pseT ° Vr
(see also [[14], Example 3.16]).

Note that the equality (96) implies that

o7 = (S©ur)o((Vser o (ns @ T) @ T) = Vsor o (ns © pr) = Ao (ur © 1s). (97)
Suppose that S, T and D are monads in C such that there exists tree weak distributive laws between
them
M:TeS—>S0T, X:DOT—-ToD, MM:DoS—>S0D,
satisfying the Yang-Baxter relation (93). Then, under these conditions we have two quadruples

St = (S, T,¥% = \,08 = (S©pur)o (Ao (T@ns) @T)),

Sp = (8, D, ¢} = A3,0p = (S © pup) o (A3 0 (D ®@s)) © D)),
satisfying (1), (4), (5) and (10). If we put Argp = Vrep we obtain a link morphism. Indeed, we have
that (65) holds because
(S©Vren) o ¥ien
=(S@Our©®up)o(M@A®D)o(T®A3@A2) 0 ((A20(np @T)) ® A3 @ nr)
= (Se((ur®up)o(T®I®@D)o(A@®T®D)))o(A\s@T®T®D)o(D®A@N2)o(np©®@D®A3@n7)
=(S@T®up)o(S@X@D)o(A3@Vrep)o(D@A @D)o(np ©T ® A3)
=(@Toup)e((S@r)oAs@T)o(D@A))@D)o(np @1 ® As)
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=M opp)o(T@A3@D)o((A2o(np@T)) @ A3)
= wig“@D
In the last equalities, the first one follows by (89) for A3 and Az, the second one follows by (93), the
third one follows by (91) for Ag, the fourth one follows by

(Tepp)o(A2@®@D)o(D®Vrep)=(T®up)o (A2 ® D), (98)

the fifth one relies on (93) and the last one is a consequence of (89) for As.
The equality (66) follows by

Vserep o (M @ D)o (T © A3)
=(((ns@ur)o(S®@ M @T)©®D)o (M@ (M ©@D)o(T®X)0(A2®85)))o (T @3 @nr @1s)
=((us@pr)o(SoM©T))@D)o (M@ ((S@A)o(A3@T)o (D))o (T®A3@nr ©1ns)
= (S@/.LT@D)O(/\l @)\Q)O(T@)\g,@T)O(T@D@(VS@TO(S@’I]T)))
=l@ure@D)o(M@T@D)o(TE®(((S@A)o(XA3@T)o(D®A))o
=l opuroD)o(M@T®D)o(TE® (M @D)o(T®As3)0(A2®S))o0
= ¢§@D
where, the first and the sixth equalities follow by (89) for A, the second and the fifth ones follow by
(93), the third relies on (91) for A; and A3 and, finally, the fourth one follows by (96).
On the other hand, if 7, = Ay we obtain that the condition (i) of Definition 2.3 holds by (93).
Moreover, condition (ii) of the same Definition also holds because we have the following:

(ns@T@D)o(S@of@D)o(Yre1h)@(Te@op©T)o(th©@DeT)
S©ure©D)o )(M@(Azo(uD@T))) (T®Xs)o(A2@ns)@DoOT)
(

(De@nr®S5)))
(De©nr©>5)))

= (
=(S@((propp)o(T@Ad@D)o(l2@T®D)))o((A3@T)o (D (Ao (I'®@ns)))) @ As)
=(S@Toup)o(($@A)oAs@ur)o (D@ (Mo (T'@ns)@T))@D)o (DT ® Ay)
=(l@Toup)o((S@A2)o(A3@T)o(D® (Ao (ur©ns)))) @D)o (DT ® Az)
=M @pup)o(Te®Az@D)o((A2o(Dopur))@ns©D)o(DOT® A2)
(Sepr)o(M@T)©@D)o(T'® (M ©@pup)o(T'®@A3@D)o (A @ns @ D)))o(A2©@ A2)
=(S@uroup)o (M@)o (T@A3@T)o(A2@ (A o(T@ns)))@D)o (DT @ Az)
=(S@((pr@up)o(T©@A2©D)o(A@T®D)))o(A\3@T®T®D)o(De(Ao(TOus))©T®D)
o(DeTens® (Mo (I'®@ns)) ®D) o))
=(us @ ((ur ©@pp) o (T®A®D)o (A ®@T®D)))o(S@X@T®@T®D)o(\3®@\ ®T® D)
o(De (Mo (Tens))®© (Ao (T@ns)) ©D)oA2))
= (us@T©Oup)o(S©SOA2©D)o(S@A30T@D)o(A3@(A1o(ur@ns)))@D)o(DO(A1o(Tens))©A2)
=(ps@T@D)o(S@ypie@D)o(Se@T®dp)o(S@Th©D)o (b3 ©T ® D)o (D®0f@ D)o
o(D@T@Tg).
In the last equalities, the fist one follows by (91) for A; and

(Sepr)o(Me©T)o(T®Vser)=(S©ur)o (M e@T),

the second one follows by (89) for Ay and (93), the third one follows by (91) for Ay and the fourth one
is a consequence of (97) for A;. In the fifth one we used (93) and the sixth one relies on (91) for A2 and
(89) for A;. The seventh one follows by (93), the eighth one follows by A1 o (T'®ns) = Vser o (ns ©T)
and (93). Finally, in the ninth one we used (91) for A; and A3, the tenth one follows by (91) for A2 and
(89) for \; and the last one follows by (93).

Therefore, 75 = A is a twisting morphism between the quadruples Sy and Sp.

If we put

otep =(us ©T © D)o (S@¢7 ® D)o (07 @ op) o (T ® 7 @ D)
we obtain that
o%ep =M ®pup)o (ur @3 @ D)o (T ® Ay ®1ns ® D) (99)
and o7, satisfies (70), (71) and (72). Indeed: the equality (70) follows by

(tr © D)o (T ® A2) o (Vrep @ T) = (ur @ D) o (T'® A2) (100)
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and the proof for (71) is
J%@D o (T@ Do VT@D)
=M ©@D)o(ur©(Aso(pp@ns)))o(T'®@A2@D)o(I'®D®Vren)
=M ©@D)o(ur© A3 (pp @ns))) o (T'® A2 @ D)
= U%@D
where the first and the third equalities follows by
(S@up)o((Az0(D@ns))©D)=2A30 (up ©ns) (101)
and the second one follows by (98).
Finally, by
Vrep o (T'©pup) = (T ® pp) o (Vrep © D),
Vrepo(ur @ D)o (T'® \2) = (ur @ D) o (T'® A2)
and (93) we obtain (72).
As a consequence, by Lemma 2.2 and Theorem 2.4, the quadruple
Srep = (S,T ® D,T5p:07en);
where
I'Fep =M\ ©®D)o(T®N;)0(Vrep ®5),
satisfies the equalities (4) and (5). Then, (S©® T ® D, userep) is the iterated weak crossed product of
(S©T,user) and (S ® D, usep) with associated product

tseren = (s ® T ® D) o (us ® 0fgp) o (S©IFep ©T ® D),

and equivalently
tserep = (ts @ pr @ pip) © (S © (A1 @ A2) o (T'®@ A3 @ T) o (Vrep © Vser)) @ D) (102)

=(us@pro®pp)o(S® (M @A) o (T®A®T)o(T®D®Vser)) ® D).
Also, we have the preunit conditions of Theorem 2.6. Indeed, the proof for (73) is the following:
(s ®T @ D)o (S@c5@D)o (M ®A)o(T®A@T)o(T®D®vy)
=(S@uro®D)o(M@X)o(T®N®T)o(T®Dvr)
=l @ure©D)o(M®T@D)o(TO®((S®@I)o(A@T)o(D®A)))o(T®D®enr©ns)
=SouroD)o(M@T@©D)o(Te®(M@D)o(T®A3)o(A®S5)))o(T®@De@nr©®ns)
=Vserep o (s ©T © D)
where the first equality follows by (96) and (91) for A;, the second one follows by the definition of
Vser, the third one relies on (93) and the last one is a consequence (89) for A;.
Finally, (74) follows by
(us©@T@®@D)o(S@M\ @D)o(Se@T®03)o(S®N®D)o(vp ®T ® D)
=(Se@Toup)o(S@A)oN@T)o(D®A))@®D)o(np®T ®ns® D)
=M@up)o(T®@X3@D)o(M@®S@D)o(np®@T ©®ns® D)
= Vserep (s @1 @ D)
where the first equality is a consequence of (93) and

(ns @ D)o (S@A3)0(Vsep @ S) = (us @ D)o (S @ Az),
the second one of (93) and the last one of (101).
Therefore,
vrep = Vseren © (ks @ T @ D)o (S©® A @ D)o (vr @ vp)
is a preunit for userep and we have that
vrep = (M @ D)o (T'@X3) 0 (A2 ®5) o (np @ nr @1ns).

In this case the morphism 4, introduced in (77), is

Yp=(S®@X)oN@T)o(D® (A o(T®ns)).
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It is not a distributive law of (S ® T, user) over (S ® D, usep), because the conditions (56), and (57)
do not hold. In any case, it is a weak distributive law. Note that, using (89), (91), and (93) it is easy to
show that (52), (53), (54), and (55) hold. Moreover, using that

Vs = (ns @A) 0 (S@A3@T) o ((Aso(np ®5)) @ (Ao (T'@ns)))
we obtain the equality
Ysovr =(S©®Az2)o(A3@T) o (D @A) o (np@nr©ns),

and then, applying (89), (91), (93) and (96), we can prove (58) and (59). As a consequence, the i)-iterated
product is the one defined in Theorem 2.4.

Example 3.3. In this example we will show that the iteration process proposed recently by Daug and
Panaite in [13] for Brzezinski’s crossed products, is a particular case of the weak iterated products
defined in this paper. First we recall from [9] the construction of Brzezinski’s crossed product in a strict
monoidal category: Let (4,74, 114) be a monoid and V' an object equipped with a distinguished morphism
nv : K — V. Then the object A® V is a monoid with unit n4 ® ny and whose product has the property
tagv 0o (A@ny @ AR V) = us @V, if and only if there exists two morphisms wé VRA—AQV,
o : V@V - A®V satisfying (1), the twisted condition (4), the cocycle condition (5) and

Yoy ®A) =Acny, (103)
Yo (Vana) =na@V, (104)
opoy@V)=opo(Vany)=naeV. (105)

If this is the case, the product of A ® V is the one defined in (11). Note that Brzeziriski’s crossed
products are examples of weak crossed products where the associated idempotent is the identity, that is,
Vagv = idagy. Also, in this case the preunit v = 4 ® 1y is a unit.

Given two Brzeziniski’s crossed products for A®V and A® W, in [13] a new crossed product is defined
in A®V @ W if there exists a morphism 7y, : W ®V — V ®@ W satisfying the condition (i) of Definition
2.3, (79), (80) and

wolmw V)=V ®nw, (106)
i o (W®ny)=ny @W. (107)

In this case, ¥y = (Vi @ W) o (V @ 9iy), 0} gy is defined as in (69) and nyew = nv @ nw.

Under these conditions, by Remark 2.9, we have that TV‘{, is a twisting morphism and, if we consider
the link morphism Ay gw = idygw, we obtain that the iterated crossed product proposed in [13] is a
particular instance of the iterated weak crossed product introduced in Theorem 2.4. Moreover, in this
setting, if the equality (ii) of Definition 2.3 holds, composing with W ® V ® ny ® V in both sides we
obtain (80), and composing with W @ ny @ W @ V we obtain (79).

Note that, in this case, we also have that the morphism 4, introduced in (77), is a distributive law of
(AR V,puagy) over (AQ® W, pagw ). In this case, the t-iterated product is the one defined in Theorem
2.4.

4. A DIFFERENT CHARACTERIZATION OF THE ITERATED WEAK CROSSED PRODUCT

In this section we obtain a new characterization of the iteration process following Theorem 1.4 of [15].
This theorem asserts the following:
Theorem 4.1. Let T and B be a monoids in C. Then the following are equivalent:

(i) There exist a weak crossed product (BQW, upgw) with preunit v and an isomorphism of monoids
w:BxW —=T.
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(ii) There exist an algebra B, an object W, morphisms
ip:B—=>T, iw:W-=T, Vpgw:BIW —>BW, w:BxW=>T
such that ig is a monoid morphism, Vpgw is an idempotent morphism of left B-modules for the
action opew = pp @ W, and w is an isomorphism such that
woppew = pr o (i ®iw)

where B x W is the image of Vpgw and ppgw is the associated projection.
Theorem 4.2. Let Ay = (A, V,¥i}, 08}), Aw = (A, W, 93, 0i1,) be two quadruples satisfying (4) and (5)
with a link morphism Aygw : V@ W — V @ W and with a twisting morphism T‘E‘// WV - VeW
between them. Let (AQV,pagyv) and (AQ W, pagw) be the weak crossed products associated to Ay and
Aw and suppose that vy : K — AQV and vy : K — AQW are preunits for pagy and pagw . Assume

that the morphism U(}®W, defined in (69), satisfies (70), (71), (72) and assume also that the equalities
(78) and (74) hold.

(i) Letiaxy : AXV = Ax (VW) be the morphism defined by

iaxy = Pagvew © (ta @V @ W) o (A i @ W) o (iagy @ vw),

where A x (V@ W) is the image of the idempotent morphism V agvew introduced in Definition
2.1 and pagvew its associated projection.
If the equality
Vasvew © (pa®@V)o (A ¢i)o(cd @ A)@W)o (VRV & vy) (108)
= Vasgvew © (ra® V) o (AR o}) @W)o ¥y @ my) o (V @ vw @ V),
holds, iaxv is a monoid morphism.
(ii) If AXV, paxv andiaxy are the image, the projection and the injection associated a V agy, the
morphism V axvygw : (AXV)@W — (Ax V)@ W defined by
Vaxview = (Pagy @ W) o Vagvew o (iagy @ W),
is idempotent. Moreover, if the following identity holds
Vasvew o (07 @ W) = (na® V) o (A® i) @ W) o (a7 @ ¢iy) o (V @ Avgw @na),  (109)
Viaxvyew is a morphism of left A x V-modules for o axvyew = paxy @ W.
(iii) The morphism w : (AX V) x W — A x (V@ W) defined by
w=pagvew ° (iagy @ W) oiaxview,
where i axvygw 8 the injection associated to V axvygw, i an isomorphism. Moreover, if the
equality
Vagvew © (Uy @ W) o (Vo) = (g @ W) o (V@) o (Avew ® W) (110)
holds, then
WoPAxV)eW = Max(vew) © (iaxy ®iw)

for
iw = pagvew © (vv © W).
Therefore, if (108), (109) and (110) hold, A x (V@ W) and (A x V) x W are isomorphic as monoids.

Proof. The proof for (i) is the following:

Paxvew)© (laxy @iaxy)
=pasvew o (Ha @V @W)o (14 ® ojgy) 0 (A@THgy @V e W)

o((a®VeW)o (At @W)o(iagy @vw)) @ (La®V @W)o(ARYi @W)o (iagy ®@vw)))
= pagvew o (a@VRW)o(ua@((pa®@VeW)o(ARyit@W )o(cit@ai)))o(na@yi@VeW W)

(A9 @ (A@Ty) o (Yiy V) o (W Yi)) @W)o (AQV @i, @V AW ) o ((ha®Avew)
(A Yy @ W) o (iagv @ vw)) @ iagw @ vw)
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=pagvew o (LA @V @W)o (A us@ Ve W)o (AR A3 @ W)
o(pa® (a®V)o(A@ay)o (P @ V) o (VOuU)) @opy) o (ARARV @V @ ¢y, @ W)
(paRARV TY, @uvw)o (AR A (Y5 @ W) o (V@viy)o (Avew @ A) @ V)
(AR Y @ W) o (iagy ® vw)) Riagy)
=pagvew o (LA @V @W)o (A us@VeaW)o (AR Ayl @ W)
o(pa®@(a®@V)o (AR Y} o (0 @V))@afy) 0 (ARARV @V ®yh @ W)
o(aRARV @1y @vw) o (AR A® (Vagvew o (Wit @ W) o (V@Yh)) @ V)
(AR Y @ W) o (iagy ® vw)) Riagy)
= paegvew o (ta @V @W)o(A@ua@VoW)o (A A i@ W)
(ha @0 @ ((pa®@W)o (A apy) o (Yfyy @W) o (W @vw))) o (A® pua®V @ 1yp,)
(AR AR (Vagvew o (g @W)o (V) @V)e (Ao vy @ W)o (igy @ vw)) @igy)
= Pasvew o (ta@VOW)o(AQus@V W) o (AR ARQYH @W)o (1 @ait @ (i} o (W ®14)))
(ARARV @TY)o(A® (Vagvew o (ARYH @W)o (Ve ((pa®@W)o(A@Yi ) o (vw @A) V)
o(iagy ®idgy)
= pagvew o (La @V OW)o (A2 Yy @W)o (A0 V © (¢ o (W ®@na)))
o(pa@VeaW)o (Aol @W)o (A V @) o (Vagvew @ V)
(pa@VeOWeV)o (Ao yy @ W aV)o (iagy @ ((Buy, @ V) ciagy))
=pagvew o (pa @V @W)o (A0 9Yp @W)o (A@V & (b o (W ®na)))
o(pa@VeW)o(ua®(ua@V@W)o(Aat @W)o (¢ @1y ) o (V@oy@V)o(ry@WaV)))
(AQuy @VOW V) o (ua®@VeW @ V)o(A@yy @W V) o (iagy @ ((Buy, ®V)oiagy))
=pagvew o (1A @V @W)o (AR (na®V)o (AR YH) @W)o(ua@ ARV & (Yt o (W ®1n4)))
(AR ((pa®@ (W3 @W) o (V@oiy)o(my @W)))o (A, @V @W) o (vw @0 @W ) o (V@ Ty)))
(pa@VeaWaV)o (A it @W @ V) o (iagy @ (Buy @ V) cisgy))
=pagvew o (A @V @W)o (A ¢} @ W)o (ua®V @ (Vagw o oiy))
o(A® ((ra®@Ty) o (AR Y @ V)o (vw ®ai)) @W)o (AR V @ Tyy)
(pa@VeoWeV)o(Aeyy @W aV)o (iagy @ (Buy, @ V) ciaey))
= pagvew © (La @V O W) o (A@ ¥ @ W) o (na @V o)
o(A® (A @ Ty) 0 (AR Buy @ V)0 (AR o) @W)o (AR ARV @)
(AR Y @W @ V) o (iagy @ ((Buy ®V) 0iagy))
= pasvew o (A @V @W)o (ua@pus@V @ W)
(ARARAR (1A @V W) o (ARYE@W)o(AQV ®@ofy) o (AR Ty @W)o (v @V @ W)))
(A pa@op @W)o(A® AR Yy @y ) o (AR Yy @ vw @ V) o (iaey @ iaey)
=pagvew © (A @V W) o (s QuaQV QW)
o(ARARA® (Witgw o (VW ®n4)))
(AR AR I @W)o (AR AR YE @) o (AR YE @ vy @ V) o (iagy @iagy)
=pagvew ° (LA V W)
(A® (Vagvew o (ta@V @ W)o (A ap @ W)o (¥ @ 1yy) o (V@ vw @ V)))
o(aRVRV)o (AR¢{3 @ V) o (iagy @isgy)
=pagvew o (Ha @V @ W)
(A® (Vagvew o (pa @V @ W)o (A ¢ @ W) o (o} @ vw)))
o(a@VeaV)o(A Y@ V) o (iagy @isgy)
= 1AXV O HAXV-

The first equality follows because pagygw is normalized for V 4gvow, the second one relies on (1) for
Ay and Ay, and the third one follows by (i) of Definition 2.3 and the associativity of p4. In the fourth
one we applied (66) and (4) for Ay . The fifth one follows by (1) for Ay and the associativity of j4; the
sixth one follows by the left linearity for Vagyvew, (17) for vy and (1) for Ay ; the seventh one follows
by (19) for vy, the left linearity for Vagvew and the associativity of p4. The eighth one relies on (74)
and the associativity of p4, the ninth one is a consequence of (ii) of Definition 2.3 and the associativity
of pa, and the tenth one follows by (1) for Ay. In the eleventh one we used (19) for vy, (19) for vy
and (10) for o{},. The twelfth one follows by (1) for Ay and the associativity of p4; the thirteenth one
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follows by (74) and the fourteenth one follows by the left linearity for Vagyvew. The fifteenth one is a
consequence of (108) and the last one follows by the associativity of 14, the left linearity for Vagyvew
and by (3) for Ay.

Therefore, i 4%y is multiplicative and, by (22), we have

iAxV O NaxV = Paevew © (1a @V @ W) o (A2 ¢ @ W) o (Vagy o vv) ® vw)

=pagvew © (Ha @V @W)o (A i @ W)o (vy @ vw) = naxvew)-
(ii) The morphism V 4xv)ew = (Pagy ® W) o Vagvew o (iagy ® W), is idempotent because

Viaxvyew © Vaxview
= (pagv ® W) o Vagvew o (Vagy o (ua ® V) o (AR Y3)) @ W) o (A®V @ (¢ o (W ®@1a)))
o(A® Avew) o (iagy ® W)
= (Pagv @W)o(ua@VOW)o(A®yj @W)o(ua@V @ (%} o (W ®na))) o (A2 (A0 Avew)
o(Tigw o (V@ W @1n4)))) o (iagy @ W)
= (Pagv @W) o (ua®V@W)o (AR (pa®V @W)o (AR ¥ @W)o (Ui @ vil) o (V @i} ® A)
(VoW ®na®na))) o (A® Avegw) o (iagy @ W)
= Vuxv)ew,
where the first equality follows by definition, the second one follows by (3), the third one relies on (65),
and the las one follows by (1) for Ay and Ay .
On the other hand,

V(AxV)eW © P(AxV)oW
= (pasv @W)oVagvew o (Vagy o (pa®@V)o(na®@0oi}) o (AR Y@ V) o (iagy @iagy)) @ W)
= (Paev@W)o(ua@VeW)o(na®(Vagvewo(oy @W)))o((A2y#@V)o(iagy Qisgy)) @W)
= (Pagv @W) o (ua@V @W)o (ua® (pa®@V@W)o(A@yd @ W) o (ot @ (i} o (W @1n4)))
o(V®Avgw))) o (A9} @ V) o (iagy ®@iagy)) @ W)
= (pagv @W) o (ua®@V@W)o (ua® (na®V)o (AR ai}) o (b @ V) o (Vi) @ W)
(ARYFRV @ (Yi 0 (W®N4))) o (ARV @ AR Avgw) o (iagy @ iagy ® W)
= paxv)ew © (A XV @ Viaxv)ew)
where the first equality follows by definition, the second one follows by the left linearity of V gy and
(10), the third one relies on (109) and the fifth one is a consequence of (3), (1) for Ay and the associativity
of HA-
Finally, we will prove (iii). The morphism w = pagvew © (iagy ® W) oiaxyv)gw is an isomorphism
with inverse
w™ = puaxview © (Pagy @ W) oiagvew
because
w ™ ow =paxview © Viaxview @ iuxview = idaxyigw
and, by (3), (66) and the left linearity of Vagyvgw, we have
wow !
= pagvew o(Vagvo(pa®V)o(A0yi)) @W)o(AQV @) o (A® Avew ®na)o(Vagy ©W)
ClARYV W
=pasvew o (La @ V) o (A@Yp) @ W) o (A®V @ Piy) o (A® Avew @14) © (Vagy @ W)
ClARVEeW
= pasvewo(La@V OW)o(ARV agvew)o(ARYHRW )o(ARV @ ((diyo(W®n4))))o(V agy @W)
ClARV W
=pagvew o (1a®@Ve@W)o (AR} @W)o(A0V & (v o(W®na))))o(Vagy ®W)oisgvew
=pagvew o (a @V W) o (A ¢ @ W)o (AR V & (Y o (W @14)))) 0 iagvew
= pagvew o (ta®V OW)o(AQVagvew)o (AP @W)o(AQV & (Yo (W @na))))cisgvew
= pagvew o (La®V @W)o(A@yd @W)o (A V @ (¢ o (W ®n4)))) 0 (AR Avew) oiigvew
=idax(Vvew)-
Moreover, if (110) holds, we have the following:
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paxvew) o (faxy ®iw)
=pasvew © (ta @V @W)o (ua @y} @W)o (A0 ARV @ oyy)
o(pa @ (pa®VeW)o (A oy ®@W)o (g @my) o (Ve vy eV)e(Avew @w)) @ W)
(ARt @W @ W) o (iagy @ v @ W)
=pasvew o (Ha @V @W)o (A@us@V oW)o (A® Ay @ W) o (na @ ¥{ @ o)
o(AQARV @ (i o (W@nN4))@W)o (AR AR Ay gw @W ) o (A @W @W)o(iagy Qrw @W)
= pasvew o (La®VOW)o(ARYH @W)o(na®V @((pa@W)o(A®of,) o ((vfy o (W @na))@W)
(ARAR Aygw @W)o (AR Y @ W @ W) o (iagy @ vw @ W)
= pagvew o (pa@VOW)o(Aypp@W)o(ua®@V @ ((na@W)o(A®of,)o(Vagw o (1a@W))))
(ARAR Ayew @W)o (AR Y @ W @ W) o (iagy @ vw @ W)
=pagvew © (pa @V @W)o (ua @ (3 @W)o (V@aiy)o (Avgw @ W)))o (A2 v @ W @ W)
oliagy @ vy @ W)
= pagvew o (La @V @ W) o (ua @ (Vagvew o (P @ W) o (V@) o (A Y @ W e W)
o(iagv @vw @ W)
=pagvew © (ta @V @W)o (A@ P @ W) o (iagy @ ((1a @ W) o (AR ofy) o (vw @ W)))
=pasvew o (La®V &W)o (A® (Vagvew o (V) @ W)o (V& (4 o (W @14))))) 0 (iagy @ W)
=pagvew © (Vagy @ W) o Vagvew o (iagy @ W)
= WOPAXVIQW
where the first equality follows because pagvew is normalized for Vagvew and by the associativity
of pa, the second one follows by (74) and by the associativity of 4, the third one relies on (1) for Ay
and the fourth one is a consequence of the properties of V agw . The fifth one follows by (9) and by the
associativity of 4, the sixth one follows by (110), and in the seventh one we used the left linearity of
Vagv and (1) for Ay. In the eighth one we applied the left linearity of Vagy and (18) for vy. The
ninth one follows by (66) and by (3), and the last one follows by definition.
The final assertion of this theorem follows by Theorem 4.1.
O

Example 4.3. In this example we will see that the equalities (108), (109) and (110) hold in the examples
(3.1), (3.2) and (3.3) of the previous section.
For the Example (3.1) the identities (108), (109) and (110) hold because
Vg =1, 0 = pr @ns, 77 = A2, vp = ns @ 1,
and
Arep =idrep, Vserep = idsereD-
In the case of the Example (3.2) we have that
¥7 = A1, 07 = Mo (ur ©1s), T = A2, vp = Vsep © (15 © D),
and Arep = Vrep. Therefore, by the usual arguments, we obtain that (108), (109) and (110) hold
because
Vseoren o (us ®T@ D)o (S@o7@D)o(Yg@717) o (T@rp@T)
=(M@D)o(T®As3)o((Vrep o (ur ®@np)) @ ns)
= Vserep © (ts ® T @ D) o (S® ¢f @ D)o (0 ® vp),
Vsoren © (07 ©@ D) = (S© ur @ D)o (M @ A2) o (T@ A3 @ T) o (ur @ D ® (A1 © (1 ©15)))
= (us ©T© D)o (S @ ¥} © D)o (07 ® Yp) o (T ® Arop ®1)s),
and
(W7 ©D)o(Teop)o(Arep©D) = (S@ur©D)o (M ©X2)o(T®A3@T)o(T©up® (A1 o (nr©ns)))
= Vsorep o (V7 © D) o (T ® ap).
Finally, in Example (3.3) we have that

vw =nNa @ nw, Avew = tdvew, Vagvew = idagvew,
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and then (108), (109) and (110) follow easily.
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