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Abstract
In this paper we show how to iterate weak crossed products with common monoid. More concretely, if (A ⊗
V, µA⊗V ) and (A ⊗ W,µA⊗W ) are weak crossed products, we find sufficient conditions to obtain a new weak
crossed product (A⊗ V ⊗W,µA⊗V ⊗W ) that, in general, it is not linked with distributive laws.
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Introduction

Let A be a monoid and let V be an object living in a strict monoidal category C where every idempotent
morphism splits. In [2] an associative product, called the weak crossed product of A and V , was defined
on the tensor product A⊗V working with quadruples AV = (A, V, ψAV , σ

A
V ) where ψAV : V ⊗A→ A⊗V and

σAV : V ⊗ V → A⊗ V are morphisms satisfying some twisted-like and cocycle-like conditions. Associated
to these morphisms we define an idempotent morphism ∇A⊗V : A ⊗ V → A ⊗ V whose image, denoted
by A × V , inherits the associative product from A ⊗ V . In order to define a unit for A × V , and hence
to obtain a monoid structure in this object, we complete the theory in [14] using the notion of preunit
introduced by Caenepeel and De Groot in [10]. The theory presented in [2] and [14] contains, as particular
instances, crossed products where ∇A⊗V = idA⊗V , for example the one defined by Brzeziński in [9] or
the notion of unified crossed product introduced by Agore and Militaru in [1], as well as crossed products
where ∇A⊗V 6= idA⊗V like, for example, the weak smash product given by Caenepeel and De Groot in
[10], the notion of weak wreath products that we can find in [27], the weak crossed products for weak
bialgebras given in [25] (see also [14]) and, as was proved in [16], the partial crossed products introduced
by Alves, Batista, Dokuchaev and Paques in [23]. Also, Böhm showed in [5] that a monad in the weak
version of the Lack and Street’s 2-category of monads in a 2-category is identical to a crossed product
system in the sense of [2]. Finally, weak crossed products appears in a natural way in the study of bilinear
factorizations of algebras [7], double crossed products of weak bialgebras [8], and weak projections of weak
Hopf algebras [15].

The purpose of this paper is to find an alternative iteration process for weak crossed products with
common monoid. Our main motivation comes from some interesting examples that can be found in
the recent literature. For example, in [17], Jara, López, Panaite and Van Oystaeyen, motivated by the
problem of defining a suitable representative for the product of spaces in noncommutative geometry,
introduced the notion of iterated twisted tensor products of algebras. A good particular case of this
iterated twisted tensor product can be found in [22], where Majid constructed an iterated sequence of
double cross products of certain bialgebras. On the other hand, in [24], Panaite proved that under suitable
conditions a Brzeziński crossed product may be iterated with a mirror version obtaining a new algebra
structure. This construction contains as examples the iterated twisted tensor product of algebras and the
quasi-Hopf two-sided smash product. Finally, in [12], Cheng developed the iteration process for wreath
products and, on the other hand, using the 2-category of weak distributive laws, Böhm describe in [6] a
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method of iterating Street’s weak wreath product construction (see [27]). Note that in the first examples
of this paragraph the crossed products that we considered are cases where the associated idempotent is
the identity and in the last one it is not the identity.

An outline of the paper is as follows. In the first section we resume the basic facts about weak crossed
products proved in [14]. Also, in this section, if K is the one-object 2-category corresponding with a strict
monoidal category C, following [5], we describe in detail the 2-category EMw(K) and the relation between
monads in EMw(K) and weak crossed products in C. More concretely, in this setting the conclusion is
the following: a monad in EMw(K) is a weak crossed product with preunit in the category C, and every
weak crossed product with preunit can be interpreted as a monad in EMw(K). Then, we can apply the
general theory of composite monads and (weak) distributive laws (see [3], [12], [27]) to obtain iterations
of weak crossed products. In Theorem 1.6 (Theorem 1.7), we give a concrete description of the (weak)
distributive laws between monads in EMw(K) and, as a corollary, we obtain that, if AV = (A, V, ψAV , σ

A
V )

and AW = (A,W,ψAW , σ
A
W ) are quadruples satisfying the suitable conditions that permit to obtain two

weak crossed products (A ⊗ V, µA⊗V ) and in (A ⊗W,µA⊗W ), a (weak) distributive law of the monad
induced by (A ⊗ V, µA⊗V ) in EMw(K) over the corresponding monad induced by (A ⊗ W,µA⊗W ), is
a morphism λ : W ⊗ V → A ⊗ V ⊗W satisfying some suitable conditions contained in Corollary 1.8
(Corollary 1.9). As a consequence, we obtain a iterated weak crossed product induced by λ that we called
the λ-iteration of (A⊗ V, µA⊗V ) and (A⊗W,µA⊗W ).

In section 3, we introduce a process to iterate weak crossed products not linked with distributive laws.
Given two quadruples AV = (A, V, ψAV , σ

A
V ) and AW = (A,W,ψAW , σ

A
W ), satisfying the twisted and cocycle

conditions, and (A⊗ V, µA⊗V ), (A⊗W,µA⊗W ) its associated weak crossed products, in this section we
introduce the notions of link and twisting morphism between AV and AW , proving that, if they exist, it is
possible to construct a new quadruple AV⊗W = (A, V ⊗W,ψAV⊗W , σAV⊗W ), satisfying the conditions that
guarantee the existence of a new weak crossed product (A ⊗ V ⊗W,µA⊗V⊗W ) called the iterated weak
crossed product of (A⊗V, µA⊗V ) and (A⊗W,µA⊗W ). Also, if (A⊗V, µA⊗V ) and (A⊗W,µA⊗W ) admits
a preunit, we find conditions to construct a preunit for (A⊗ V ⊗W,µA⊗V⊗W ). Finally, in Theorem 2.8,
we prove that the associated monad in EMw(K) for (A⊗V ⊗W,µA⊗V⊗W ) is the canonical retract monad
induced by an idempotent 2-cell in EMw(K).

In the fourht section we discuss some examples involving wreath products, weak wreath products and
the iteration process for Brzeziński crossed products proposed recently by Dăuş and Panaite in [13].
Finally, in the last section, following the results proved in [15] we obtain a new characterization of the
iteration process proposed in section 3.

Throughout this paper C denotes a strict monoidal category with tensor product ⊗, unit object K.
There is no loss of generality in assuming that C is strict because by Theorem XI.5.3 of [18] (this result
implies the Mac Lane’s coherence theorem) we know that every monoidal category is monoidally equiva-
lent to a strict one. Then, we may work as if the constrains were all identities. We also assume that in
C every idempotent morphism splits, i.e., for any morphism q : M → M such that q ◦ q = q there exists
an object N , called the image of q, and morphisms i : N → M , p : M → N such that q = i ◦ p and
p ◦ i = idN . The morphisms p and i will be called a factorization of q. Note that Z, p and i are unique
up to isomorphism. The categories satisfying this property constitute a broad class that includes, among
others, the categories with epi-monic decomposition for morphisms and categories with (co)equalizers.
Finally, given objects A, B, D and a morphism f : B → D, we write A ⊗ f for idA ⊗ f and f ⊗ A for
f ⊗ idA.

An monoid in C is a triple A = (A, ηA, µA) where A is an object in C and ηA : K → A (unit),
µA : A ⊗ A → A (product) are morphisms in C such that µA ◦ (A ⊗ ηA) = idA = µA ◦ (ηA ⊗ A),
µA ◦ (A⊗ µA) = µA ◦ (µA ⊗A). Given two monoids A = (A, ηA, µA) and B = (B, ηB , µB), f : A→ B is
a monoid morphism if µB ◦ (f ⊗ f) = f ◦ µA, f ◦ ηA = ηB .

A comonoid in C is a triple D = (D, εD, δD) where D is an object in C and εD : D → K (counit),
δD : D → D ⊗ D (coproduct) are morphisms in C such that (εD ⊗ D) ◦ δD = idD = (D ⊗ εD) ◦ δD,
(δD ⊗D) ◦ δD = (D ⊗ δD) ◦ δD. If D = (D, εD, δD) and E = (E, εE , δE) are comonoids, f : D → E is a
comonoid morphism if (f ⊗ f) ◦ δD = δE ◦ f , εE ◦ f = εD.
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Let A be a monoid. The pair (M,ϕM ) is a left A-module if M is an object in C and ϕM : A⊗M →M
is a morphism in C satisfying ϕM ◦ (ηA ⊗M) = idM , ϕM ◦ (A⊗ ϕM ) = ϕM ◦ (µA ⊗M). Given two left
A-modules (M,ϕM ) and (N,ϕN ), f : M → N is a morphism of left A-modules if ϕN ◦ (A⊗ f) = f ◦ϕM .
In a similar way we can define the notions of right A-module and morphism of right A-modules. In this
case we denote the left action by φM .

1. Weak crossed products

In the first paragraphs of this section we resume some basic facts about the general theory of weak
crossed products. The complete details can be found in [14].

Let A be a monoid and V be an object in C. Suppose that there exists a morphism

ψAV : V ⊗A→ A⊗ V
such that the following equality holds

(µA ⊗ V ) ◦ (A⊗ ψAV ) ◦ (ψAV ⊗A) = ψAV ◦ (V ⊗ µA). (1)

As a consequence of (1), the morphism ∇A⊗V : A⊗ V → A⊗ V defined by

∇A⊗V = (µA ⊗ V ) ◦ (A⊗ ψAV ) ◦ (A⊗ V ⊗ ηA) (2)

is idempotent. Moreover, ∇A⊗V satisfies that

∇A⊗V ◦ (µA ⊗ V ) = (µA ⊗ V ) ◦ (A⊗∇A⊗V ),

that is, ∇A⊗V is a left A-module morphism (see Lemma 3.1 of [14]) for the regular action ϕA⊗V = µA⊗V .
With A×V , iA⊗V : A×V → A⊗V and pA⊗V : A⊗V → A×V we denote the object, the injection and
the projection associated to the factorization of ∇A⊗V . Finally, if ψAV satisfies (1), the following identities
hold

(µA ⊗ V ) ◦ (A⊗ ψAV ) ◦ (∇A⊗V ⊗A) = (µA ⊗ V ) ◦ (A⊗ ψAV ) = ∇A⊗V ◦ (µA ⊗ V ) ◦ (A⊗ ψAV ). (3)

From now on we consider quadruples AV = (A, V, ψAV , σ
A
V ) where A is a monoid, V an object, ψAV :

V ⊗A→ A⊗ V a morphism satisfiying (1) and σAV : V ⊗ V → A⊗ V a morphism in C.
We say that AV = (A, V, ψAV , σ

A
V ) satisfies the twisted condition if

(µA ⊗ V ) ◦ (A⊗ ψAV ) ◦ (σAV ⊗A) = (µA ⊗ V ) ◦ (A⊗ σAV ) ◦ (ψAV ⊗ V ) ◦ (V ⊗ ψAV ) (4)

and the cocycle condition holds if

(µA ⊗ V ) ◦ (A⊗ σAV ) ◦ (σAV ⊗ V ) = (µA ⊗ V ) ◦ (A⊗ σAV ) ◦ (ψAV ⊗ V ) ◦ (V ⊗ σAV ). (5)

Note that, if AV = (A, V, ψAV , σ
A
V ) satisfies the twisted condition in Proposition 3.4 of [14] we prove

that the following equalities hold:

(µA ⊗ V ) ◦ (A⊗ σAV ) ◦ (ψAV ⊗ V ) ◦ (V ⊗∇A⊗V ) = ∇A⊗V ◦ (µA ⊗ V ) ◦ (A⊗ σAV ) ◦ (ψAV ⊗ V ), (6)

∇A⊗V ◦ (µA ⊗ V ) ◦ (A⊗ σAV ) ◦ (∇A⊗V ⊗ V ) = ∇A⊗V ◦ (µA ⊗ V ) ◦ (A⊗ σAV ). (7)
Then, if ∇A⊗V ◦ σAV = σAV we obtain

(µA ⊗ V ) ◦ (A⊗ σAV ) ◦ (ψAV ⊗ V ) ◦ (V ⊗∇A⊗V ) = (µA ⊗ V ) ◦ (A⊗ σAV ) ◦ (ψAV ⊗ V ), (8)

(µA ⊗ V ) ◦ (A⊗ σAV ) ◦ (∇A⊗V ⊗ V ) = (µA ⊗ V ) ◦ (A⊗ σAV ). (9)
By virtue of (4) and (5) we will consider from now on, and without loss of generality, that

∇A⊗V ◦ σAV = σAV (10)

holds for all quadruples AV = (A, V, ψAV , σ
A
V ) (see Proposition 3.7 of [14]).

For AV = (A, V, ψAV , σ
A
V ) define the product

µA⊗V = (µA ⊗ V ) ◦ (µA ⊗ σAV ) ◦ (A⊗ ψAV ⊗ V ) (11)

and let µA×V be the product

µA×V = pA⊗V ◦ µA⊗V ◦ (iA⊗V ⊗ iA⊗V ). (12)
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If the twisted and the cocycle conditions hold, the product µA⊗V is associative and normalized with
respect to ∇A⊗V (i.e. ∇A⊗V ◦µA⊗V = µA⊗V = µA⊗V ◦ (∇A⊗V ⊗∇A⊗V )) and by the definition of µA⊗V
we have

µA⊗V ◦ (∇A⊗V ⊗A⊗ V ) = µA⊗V (13)

and therefore
µA⊗V ◦ (A⊗ V ⊗∇A⊗V ) = µA⊗V . (14)

Due to the normality condition, µA×V is associative as well (Propostion 3.8 of [14]). Hence we define:

Definition 1.1. If AV = (A, V, ψAV , σ
A
V ) satisfies (4) and (5) we say that (A⊗V, µA⊗V ) is a weak crossed

product.

The next natural question that arises is if it is possible to endow A× V with a unit, and hence with a
monoid structure. As A×V is given as an image of an idempotent, it seems reasonable to use the notion
of preunit introduced in [10] to obtain an unit. In our setting, if A is a monoid, V an object in C and
mA⊗V is an associative product defined in A⊗ V a preunit νV : K → A⊗ V is a morphism satisfying

mA⊗V ◦ (A⊗ V ⊗ νV ) = mA⊗V ◦ (νV ⊗A⊗ V ), νV = mA⊗V ◦ (νV ⊗ νV ). (15)

Associated to a preunit we obtain an idempotent morphism

∇νVA⊗V = mA⊗V ◦ (A⊗ V ⊗ νV ) : A⊗ V → A⊗ V.

Take A× V the image of this idempotent, pνVA⊗V the projection and iνVA⊗V the injection. It is possible to
endow A× V with a monoid structure whose product is

mA×V = pνVA⊗V ◦mA⊗V ◦ (iνVA⊗V ⊗ i
νV
A⊗V )

and whose unit is ηA×V = pνVA⊗V ◦ νV (see Proposition 2.5 of [14]). If moreover, mA⊗V is left A-linear for
the actions ϕA⊗V = µA ⊗ V , ϕA⊗V⊗A⊗V = ϕA⊗V ⊗ A ⊗ V and normalized with respect to ∇νVA⊗V , the
morphism

βνV : A→ A⊗ V, βνV = (µA ⊗ V ) ◦ (A⊗ νV ) (16)

is multiplicative and left A-linear for ϕA = µA.
Although βνV is not a monoid morphism, because A⊗V is not a monoid, we have that βνV ◦ηA = νV ,

and thus the morphism ¯βνV = pνA⊗V ◦ βνV : A→ A× V is a monoid morphism.
In light of the considerations made in the last paragraphs, and using the twisted and the cocycle

conditions, in [14] we characterize weak crossed products with a preunit, and moreover we obtain a
monoid structure on A× V . These assertions are a consequence of the following results proved in [14].

Theorem 1.2. Let A be a monoid, V an object and mA⊗V : A ⊗ V ⊗ A ⊗ V → A ⊗ V a morphism of
left A-modules for the actions ϕA⊗V = µA ⊗ V , ϕA⊗V⊗A⊗V = ϕA⊗V ⊗A⊗ V .

Then the following statements are equivalent:
(i) The product mA⊗V is associative with preunit ν and normalized with respect to ∇νVA⊗V .
(ii) There exist morphisms ψAV : V ⊗ A → A ⊗ V , σAV : V ⊗ V → A ⊗ V and νV : k → A ⊗ V such

that if µA⊗V is the product defined in (11), the pair (A⊗V, µA⊗V ) is a weak crossed product with
mA⊗V = µA⊗V satisfying:

(µA ⊗ V ) ◦ (A⊗ σAV ) ◦ (ψAV ⊗ V ) ◦ (V ⊗ νV ) = ∇A⊗V ◦ (ηA ⊗ V ), (17)

(µA ⊗ V ) ◦ (A⊗ σAV ) ◦ (νV ⊗ V ) = ∇A⊗V ◦ (ηA ⊗ V ), (18)

(µA ⊗ V ) ◦ (A⊗ ψAV ) ◦ (νV ⊗A) = βνV , (19)

where βνV is the morphism defined in (16). In this case ν is a preunit for µA⊗V , the idempotent morphism
of the weak crossed product ∇A⊗V is the idempotent ∇νVA⊗V , and we say that the pair (A⊗ V, µA⊗V ) is a
weak crossed product with preunit νV .
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Remark 1.3. Note that in the proof of the previous Theorem for (i) ⇒ (ii) we define ψAV and σAV as

ψAV = mA⊗V ◦ (ηA ⊗ V ⊗ βνV ), (20)

σAV = mA⊗V ◦ (ηA ⊗ V ⊗ ηA ⊗ V ). (21)
Also, by (19), we have

∇A⊗V ◦ νV = νV . (22)

Corollary 1.4. If (A ⊗ V, µA⊗V ) is a weak crossed product with preunit νV , then A × V is a monoid
with the product defined in (12) and unit ηA×V = pA⊗V ◦ νV .

Let K be a 2-category. In [5] Böhm introduced the 2-category EMw(K) as the weak version of Lack
and Street’s 2-category of monads in the 2-category K (see [19]). In the particular case of the one-object
2-category corresponding to C (i.e. the 2-category whose 0-cell is K, whose 1-cells are objects of C,
whose 2-cells are the morphisms of C, whose horizontal composition is the tensor product of C, and whose
vertical composition is the composition of C), EMw(K) consists of:

• 0-cells are monoids S in C.
• 1-cells S → T are pairs (F,ψS,TF ) consisting of an object F in C and a morphism ψS,TF : F ⊗ T →
S ⊗ F in C such that

ψS,TF ◦ (F ⊗ µT ) = (µS ⊗ F ) ◦ (S ⊗ ψS,TF ) ◦ (ψS,TF ⊗ T ). (23)

If S = T , the 1-cell (F,ψS,SF ) will be denoted by (F,ψSF ). The composition of 1-cells (F,ψS,TF )

and (F ′, ψT,DF ′ ), is defined by

(F ′, ψT,DF ′ ) ◦ (F,ψS,TF ) = (F ⊗ F ′, ψS,DF⊗F ′ = (ψS,TF ⊗ F ′) ◦ (F ⊗ ψT,DF ′ )).

The identity cell is (K, idS).
• 2-cells (F,ψS,TF )⇒ (G,ψS,TG ) are morphisms in C, ρ : F → S ⊗G, such that

(µS ⊗G) ◦ (S ⊗ ρ) ◦ ψS,TF = (µS ⊗G) ◦ (S ⊗ ψS,TG ) ◦ (ρ⊗ T ), (24)

ρ = (µS ⊗G) ◦ (S ⊗ ψS,TG ) ◦ (ρ⊗ ηT ). (25)
The identity 2-cell is id(F,ψS,T

F ) = ψS,TF ◦ (F ⊗ ηT ) : (F,ψS,TF )⇒ (F,ψS,TF ).
If

ρ : (F,ψS,TF )⇒ (G,ψS,TG ), ρ′ : (F ′, ψT,DF ′ )⇒ (G′, ψT,DG′ )

are 2-cells, the horizontal composition

ρ′ ~ ρ : (F ′, ψT,DF ′ ) ◦ (F,ψS,TF ) = (F ⊗ F ′, ψS,DF⊗F ′) =⇒ (G⊗G′, ψS,DG⊗G′) = (G′, ψT,DG′ ) ◦ (G,ψS,TG )

is defined by

ρ′ ~ ρ = (µS ⊗G⊗G′) ◦ (S ⊗ ρ⊗G′) ◦ (ψS,TF ⊗G′) ◦ (F ⊗ ρ′) (26)

Finally, the vertical composition of 2-cells ρ : (F,ψS,TF )⇒ (G,ψS,TG ), τ : (G,ψS,TG )⇒ (U,ψS,TU ) is defined
by

τ • ρ = (µS ⊗ U) ◦ (S ⊗ τ) ◦ ρ. (27)
Following Section 2 of [5], a monad in EMw(K) is giving by a triple ((F,ψSF ), σSF , νF ), consisting of a

1-cell (F,ψSF ) : S → S, and 2-cells σSF : (F,ψSF ) ◦ (F,ψSF ) ⇒ (F,ψSF ), and νF : (K, idS) ⇒ (F,ψSF ) in
EMw(K) such that

σSF • (σSF ~ id(F,ψS
F )) = σSF • (id(F,ψS

F ) ~ σ
S
F ),

σSF • (νF ~ id(F,ψS
F )) = id(F,ψS

F ) = σSF • (id(F,ψS
F ) ~ νF ).

Then, by Theorem 1.1 of [5], this means an object F , and morphisms ψSF : F ⊗ S → S ⊗ F , σSF :
F ⊗ F → S ⊗ F and νF : K → S ⊗ F , in K, subject to the following identities:

ψSF ◦ (F ⊗ µS) = (µS ⊗ F ) ◦ (S ⊗ ψSF ) ◦ (ψSF ⊗ S), (28)

(µS ⊗ F ) ◦ (S ⊗ σSF ) ◦ (ψSF ⊗ F ) ◦ (F ⊗ ψSF ) = (µS ⊗ F ) ◦ (S ⊗ ψSF ) ◦ (σSF ⊗ S), (29)
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(µS ⊗ F ) ◦ (S ⊗ σSF ) ◦ (σSF ⊗ F ) = (µS ⊗ F ) ◦ (S ⊗ σSF ) ◦ (ψSF ⊗ F ) ◦ (F ⊗ σSF ), (30)

σSF = (µS ⊗ F ) ◦ (S ⊗ ψSF ) ◦ (σSF ⊗ ηS), (31)

(µS ⊗ F ) ◦ (S ⊗ σSF ) ◦ (ψSF ⊗ F ) ◦ (F ⊗ νF ) = ψSF ◦ (F ⊗ ηS), (32)

(µS ⊗ F ) ◦ (S ⊗ σSF ) ◦ (νF ⊗ F ) = ψSF ◦ (F ⊗ ηS), (33)

(µS ⊗ F ) ◦ (S ⊗ ψSF ) ◦ (νF ⊗ S) = (µS ⊗ F ) ◦ (S ⊗ νF ). (34)

As a consequence, by Theorem 1.2, we have that a monad in EMw(K) is a weak crossed product
associated to the quadruple (S, F, ψSF , σ

S
F ) with preunit νF .

By Definition 2.1 of [5] a premonad in EMw(K) is giving by a triple ((F,ψSF ), σSF , uF ), consisting of
a 1-cell (F,ψSF ) : S → S, and 2-cells σSF : (F,ψSF ) ◦ (F,ψSF ) ⇒ (F,ψSF ), and νF : (K, idS) ⇒ (F,ψSF ) in
EMw(K) such that

σSF • (σSF ~ id(F,ψS
F )) = σSF • (id(F,ψS

F ) ~ σ
S
F ),

σSF • (νF ~ id(F,ψS
F )) = σSF • (id(F,ψS

F ) ~ νF ),

σSF • (νF ~ νF ) = νF ,

σSF • (σSF ~ id(F,ψS
F )) • (νF ~ id(F⊗F,ψS

F⊗F )) = σSF .

Then, this means an object F , and morphisms ψSF : F ⊗ S → S ⊗ F , σSF : F ⊗ F → S ⊗ F and
νF : K → S ⊗ F , in K, subject to the identities (28), (29), (30), (31), (34) and

(µS ⊗ F ) ◦ (S ⊗ σSF ) ◦ (ψSF ⊗ F ) ◦ (F ⊗ νF ) = (µS ⊗ F ) ◦ (S ⊗ σSF ) ◦ (νF ⊗ F ), (35)

(µS ⊗ F ) ◦ (S ⊗ ((µS ⊗ F ) ◦ (S ⊗ σSF ) ◦ (νF ⊗ F ))) ◦ νF = νF , (36)

(µS ⊗ F ) ◦ (S ⊗ σSF ) ◦ (((µS ⊗ F ) ◦ (S ⊗ σSF ) ◦ (νF ⊗ F ))⊗ F ) = σSF . (37)

Definition 1.5. Let ((F,ψSF ), σSF , νF ), ((G,ψSG), σSG, νG) be monads in EMw(K). A distributive law of
the monad ((F,ψSF ), σSF , νF ) over the monad ((G,ψSG), σSG, νG) is a 2-cell

λ : (F,ψSF ) ◦ (G,ψSG)⇒ (G,ψSG) ◦ (F,ψSF )

in EMw(K) such that

λ • (id(F,ψS
F ) ~ σ

S
G) = (σSG ~ id(F,ψS

F )) • (id(G,ψS
G) ~ λ) • (λ~ id(G,ψS

G)), (38)

λ • (σSF ~ id(G,ψS
G)) = (id(G,ψS

G) ~ σ
S
F ) • (λ~ id(F,ψS

F )) • (id(F,ψS
F ) ~ λ), (39)

λ • (νF ~ id(G,ψS
G)) = id(G,ψS

G) ~ νF , (40)

λ • (id(F,ψS
F ) ~ νG) = νG ~ id(F,ψS

F ). (41)

This notion is a 2-categorical version of the one introduced by Beck in [4] (see Example 3.1). Following
[27], a weak distributive law of the monad ((F,ψSF ), σSF , νF ) over the monad ((G,ψSG), σSG, νG) is a 2-cell

λ : (F,ψSF ) ◦ (G,ψSG)⇒ (G,ψSG) ◦ (F,ψSF )

in EMw(K) satifying (38), (39), and

λ • (νF ~ id(G,ψS
G)) = (σSG ~ id(F,ψS

F )) • (id(G,ψS
G) ~ (λ • (νF ~ νG))), (42)

λ • (id(F,ψS
F ) ~ νG) = (id(G,ψS

G) ~ σ
S
F ) • ((λ • (νF ~ νG))~ id(F,ψS

F )). (43)
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Theorem 1.6. Let ((F,ψSF ), σSF , νF ), ((G,ψSG), σSG, νG) be monads in EMw(K). A distributive law of the
monad ((F,ψSF ), σSF , νF ) over the monad ((G,ψSG), σSG, νG) is determined by a morphism

λ : G⊗ F → S ⊗ F ⊗G
in C such that

(µS⊗F ⊗G)◦ (S⊗λ)◦ (ψSG⊗F )◦ (G⊗ψSF ) = (µS⊗F ⊗G)◦ (S⊗ψSF ⊗G)◦ (S⊗F ⊗ψSG)◦ (λ⊗S), (44)

λ = (µS ⊗ F ⊗G) ◦ (S ⊗ ψSF ⊗G) ◦ (S ⊗ F ⊗ ψSG) ◦ (λ⊗ ηS), (45)
(µS ⊗ F ⊗G) ◦ (S ⊗ λ) ◦ (σSG ⊗ F ) (46)

= (µS ⊗ F ⊗G) ◦ (S ⊗ ψSF ⊗G) ◦ (µS ⊗ F ⊗ σSG) ◦ (S ⊗ λ⊗G) ◦ (ψSG ⊗ F ⊗G) ◦ (G⊗ λ),

(µS ⊗ F ⊗G) ◦ (S ⊗ λ) ◦ (ψSG ⊗ F ) ◦ (G⊗ σSF ) (47)
= (µS ⊗ F ⊗G) ◦ (µS ⊗ σSF ⊗G) ◦ (S ⊗ ψSF ⊗ F ⊗G) ◦ (S ⊗ F ⊗ λ) ◦ (λ⊗ F ),

(µS⊗F ⊗G)◦ (S⊗λ)◦ (ψSG⊗F )◦ (G⊗νF ) = (µS⊗F ⊗G)◦ (S⊗ψSF ⊗G)◦ (νF ⊗ (ψSG ◦ (G⊗ηS))), (48)
(µS ⊗ F ⊗G) ◦ (S ⊗ λ) ◦ (νG ⊗ F ) = (ψSF ⊗G) ◦ (F ⊗ νG). (49)

Proof. By definition, a distributive law of the monad ((F,ψSF ), σSF , νF ) over the monad ((G,ψSG), σSG, νG)
is a 2-cell,

λ : (G⊗ F,ψSG⊗F )⇒ (F ⊗G,ψSF⊗G)

in EMw(K). Then, λ : G ⊗ F ⇒ S ⊗ F ⊗ G is a morphism in C such that (24) and (25) hold and,
equivalently, (44) and (45) hold.

On the other hand, note that
λ • (id(F,ψS

F ) ~ σ
S
G)

= (µS ⊗ F ⊗G) ◦ (µS ⊗ λ) ◦ (S ⊗ ψSG ⊗ F ) ◦ (σSG ⊗ (ψSF ◦ (F ⊗ ηS)))
= (µS ⊗ F ⊗G) ◦ (S ⊗ ((µS ⊗ F ⊗G) ◦ (S ⊗ λ) ◦ (ψSG ⊗ F ) ◦ (G⊗ (ψSF ◦ (F ⊗ ηS))))) ◦ (σSG ⊗ F )
= (µS ⊗ F ⊗G) ◦ (S ⊗ ((µS ⊗ F ⊗G) ◦ (S ⊗ ψSF ⊗G) ◦ (S ⊗ F ⊗ ψSG) ◦ (λ⊗ ηS))) ◦ (σSG ⊗ F )
= (µS ⊗ F ⊗G) ◦ (S ⊗ λ) ◦ (σSG ⊗ F )

where the first equality follows by (28) for G, the second one follows by the associativity of µS , the third
one is a consequence of (44), and the last one relies on (45).

Also, by (28) for G and F , by monad structure of S, (44), (29) and (31) for G, we obtain
(σSG ~ id(F,ψS

F )) • (id(G,ψS
G) ~ λ) • (λ~ id(G,ψS

G))

= (µS ⊗ F ⊗G) ◦ (S ⊗ ((µS ⊗ F ⊗G) ◦ (S ⊗ ψSF ⊗G) ◦ (S ⊗ F ⊗ σSG) ◦ (((µS ⊗ F ⊗G) ◦ (S ⊗ λ)
◦(ψSG ⊗ F ) ◦ (G⊗ ψSF ))⊗G))) ◦ (ψSG ⊗ F ⊗ ψSG) ◦ (G⊗ λ⊗ ηS)

= (µS ⊗ F ⊗G) ◦ (µS ⊗ ψSF ⊗G) ◦ (S ⊗ S ⊗ F ⊗ ((µS ⊗G) ◦ (S ⊗ σSG) ◦ (ψSG ⊗G) ◦ (G⊗ ψSG)))
◦(S ⊗ λ⊗G⊗ S) ◦ (ψSG ⊗ F ⊗G⊗ S) ◦ (G⊗ λ⊗ ηS)

= (µS ⊗F ⊗G) ◦ (µS ⊗ψSF ⊗G) ◦ (S ⊗ S ⊗F ⊗ ((µS ⊗G) ◦ (S ⊗ψSG) ◦ (σSG ⊗ ηS))) ◦ (S ⊗ λ⊗G)
◦(ψSG ⊗ F ⊗G) ◦ (G⊗ λ)

= (µS ⊗ F ⊗G) ◦ (S ⊗ ψSF ⊗G) ◦ (µS ⊗ F ⊗ σSG) ◦ (S ⊗ λ⊗G) ◦ (ψSG ⊗ F ⊗G) ◦ (G⊗ λ)

Therefore, (46) holds because (38) holds. Similarly, we obtain that

λ • (σSF ~ id(G,ψS
G)) = (µS ⊗ F ⊗G) ◦ (S ⊗ λ) ◦ (ψSG ⊗ F ) ◦ (G⊗ σSF )

and
(id(G,ψS

G) ~ σ
S
F ) • (λ~ id(F,ψS

F )) • (id(F,ψS
F ) ~ λ)

= (µS ⊗ F ⊗G) ◦ (µS ⊗ σSF ⊗G) ◦ (S ⊗ ψSF ⊗ F ⊗G) ◦ (S ⊗ F ⊗ λ) ◦ (λ⊗ F ).

Then, (47) holds.
The proof for (48) is the following: on the one hand, by (28) for G, we have

λ • (νF ~ id(G,ψS
G)) = (µS ⊗ F ⊗G) ◦ (µS ~ λ) ◦ (S ⊗ (ψSG ⊗ (G⊗ ηS))⊗ F ) ◦ (ψSG ⊗ F ) ◦ (G⊗ νF )

= (µS ⊗ F ⊗G) ◦ (S ⊗ λ) ◦ (ψSG ⊗ F ) ◦ (G⊗ νF ),



8

and, on the other hand, by (34),

id(G,ψS
G) ~ νF = (µS ⊗ F ⊗G) ◦ (S ⊗ ψSF ⊗G) ◦ (νF ⊗ (ψSG ◦ (G⊗ ηS))).

Therefore, (48) holds. Finally, the proof for (49) is similar and we leave the details to the reader.
�

In a similar way we can obtain

Theorem 1.7. Let ((F,ψSF ), σSF , νF ), ((G,ψSG), σSG, νG) be monads in EMw(K). A weak distributive law
of the monad ((F,ψSF ), σSF , νF ) over the monad ((G,ψSG), σSG, νG) is determined by a morphism

λ : G⊗ F → S ⊗ F ⊗G

in C satisfying (44), (45), (46), (47) and

(µS ⊗ F ⊗G) ◦ (µS ⊗ ψSF ⊗G) ◦ (S ⊗ S ⊗ F ⊗ σSG) ◦ (S ⊗ (γS ◦ νF )⊗G) ◦ ψSG ◦ (G⊗ ηS), (50)

= (µS ⊗ F ⊗G) ◦ (S ⊗ λ) ◦ (ψSG ⊗ F ) ◦ (G⊗ νF )

(µS⊗F⊗G)◦(µS⊗ψSF ⊗G)◦(S⊗σSF ⊗ψSG)◦(ψSF ⊗F⊗G⊗ηS)◦(F⊗(γS ◦νF )) = γS ◦ψSF ◦(F⊗ηS), (51)
where γS = (µS ⊗ F ⊗G) ◦ (µS ⊗ λ) ◦ (S ⊗ νG ⊗ F ).

As a consequence of the previous theorems we have the following results.

Corollary 1.8. Let (A ⊗ V, µA⊗V ) and (A ⊗W,µA⊗W ) be weak crossed products with preunits νV and
νW . A distributive law of (A⊗V, µA⊗V ) over (A⊗W,µA⊗W ), i.e. a distributive law of the monad induced
by (A⊗ V, µA⊗V ) in EMw(K) over the corresponding monad induced by (A⊗W,µA⊗W ), is a morphism

λ : W ⊗ V → A⊗ V ⊗W

in C such that

(µA⊗V ⊗W )◦(A⊗λ)◦(ψAW⊗V )◦(W⊗ψAV ) = (µA⊗V ⊗W )◦(A⊗ψAV ⊗W )◦(A⊗V ⊗ψAW )◦(λ⊗A), (52)

λ = (µA ⊗ V ⊗W ) ◦ (A⊗ ψAV ⊗W ) ◦ (A⊗ V ⊗ ψAW ) ◦ (λ⊗ ηA), (53)

(µA ⊗ V ⊗W ) ◦ (A⊗ λ) ◦ (σAW ⊗ V ) (54)

= (µA ⊗ V ⊗W ) ◦ (A⊗ ψAV ⊗W ) ◦ (µA ⊗ V ⊗ σAW ) ◦ (A⊗ λ⊗W ) ◦ (ψAW ⊗ V ⊗W ) ◦ (W ⊗ λ),

(µA ⊗ V ⊗W ) ◦ (A⊗ λ) ◦ (ψAW ⊗ V ) ◦ (W ⊗ σAV ) (55)

= (µA ⊗ V ⊗W ) ◦ (µA ⊗ σAV ⊗W ) ◦ (A⊗ ψAV ⊗ V ⊗W ) ◦ (A⊗ V ⊗ λ) ◦ (λ⊗ V ),

(µA⊗V ⊗W )◦(A⊗λ)◦(ψAW⊗V )◦(W⊗νV ) = (µA⊗V ⊗W )◦(A⊗ψAV ⊗W )◦(νV ⊗(ψAW ◦(W⊗ηA))), (56)

(µA ⊗ V ⊗W ) ◦ (A⊗ λ) ◦ (νW ⊗ V ) = (ψAV ⊗W ) ◦ (V ⊗ νW ). (57)

Corollary 1.9. Let (A ⊗ V, µA⊗V ) and (A ⊗W,µA⊗W ) be weak crossed products with preunits νV and
νW . A weak distributive law of (A ⊗ V, µA⊗V ) over (A ⊗W,µA⊗W ), i.e. a weak distributive law of the
monad induced by (A⊗ V, µA⊗V ) in EMw(K) over the corresponding monad induced by (A⊗W,µA⊗W ),
is a morphism

λ : W ⊗ V → A⊗ V ⊗W
in C satisfying (52), (53), (54), (55) and

(µA ⊗ V ⊗W ) ◦ (µA ⊗ ψAV ⊗W ) ◦ (A⊗A⊗ V ⊗ σAW ) ◦ (A⊗ (γA ◦ νV )⊗W ) ◦ ψAW ◦ (W ⊗ ηA) (58)

= (µA ⊗ V ⊗W ) ◦ (A⊗ λ) ◦ (ψAW ⊗ V ) ◦ (W ⊗ νV )

(µA⊗V ⊗W )◦(µA⊗ψAV ⊗W )◦(A⊗σAV ⊗ψAW )◦(ψAV ⊗V ⊗W⊗ηA)◦(V ⊗(γA◦νV )) = γA◦ψAV ◦(V ⊗ηA), (59)
where γA = (µA ⊗ V ⊗W ) ◦ (A⊗ λ) ◦ (βνW ⊗ V ).
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Let ((F,ψSF ), σSF , νF ), ((G,ψSG), σSG, νG) be monads in EMw(K). If λ is a distributive law of the monad
((F,ψSF ), σSF , νF ) over the monad ((G,ψSG), σSG, νG), we can obtain a new monad (the composite monad
associated to λ (see [3]))

((F ⊗G,ψSF⊗G), σSF⊗G, νF⊗G)

where
ψSF⊗G = (ψSF ⊗G) ◦ (F ⊗ ψSG), (60)

σSF⊗G = (σSG ~ σ
S
F ) • (id(G,ψS

G) ~ λ~ id(F,ψS
F )), (61)

νF⊗G = νG ~ νF . (62)
Therefore, it is easy to show that (61) and (62) can be written as

σSF⊗G = (µS ⊗ F ⊗G) ◦ (µS ⊗ ψSF ⊗G) ◦ (S ⊗ σSF ⊗ σSG) ◦ (ψSF ⊗ F ⊗G⊗G) ◦ (F ⊗ λ⊗G), (63)

νF⊗G = (µS ⊗ F ⊗G) ◦ (S ⊗ ψSF ⊗G) ◦ (νF ⊗ νG). (64)
As a consequence, if (A⊗ V, µA⊗V ) and (A⊗W,µA⊗W ) are weak crossed products, with preunits νV

and νW , and λ : W ⊗ V → A ⊗ V ⊗W is a distributive law of (A ⊗ V, µA⊗V ) over (A ⊗W,µA⊗W ), we
obtain a new weak crossed product (A⊗ V ⊗W,µA⊗V⊗W ) associated to the quadruple

AλV⊗W = (A, V ⊗W,ψAV⊗W , σAV⊗W )

defined by
ψAV⊗W = (ψAV ⊗W ) ◦ (V ⊗ ψAW ),

σAV⊗W = (µA ⊗ V ⊗W ) ◦ (µA ⊗ ψAV ⊗W ) ◦ (A⊗ σAV ⊗ σAW ) ◦ (ψAV ⊗ V ⊗W ⊗W ) ◦ (V ⊗ λ⊗W ),

and with preunit
νV⊗W = (µA ⊗ V ⊗W ) ◦ (A⊗ ψAV ⊗W ) ◦ (νV ⊗ νW ).

Following [27], for weak distributive laws between monads in EMw(K), we have a similar construction
but in this case we do not have a monad because the unit conditions are not always fulfilled.

From now on, if λ is a (weak) distributive law, the product associated to AλV⊗W will be called the
λ-iterated product of (A⊗ V, µA⊗V ) and (A⊗W,µA⊗W ).

2. A different way to iterate weak crossed products

The aim of this section is to iterate weak crossed products with a common monoid, that is, weak
crossed products induced by quadruples of the form AV = (A, V, ψAV , σ

A
V ) where A is fixed, from a

different perspective to the one presented in the previous section.

Definition 2.1. Let AV = (A, V, ψAV , σ
A
V ) and AW = (A,W,ψAW , σ

A
W ) be two quadruples. We say that

∆V⊗W : V ⊗W → V ⊗W
is a link morphism between AV and AW if the following conditions hold:

ΓAV⊗W = (A⊗∆V⊗W ) ◦ ΓAV⊗W , (65)

ΓAV⊗W = ∇A⊗V⊗W ◦ ψAV⊗W , (66)
where

ΓAV⊗W = ψAV⊗W ◦ (∆V⊗W ⊗A).

and ∇A⊗V⊗W : A⊗ V ⊗W → A⊗ V ⊗W is the morphism defined by

∇A⊗V⊗W = (µA ⊗ V ⊗W ) ◦ (A⊗ ΓAV⊗W ) ◦ (A⊗ V ⊗W ⊗ ηA).

Lemma 2.2. Let AV = (A, V, ψAV , σ
A
V ) and AW = (A,W,ψAW , σ

A
W ) be two quadruples. If there exists a

link morphism ∆V⊗W : V ⊗W → V ⊗W between them, the morphism ΓAV⊗W introduced in the previous
definition satisfies (1) and as a consequence ∇A⊗V⊗W is an idempotent morphism and the following
identity holds:

ΓAV⊗W = ∇A⊗V⊗W ◦ ΓAV⊗W . (67)
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Proof:
Using that ψAV , ψ

A
W satisfy (1) and ∆V⊗W satisfies (65) we obtain

(µA ⊗ V ⊗W ) ◦ (A⊗ ΓAV⊗W ) ◦ (ΓAV⊗W ⊗A)

= (µA ⊗ V ⊗W ) ◦ (A⊗ ψAV ⊗W ) ◦ (ψAV ⊗ ψAW ) ◦ (V ⊗ ψAW ⊗A) ◦ (∆V⊗W ⊗A)
= (ψAV ⊗W ) ◦ (V ⊗ ψAW ) ◦ (∆V⊗W ⊗ µA)
= ΓAV⊗W ◦ (V ⊗W ⊗ µA)

and then (1) holds for ΓAV⊗W . Finally, (67) follows directly from (1) for ΓAV⊗W .
2

Let AV = (A, V, ψAV , σ
A
V ) and AW = (A,W,ψAW , σ

A
W ) be two quadruples with a link morphism ∆V⊗W

between them. Let, as in the previous section, K the one-object 2-category corresponding to C. Note
that, by the previous lemma, the pair (V ⊗W,ΓAV⊗W ) is a 1-cell in EMw(K). Also, the morphism

p = ΓAV⊗W ◦ (V ⊗W ⊗ ηA) : V ⊗W → A⊗ V ⊗W

is a 2-cell in EMw(K) between (V ⊗W,ψAV⊗W ) and (V ⊗W,ΓAV⊗W ) because, by (65) and (1) for AV and
AW we have

(µA ⊗ V ⊗W ) ◦ (A⊗ ΓAV⊗W ) ◦ (p⊗ ηA)

= (µA ⊗ V ⊗W ) ◦ (A⊗ ψAV ⊗W ) ◦ (ψAV ⊗ ψAW ) ◦ (V ⊗ ψAW ⊗A) ◦ (∆V⊗W ⊗ ηA ⊗ ηA)
= ΓAV⊗W ◦ (V ⊗W ⊗ µA),

and, on the other hand, by (66) and (1) for ΓAV⊗W

(µA ⊗ V ⊗W ) ◦ (A⊗ p) ◦ ψAV⊗W = ΓAV⊗W = (µA ⊗ V ⊗W ) ◦ (A⊗ ΓAV⊗W ) ◦ (p⊗A).

Similary i = p is a 2-cell in EMw(K) between (V ⊗ W,ΓAV⊗W ) and (V ⊗ W,ψAV⊗W ), and p • i =
id(V⊗W,ΓA

V⊗W ). Therefore,

Ω = i • p : (V ⊗W,ψAV⊗W )⇒ (V ⊗W,ψAV⊗W ) (68)

is an idempotent 2-cell in EMw(K).

Definition 2.3. Let AV = (A, V, ψAV , σ
A
V ) and AW = (A,W,ψAW , σ

A
W ) be two quadruples. We say that

τVW : W ⊗ V → V ⊗W
is a twisting morphism between AV and AW if the following conditions hold:

(i) (ψAV ⊗W ) ◦ (V ⊗ ψAW ) ◦ (τVW ⊗A) = (A⊗ τVW ) ◦ (ψAW ⊗ V ) ◦ (W ⊗ ψAV ).

(ii) (µA ⊗ V ⊗W ) ◦ (A⊗ σAV ⊗W ) ◦ (ψAV ⊗ τVW ) ◦ (V ⊗ σAW ⊗ V ) ◦ (τVW ⊗W ⊗ V ) =

(µA⊗V ⊗W )◦(A⊗ψAV ⊗W )◦(A⊗V ⊗σAW )◦(A⊗τVW ⊗W )◦(ψAW ⊗V ⊗W )◦(W⊗σAV ⊗W )◦(W⊗V ⊗τVW ).

Theorem 2.4. Let AV = (A, V, ψAV , σ
A
V ), AW = (A, V, ψAW , σ

A
W ) be two quadruples satisfying (4) and (5)

with a link morphism ∆V⊗W : V ⊗W → V ⊗W and with a twisting morphism τVW : W ⊗ V → V ⊗W
between them. Then if we define σAV⊗W : V ⊗W ⊗ V ⊗W → A⊗ V ⊗W by

σAV⊗W = (µA ⊗ V ⊗W ) ◦ (A⊗ ψAV ⊗W ) ◦ (σAV ⊗ σAW ) ◦ (V ⊗ τVW ⊗W ) (69)

and it satisfies
σAV⊗W = σAV⊗W ◦ (∆V⊗W ⊗ V ⊗W ), (70)

σAV⊗W = σAV⊗W ◦ (V ⊗W ⊗∆V⊗W ), (71)

σAV⊗W = (A⊗∆V⊗W ) ◦ σAV⊗W , (72)
the quadruple AV⊗W = (A, V ⊗W,ΓAV⊗W , σAV⊗W ) satisfies the equalities (4), (5) and (10). As a conse-
quence, (A⊗ V ⊗W,µA⊗V⊗W ) is a weak crossed product with

µA⊗V⊗W = (µA ⊗ V ⊗W ) ◦ (µA ⊗ σAV⊗W ) ◦ (A⊗ ΓAV⊗W ⊗ V ).
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Proof:
First we prove the twisted condition.

(µA ⊗ V ) ◦ (A⊗ ΓAV⊗W ) ◦ (σAV⊗W ⊗A)

= (((µA ⊗ V ) ◦ (A⊗ψAV ))⊗W ) ◦ (σAV ⊗ ((µA ⊗W ) ◦ (A⊗ψAW ) ◦ (σAW ⊗A))) ◦ (V ⊗ τVW ⊗W ⊗A)
◦(∆V⊗W ⊗∆V⊗W ⊗A)

= ((µA ◦ (A⊗ σAV ) ◦ (ψAV ⊗ V ) ◦ (V ⊗ ψAV ))⊗W ) ◦ (V ⊗ V ⊗ ((µA ⊗W ) ◦ (A⊗ σAW ) ◦ (ψAW ⊗W )
◦(W ⊗ ψAW ))) ◦ (V ⊗ τVW ⊗W ⊗A) ◦ (∆V⊗W ⊗∆V⊗W ⊗A)

= (((µA ⊗ V ) ◦ (µA ⊗ σAV )⊗ (A⊗ ψAV ⊗ V ) ◦ (ψAV ⊗ ψAV ))⊗W )
◦(V ⊗ ((ψAV ⊗ σAW ) ◦ (V ⊗ ψAW ⊗W ) ◦ (τVW ⊗ ψAW ))) ◦ (∆V⊗W ⊗∆V⊗W ⊗A)

= (((µA ⊗ V ) ◦ (A⊗ ((µA ⊗ V ) ◦ (A⊗ σAV ) ◦ (ψAV ⊗ V ) ◦ (V ⊗ ψAV ))))⊗W )
◦(A⊗ V ⊗ V ⊗ σAW ) ◦ (((ψAV ⊗ τVW ) ◦ (V ⊗ ψAW ⊗ V ) ◦ (V ⊗W ⊗ ψAV ))⊗W )
◦(V ⊗W ⊗ V ⊗ ψAW ) ◦ (∆V⊗W ⊗∆V⊗W ⊗A)

= (µA ⊗ V ⊗W ) ◦ (A⊗ σAV⊗W ) ◦ (ΓAV⊗W ⊗ V ⊗W ) ◦ (V ⊗W ⊗ ΓAV⊗W ).

In the previous calculus, the first equality follows by, (70), (71), (72), (1) for AV and the associativity
of µA, the second one follows by the twisted condition for AV and AW , the third one follows by (1) for
AV and the fourth one follows by (i) of Definition (2.3) as well as the associativity of µA. Finally, in the
last one we use the twisted condition for AV .

The proof for the cocycle condition is the following:
(µA ⊗ V ⊗W ) ◦ (A⊗ σAV⊗W ) ◦ (σAV⊗W ⊗ V ⊗W )

= ((µA ◦ (A⊗ µA))⊗ V ⊗W ) ◦ (A⊗ µA ⊗ ψAV ⊗W ) ◦ (A⊗ ((A⊗ σAV ) ◦ (σAV ⊗ V ))⊗A⊗W )
◦(ψAV ⊗ V ⊗ V ⊗ σAW ) ◦ (V ⊗ ((ψAV ⊗ τVW ) ◦ (V ⊗ σAW ⊗ V ) ◦ (τVW ⊗W ⊗ V ))⊗W )
◦(∆V⊗W ⊗ V ⊗W ⊗ V ⊗W )

= (µA ⊗ V ⊗W ) ◦ (µA ⊗ ψAV ⊗W ) ◦ (A⊗ σAV ⊗A⊗W ) ◦ (ψAV ⊗ V ⊗ σAW )
◦(V ⊗ [(µA ⊗ V ⊗W ) ◦ (A⊗ σAV ⊗W ) ◦ (ψAV ⊗ τVW ) ◦ (V ⊗ σAW ⊗ V ) ◦ (τVW ⊗W ⊗ V )]⊗W )◦
◦(∆V⊗W ⊗ V ⊗W ⊗ V ⊗W )

= (µA ⊗ V ⊗W ) ◦ (µA ⊗ ψAV ⊗W ) ◦ (A⊗ σAV ⊗A⊗W ) ◦ (ψAV ⊗ V ⊗ σAW )
◦(V ⊗ [(µA ⊗ V ⊗W ) ◦ (A⊗ ψAV ⊗W ) ◦ (A⊗ V ⊗ σAW ) ◦ (A⊗ τVW ⊗W ) ◦ (ψAW ⊗ V ⊗W )
◦(V ⊗ σAV ⊗W ) ◦ (W ⊗ V ⊗ τVW )]⊗W ) ◦ (∆V⊗W ⊗ V ⊗W ⊗ V ⊗W )

= (µA ⊗ V ⊗W ) ◦ (µA ⊗ ψAV ⊗W ) ◦ (A⊗ ((µA ⊗ V ) ◦ (A⊗ σAV ) ◦ (ψAV ⊗ V ) ◦ (V ⊗ ψAV ))⊗ σAW )
◦(A⊗ V ⊗ V ⊗ σAW ⊗W ) ◦ (ψAV ⊗ τVW ⊗W ⊗W ) ◦ (V ⊗ ψAW ⊗ V ⊗W ⊗W )
◦(V ⊗W ⊗ ((σAV ⊗W ) ◦ (V ⊗ τVW ))⊗W ) ◦ (∆V⊗W ⊗ V ⊗W ⊗ V ⊗W )

= (µA ⊗ V ⊗W ) ◦ (µA ⊗ ψAV ⊗W ) ◦ (A⊗ ((µA ⊗ V ) ◦ (A⊗ ψAV ) ◦ (σAV ⊗ V ))⊗ σAW )
◦(A⊗ V ⊗ V ⊗ σAW ⊗W ) ◦ (ψAV ⊗ τVW ⊗W ⊗ V ) ◦ (V ⊗ ψAW ⊗ V ⊗W ⊗W )
◦(V ⊗W ⊗ ((σAV ⊗W ) ◦ (V ⊗ τVW ))⊗W ) ◦ (∆V⊗W ⊗ V ⊗W ⊗ V ⊗W )

= (µA ⊗ V ⊗W ) ◦ (µA ⊗ ψAV ⊗W ) ◦ (A⊗ σAV ⊗ ((µA ⊗W ) ◦ (A⊗ σAW ) ◦ (σAW ⊗W )))
◦(((ψAV ⊗ τVW ) ◦ (V ⊗ ψAW ⊗ V ) ◦ (V ⊗W ⊗ σAV ))⊗W ⊗W ) ◦ (V ⊗W ⊗ V ⊗ τVW ⊗W )
◦(∆V⊗W ⊗ V ⊗W ⊗ V ⊗W )

= (µA ⊗ V ⊗W ) ◦ (µA ⊗ ψAV ⊗W ) ◦ (A⊗ σAV ⊗ ((µA ⊗W ) ◦ (A⊗ σAW ) ◦ (ψAW ⊗W ) ◦ (W ⊗ σAW )))
◦(((ψAV ⊗ τVW ) ◦ (V ⊗ ψAW ⊗ V ) ◦ (V ⊗W ⊗ σAV ))⊗W ⊗W ) ◦ (V ⊗W ⊗ V ⊗ τVW ⊗W )
◦(∆V⊗W ⊗ V ⊗W ⊗ V ⊗W )

= (µA ⊗ V ⊗W ) ◦ (A⊗ µA ⊗ V ⊗W ) ◦ (A⊗A⊗ ψAV ⊗W )
◦(A⊗ ((µA ⊗ V ) ◦ (A⊗ ψAV ) ◦ (σAV ⊗A))⊗ σAW ) ◦ (A⊗ V ⊗ V ⊗ ψAW ⊗W )
◦(ψAV ⊗ τVW ⊗ σAW ) ◦ (V ⊗ ψAW ⊗ V ⊗W ⊗W ) ◦ (V ⊗W ⊗ ((σAV ⊗W ) ◦ (V ⊗ τVW ))⊗W )
◦(∆V⊗W ⊗ V ⊗W ⊗ V ⊗W )

= (µA ⊗ V ⊗W ) ◦ (A⊗ µA ⊗ V ⊗W ) ◦ (A⊗A⊗ ψAV ⊗W )
◦(A⊗ ((µA ⊗ V ) ◦ (A⊗ σAV ) ◦ (ψAV ⊗ V ) ◦ (V ⊗ ψAV ))⊗ σAW ) ◦ (A⊗ V ⊗ V ⊗ ψAW ⊗W )
◦(ψAV ⊗ τVW ⊗ σAW ) ◦ (V ⊗ ψAW ⊗ V ⊗W ⊗W ) ◦ (V ⊗W ⊗ ((σAV ⊗W ) ◦ (V ⊗ τVW ))⊗W )
◦(∆V⊗W ⊗ V ⊗W ⊗ V ⊗W )

= (µA ⊗ V ⊗W ) ◦ (A⊗ µA ⊗ V ⊗W ) ◦ (A⊗A⊗ ψAV ⊗W ) ◦ (µA ◦ σAV ⊗ σAW )
◦(A⊗ ψAV ⊗ τVW ⊗W ) ◦ (ψAV ⊗ ψAW ⊗ V ⊗W ) ◦ (V ⊗ ψAW ⊗ ψAV ⊗W ) ◦ (V ⊗W ⊗ σAV ⊗ σAW )
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◦(V ⊗W ⊗ V ⊗ τVW ⊗W ) ◦ (∆V⊗W ⊗ V ⊗W ⊗ V ⊗W )
= (µA ⊗ V ⊗W ) ◦ (A⊗ σAV⊗W ) ◦ (ΓAV⊗W ⊗ V ) ◦ (V ⊗W ⊗ σAV⊗W ).

In this proof, the first equality follows by (70), the associativity of µA and the twisted condition for
AV , the second one follows by the cocycle condition for AV , (1) for AV and the associativity of µA. In
the third one we used (ii) of Definition (2.3). The fourth one is a consequence of (1) for AV and the
associativity of µA. The fifth one follows by the twisted condition for AV and the associativity of µA.
In the sixth one we used (1) for AV and the associativity of µA. The seventh one follows by the cocycle
condition for AW and in the eight one we applied (1) for AV and the associativity of µA again. The ninth
one follows by the twisted condition for AV and the tenth one follows by (i) of Definition (2.3) and the
associativity of µA. Finally, the last one was obtained using (1) for AV and AW .

The proof for the equality (10) is the following:
∇A⊗V⊗W ◦ σAV⊗W

= (µA ⊗ V ⊗W ) ◦ (A⊗ ψAV ⊗W ) ◦ (A⊗ V ⊗ ψAW ) ◦ (((A⊗∆V⊗W ) ◦ σAV⊗W )⊗ ηA)

= (µA ⊗ V ⊗W ) ◦ (A⊗ ψAV ⊗W ) ◦ (A⊗ V ⊗ ψAW ) ◦ (σAV⊗W ⊗ ηA)

= (µA ⊗ V ⊗W ) ◦ (A⊗ ψAV ⊗W ) ◦ (σAV ⊗ (∇A⊗W ◦ σAW )) ◦ (V ⊗ τVW ⊗W )
= σAV⊗W ,

where the first equality follows by definition, the second one by (71), the third one by (1) for ψAV and
by the associativity of µA. The last one relies on the properties of σAW , that is ∇A⊗W ◦ σAW = σAW .

2

Definition 2.5. Let AV = (A, V, ψAV , σ
A
V ), AW = (A,W,ψAW , σ

A
W ) be two quadruples satisfying (4) and

(5) with a link morphism ∆V⊗W : V ⊗W → V ⊗W and with a twisting morphism τVW : W ⊗V → V ⊗W
between them. Let (A ⊗ V, µA⊗V ) and (A ⊗W,µA⊗W ) be the weak crossed products associated to AV
and AW and suppose that the morphism σAV⊗W defined in (69) satisfies (70), (71) and (72). The weak
crossed product (A⊗ V ⊗W,µA⊗V⊗W ) defined in the previous theorem will be called the iterated weak
crossed product of (A⊗ V, µA⊗V ) and (A⊗W,µA⊗W ).

In the following theorem we introduce the conditions that implies the existence of a preunit for the
iterated weak crossed product defined previously.

Theorem 2.6. Let AV = (A, V, ψAV , σ
A
V ), AW = (A,W,ψAW , σ

A
W ) be two quadruples satisfying (4) and (5)

with a link morphism ∆V⊗W : V ⊗W → V ⊗W and with a twisting morphism τVW : W ⊗ V → V ⊗W
between them. Let (A⊗V, µA⊗V ) and (A⊗W,µA⊗W ) be the weak crossed products associated to AV and
AW and suppose that νV : K → A⊗ V and νW : K → A⊗W are preunits for µA⊗V and µA⊗W . If the
morphism σAV⊗W defined in (69) satisfies (70), (71), (72) and the following equalities hold

(µA ⊗ V ⊗W ) ◦ (A⊗ σAV ⊗W ) ◦ (ψAV ⊗ τVW ) ◦ (V ⊗ ψAW ⊗ V ) ◦ (V ⊗W ⊗ νV ) (73)

= ∇A⊗V⊗W ◦ (ηA ⊗ V ⊗W ),

(µA ⊗ V ⊗W ) ◦ (A⊗ ψAV ⊗W ) ◦ (A⊗ V ⊗ σAW ) ◦ (A⊗ τVW ⊗W ) ◦ (νW ⊗ V ⊗W ) (74)
= ∇A⊗V⊗W ◦ (ηA ⊗ V ⊗W ),

the iterated weak crossed product of (A⊗ V, µA⊗V ) and (A⊗W,µA⊗W ) has a preunit defined by

νV⊗W = ∇A⊗V⊗W ◦ (µA ⊗ V ⊗W ) ◦ (A⊗ ψAV ⊗W ) ◦ (νV ⊗ νW ). (75)

Proof:
Note that to prove that νV⊗W is a preunit we need to show that the equalities (17), (18) and (19) hold
for the quadruple AV⊗W = (A, V ⊗W,ΓAV⊗W , σAV⊗W ).

In this setting, the equality (19) holds because:
(µA ⊗ V ⊗W ) ◦ (A⊗ ΓAV⊗W ) ◦ (νV⊗W ⊗A)

= ∇A⊗V⊗W ◦ (µA ⊗ V ⊗W ) ◦ (A⊗ µA ⊗ V ⊗W ) ◦ (A⊗A⊗ ψAV ⊗W ) ◦ (A⊗ ψAV ⊗ ψAW )
◦(νV ⊗ νW ⊗A)
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= ∇A⊗V⊗W ◦ (βνV ⊗W ) ◦ βνW
= ∇A⊗V⊗W ◦ (µA ⊗ V ⊗W ) ◦ (A⊗ ((βνV ⊗W ) ◦ νW ))
= βνV⊗W

,

where the first equality follows by (3) for AV⊗W , (66), and the the left A-linearity of ∇A⊗V⊗W , the
second one follows by the associativity of µA, (1) for AV and (19) for βνV and βνW , the third one follows
by the left A-linearity of βνV and the last one follows from the left A-linearity of ∇A⊗V⊗W .

The proof for the equality (17) is the following:

(µA ⊗ V ⊗W ) ◦ (A⊗ σAV⊗W ) ◦ (ΓAV⊗W ⊗ V ⊗W ) ◦ (V ⊗W ⊗ νV⊗W )

= (µA⊗V ⊗W )◦(A⊗σAV⊗W )◦(ΓAV⊗W⊗V ⊗W )◦(V ⊗W⊗((µA⊗V ⊗W )◦(A⊗ψAV ⊗W )◦(νV ⊗νW )))

= (µA⊗V ⊗W )◦(µA⊗A⊗V ⊗W )◦(A⊗µA⊗σAV ⊗W )◦(A⊗A⊗ψAV ⊗V ⊗W )◦(A⊗ψAV ⊗ψAV ⊗W )
◦(A⊗ V ⊗A⊗ V ⊗ σAW ) ◦ (A⊗ V ⊗A⊗ τVW ⊗W ) ◦ (ψAV ⊗ψAW ⊗ V ⊗W ) ◦ (V ⊗ψAW ⊗ψAV ⊗W )
◦(V ⊗W ⊗ νV ⊗ νW )

= (µA⊗V ⊗W )◦ (A⊗σAV ⊗W )◦ ((ψAV ◦ (V ⊗ (µA ◦ (A⊗µA))))⊗V ⊗W )◦ (V ⊗A⊗A⊗ψAV ⊗W )
◦(V ⊗A⊗A⊗V ⊗σAW )◦(V ⊗A⊗((A⊗τVW )◦(ψAW ⊗V )◦(W⊗ψAV ))⊗W )◦(V ⊗ψAW ⊗V ⊗A⊗W )
◦(V ⊗W ⊗ νV ⊗ νW )

= (µA⊗V ⊗W )◦ (A⊗σAV ⊗W )◦ ((ψAV ◦ (V ⊗ (µA ◦ (A⊗µA))))⊗V ⊗W )◦ (V ⊗A⊗A⊗ψAV ⊗W )
◦(V ⊗A⊗A⊗V ⊗σAW )◦(V ⊗A⊗(((ψAV ⊗W )◦(V ⊗ψAW )◦(τVW⊗A))⊗W )◦(V ⊗ψAW⊗V ⊗A⊗W )
◦(V ⊗W ⊗ νV ⊗ νW )

= (µA ⊗ V ⊗W ) ◦ (A⊗ σAV ⊗W ) ◦ ((ψAV ◦ (V ⊗ µA))⊗ V ⊗W ) ◦ (V ⊗A⊗ ψAV ⊗W )
◦(V ⊗A⊗V ⊗ ((µA⊗W ) ◦ (A⊗σAW ) ◦ (ψAW ⊗W ) ◦ (W ⊗ νW ))) ◦ (V ⊗A⊗ τVW ) ◦ (V ⊗ψAW ⊗V )
◦(V ⊗W ⊗ νV )

= (µA⊗V ⊗W )◦(A⊗σAV ⊗W )◦(ψAV ⊗V ⊗W )◦(V ⊗µA⊗V ⊗W )◦(V ⊗A⊗ψAV ⊗W )◦(V ⊗A⊗V ⊗ψAW )
◦(V ⊗A⊗ τVW ⊗A) ◦ (V ⊗ ψAW ⊗ V ⊗A) ◦ (V ⊗W ⊗ νV ⊗ ηA)

= (µA⊗V⊗W )◦(A⊗((µA⊗V )◦(A⊗σAV )◦(ψAV⊗V )◦(V⊗ψAV ))⊗W )◦(A⊗V⊗V⊗ψAW )◦(ψAV⊗τVW⊗A)
◦(V ⊗ ψAW ⊗ V ⊗A) ◦ (V ⊗W ⊗ νV ⊗ ηA)

= (µA ⊗ V ⊗W ) ◦ (A⊗ ψAV ⊗W ) ◦ (A⊗ V ⊗ (ψAW ◦ (W ⊗ ηA))) ◦ (µA ⊗ V ⊗W ) ◦ (A⊗ σAV ⊗W )
◦(ψAV ⊗ τVW ) ◦ (V ⊗ ψAW ⊗ V ) ◦ (V ⊗W ⊗ νV )

= (µA⊗V ⊗W )◦(A⊗ψAV ⊗W )◦(A⊗V ⊗(ψAW ◦(W ⊗ηA)))◦(ψAV ⊗W )◦(V ⊗ψAW )◦(∆V⊗W ⊗ηA)
= ∇A⊗V⊗W ◦ (ηA ⊗ V ⊗W ).

In this proof, the first equality follows by (8) for AV⊗W , the second one follows by (1) for AV , AW ,
the associativity of µA, the twisted condition for AV , (66) and by (9) for AV⊗W , the third one follows
by (1) for AV and the associativity of µA. In the fourth one we applied (i) of the definition of twisting
morphism and the fifth one is a consequence of (1) for AV . The sixth one follows by (17) for AW , the
seventh one follows by (1) for AV and the ssociativity of µA, the eight one relies on the associativity of
µA and the twisted condition for AV . Finally, the ninth one is a consequence of (73) and the last one
follows by (1) for AV , AW .

On the other hand, the proof for the identity (18) is

(µA ⊗ V ⊗W ) ◦ (A⊗ σAV⊗W ) ◦ (νV⊗W ⊗ V ⊗W )

= (µA ⊗ V ⊗W ) ◦ (A⊗ σAV⊗W ) ◦ (((µA ⊗ V ⊗W ) ◦ (A⊗ ψAV ⊗W ) ◦ (νV ⊗ νW ))⊗ V ⊗W )

= (µA⊗ V ⊗W ) ◦ ((µA ◦ (A⊗µA))⊗ σAV ⊗W ) ◦ (A⊗A⊗ψAV ⊗ V ⊗W ) ◦ (A⊗A⊗ V ⊗ψAV ⊗W )
◦(A⊗A⊗ V ⊗ V ⊗ σAW ) ◦ (A⊗ ψAV ⊗ τVW ⊗W ) ◦ (νV ⊗ νW ⊗ V ⊗W )

= (µA⊗V ⊗W )◦(µA⊗σAV ⊗W )◦(A⊗ψAV ⊗V ⊗W )◦(νV ⊗((µA⊗V ⊗W )◦(A⊗ψAV ⊗W )◦(A⊗V ⊗σAW )
◦(A⊗ τVW ⊗W ) ◦ (νW ⊗ V ⊗W )

= (µA ⊗ V ⊗W ) ◦ (µA ⊗ σAV ⊗W ) ◦ (A⊗ ψAV ⊗ V ⊗W ) ◦ (νV ⊗ (∇A⊗V⊗W ◦ (ηA ⊗ V ⊗W )))
= (µA⊗V ⊗W )◦(A⊗ψAV ⊗W )◦(A⊗V ⊗(ψAW ◦(W⊗ηA)))◦(((µA⊗V )◦(A⊗σAV )◦(νV ⊗V ))⊗W )
◦∆V⊗W

= (µA⊗V ⊗W )◦ (A⊗ψAV ⊗W )◦ (A⊗V ⊗ (ψAW ◦ (W ⊗ηA)))◦ ((∇A⊗V ◦ (ηA⊗V ))⊗W )◦∆V⊗W
= ∇A⊗V⊗W ◦ (ηA ⊗ V ⊗W ).
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The first equality follows by (9) for AV⊗W , the second one follows by the associativity of µA and the
twisted condition for AV , the third one follows by (1) for AV , the fourth one relies on (74), the fifth one
follows by the twisted condition for AV and the associativity of µA, the sixth one is a consequence of (18)
for AV and finally, the last one follows by (1) for AV .

2

Remark 2.7. Note that we can obtain similar results about the iteration process if we work with
quadruples V A = (V,A, ψVA , σ

V
A ) where ψVA : A ⊗ V → V ⊗ A and σVA : V ⊗ V → V ⊗ A satisfy the

suitable conditions that define a weak crossed product on V ⊗A.

Theorem 2.8. Let AV = (A, V, ψAV , σ
A
V ), AW = (A,W,ψAW , σ

A
W ) be two quadruples satisfying (4) and (5)

with a link morphism ∆V⊗W : V ⊗W → V ⊗W and with a twisting morphism τVW : W ⊗ V → V ⊗W
between them. Let (A⊗V, µA⊗V ) and (A⊗W,µA⊗W ) be the weak crossed products associated to AV and
AW and suppose that νV : K → A⊗ V and νW : K → A⊗W are preunits for µA⊗V and µA⊗W . If the
morphism σAV⊗W defined in (69) satisfies (70), (71), (72) and the equalities (73), (74) hold, the triple
((V ⊗W,ψAV⊗W ), σAV⊗W , νV⊗W ) is a premonad in EMw(K), where νV⊗W is the morphism introduced in
(75). Also, the monad ((V ⊗W,ΓAV⊗W ), σAV⊗W , νV⊗W ) is the canonical retract monad induced by the
idempotent 2-cell Ω defined in (68).

Proof. The equality (28) follows because (V ⊗W,ψAV⊗W ) is a 1-cell in EMw(K). The proofs for (29), (30)
and (31) are similar with the ones used in Theorem 2.4, for (V ⊗W,ΓAV⊗W ) and σAV⊗W , removing the
linking morphism. Also, by (1) for AV and AW , (3) for ΓAV⊗W , and using that νV⊗W is a preunit for the
iterated weak crossed product (A⊗ V ⊗W,µA⊗V⊗W ) (see the proof of (19) in Theorem 2.6) we have

(µA ⊗ V ⊗W ) ◦ (A⊗ ψAV⊗W ) ◦ (νV⊗W ⊗A)

= (µA⊗V ⊗W )◦(A⊗ψAV ⊗W )◦(A⊗V ⊗ψAW )◦(((µA⊗∆V⊗W )◦(A⊗ψAV ⊗W )◦(νV ⊗νW ))⊗A)
= (µA ⊗ V ⊗W ) ◦ (A⊗ ΓAV⊗W ) ◦ (νV⊗W ⊗A)
= (µA ⊗ V ⊗W ) ◦ (A⊗ (νV⊗W )

and then (34) holds.
On the other hand, by (18) for the iterated weak crossed product (A⊗ V ⊗W,µA⊗V⊗W ) we have

(µA ⊗ V ⊗W ) ◦ (A⊗ σAV⊗W ) ◦ (νV⊗W ⊗ V ⊗W ) = ∇A⊗V⊗W ◦ (ηA ⊗ V ⊗W )

Then, (35) holds, because by (9) for σAV⊗W , (66), and (17) for the iterated weak crossed product (A ⊗
V ⊗W,µA⊗V⊗W ), we obtain

(µA ⊗ V ⊗W ) ◦ (A⊗ σAV⊗W ) ◦ (ψAV⊗W ⊗ V ⊗W ) ◦ (V ⊗W ⊗ νV⊗W )

= (µA ⊗ V ⊗W ) ◦ (A⊗ σAV⊗W ) ◦ ((∇A⊗V⊗W ◦ ψAV⊗W )⊗ V ⊗W ) ◦ (V ⊗W ⊗ νV⊗W )

= (µA ⊗ V ⊗W ) ◦ (A⊗ σAV⊗W ) ◦ (ΓAV⊗W ⊗ V ⊗W ) ◦ (V ⊗W ⊗ νV⊗W )
= ∇A⊗V⊗W ◦ (ηA ⊗ V ⊗W ).

Moreover, using (18) for the iterated weak crossed product (A⊗V ⊗W,µA⊗V⊗W ), the left A-linearity
of ∇A⊗V⊗W , and (22) for ∇A⊗V⊗W and νV⊗W , we prove (36). Similarly, by (18) for the iterated weak
crossed product (A⊗ V ⊗W,µA⊗V⊗W ), and (9) for σAV⊗W ,

(µA ⊗ V ⊗W ) ◦ (A⊗ σAV⊗W ) ◦ (((µA ⊗ V ⊗W ) ◦ (A⊗ σAV⊗W ) ◦ (νV⊗W ⊗ V ⊗W ))⊗⊗V ⊗W )

= (µA ⊗ V ⊗W ) ◦ (A⊗ σAV⊗W ) ◦ ((∇A⊗V⊗W ◦ ◦(ηA ⊗ V ⊗W ))⊗ V ⊗W )

= σAV⊗W
and then (37) holds.

Finally, by similar arguments and the twisted condition for the iterated weak crossed product (A ⊗
V ⊗W,µA⊗V⊗W ), we can prove the identities

σAV⊗W = p • σAV⊗W • (i~ i),

and
p • νV⊗W = νV⊗W .
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Therefore, the monad ((V ⊗W,ΓAV⊗W ), σAV⊗W , νV⊗W ) is the canonical retract monad induced by the
idempotent 2-cell Ω. �

In the previous theorem we find premonad in EMw(K) defined by ((V ⊗W,ψAV⊗W ), σAV⊗W , νV⊗W ).
For this premonad the following equality holds

σAV⊗W • (id(W⊗V⊗W,ψA
W⊗V⊗W ) ~ σ

A
V ) = (id(W,ψA

W ) ~ σ
A
V ) • (σAV⊗W ~ id(V,ψA

V )). (76)

Indeed:
(id(W,ψA

W ) ~ σ
A
V ) • (σAV⊗W ~ id(V,ψA

V ))

= (µA⊗V ⊗W )◦ (A⊗ ((µA⊗V )◦ (A⊗ψAV )◦ (σAV ⊗A))⊗W )◦ (ψAV ⊗V ⊗ψAW )◦ (V ⊗σAV⊗W ⊗ηA)

= (µA ⊗ V ⊗W ) ◦ (µA ⊗ψAV ⊗W ) ◦ (A⊗ ((µA ⊗ V ) ◦ (A⊗ σAV ) ◦ (ψAV ⊗A) ◦ (A⊗ψAV ))⊗A⊗W )
◦(ψAV ⊗ V ⊗A⊗ ψAW ) ◦ (V ⊗ ((σAV ⊗ σAW ) ◦ (V ⊗ τVW ⊗W ))⊗ ηA)

= (µA⊗V ⊗W ) ◦ (A⊗ ((µA⊗V ) ◦ (A⊗ψAV ) ◦ (ψAV ⊗A))⊗W ) ◦ (((µA⊗V ) ◦ (A⊗σAV ) ◦ (ψAV ⊗V )
◦(V ⊗ σAV ))⊗A⊗ ψAW ) ◦ (V ⊗ V ⊗ ((V ⊗ σAW ) ◦ (τVW ⊗W ))⊗ ηA)

= (µA ⊗ V ⊗W ) ◦ (A⊗ ψAV ⊗W ) ◦ (((µA ⊗ V ) ◦ (A⊗ σAV ) ◦ (σAV ⊗ V ))⊗ ((µA ⊗W ) ◦ (A⊗ ψAW )
◦(σAW ⊗A))) ◦ (V ⊗ V ⊗ τVW ⊗W ⊗ ηA)

= (µA⊗V ⊗W )◦ (A⊗ ((µA⊗V )◦ (A⊗ψAV )◦ (σAV ⊗A))⊗W )◦ (A⊗V ⊗V ⊗ ((µA⊗W )◦ (A⊗σAW )
◦(ψAW ⊗A) ◦ (A⊗ ψAW ))) ◦ (σAV ⊗ τVW ⊗W ⊗ ηA)

= (µA⊗V ⊗W )◦ (µA⊗ ((µA⊗W )◦ (A⊗σAW )◦ (ψAW ⊗A)◦ (A⊗ψAW ))⊗W )◦ (A⊗ψAV ⊗V ⊗σAW )
◦(σAV ⊗ ((ψAV ⊗W ) ◦ (V ⊗ψAW ) ◦ (τVW ⊗A))⊗W ) ◦ (V ⊗ V ⊗W ⊗ V ⊗ ((ψAW ⊗A) ◦ (W ⊗ ηA)))

= (µA⊗V ⊗W )◦ (µA⊗σAV⊗W )◦ (A⊗ψAV ⊗W ⊗V ⊗W )◦ (σAV ⊗ ((ψAW ⊗V ⊗W )◦ (W ⊗ψAV ⊗W )

◦(W ⊗ V ⊗ ((ψAW ⊗A) ◦ (W ⊗ ηA))))
= σAV⊗W • (id(W⊗V⊗W,ψA

W⊗V⊗W ) ~ σ
A
V )

In the last equalities, the first one follows by (1) and (4) for AV . The second and the sixth ones follow
by (1) for AV and by the associativity of µA. The third one relies on (4) for AV and on the associativity of
µA. In the fourth one we used (5) and (1) for AV . The fifth one is a consequence of the the associativity
of µA and (5) for AW . Finally, the seventh one follows by (4) for AV and (i) of Definition 2.3, and the
eighth one relies on (1) for AV and AW , and on (4) for AV .

The previous equality is the equality (2.12) of [5]. Then, by Theorem 2.3 of [5], the premonad intro-
duced in Theorem 2.8 corresponds to a monad in EMw(EMw(K)) whose constitutent 1-cell is

ψ = σAV⊗W • (id(W,ψA
W ) ~ σ

A
V ~ id(V⊗W,ψA

V⊗W )) • (νV⊗W ~ id(W⊗V⊗W,ψA
W⊗V⊗W )) (77)

•(id(W⊗V,ψA
W⊗V ) ~ νV ).

Then, by (1) for AV and AW , (18) and (3) for AV , and the associativity of µA, we have

ψ = (µA ⊗ V ⊗W ) ◦ (A⊗ ((ψAV ⊗W ) ◦ (V ⊗ σAW ) ◦ (τVW ⊗W ))) ◦ (ψAW ⊗ V ⊗W ) (78)

◦(W ⊗ ((µA ⊗ V ) ◦ (A⊗ σAV ) ◦ (ψAV ⊗ V ))⊗W ) ◦ (W ⊗ V ⊗ νV⊗W ) : W ⊗ V → A⊗ V ⊗W.

Remark 2.9. Note that, if AV = (A, V, ψAV , σ
A
V ), AW = (A,W,ψAW , σ

A
W ) are two quadruples such that

AV satisfies the twisted condition (4) and there exists a morphism τVW : W ⊗ V → V ⊗W satisfying

(ψAV ⊗W ) ◦ (V ⊗ σAW ) ◦ (τVW ⊗W ) ◦ (W ⊗ τVW ) = (A⊗ τVW ) ◦ (σAW ⊗ V ), (79)

and
(σAV ⊗W ) ◦ (V ⊗ τVW ) ◦ (τVW ⊗ V ) = (A⊗ τVW ) ◦ (ψAW ⊗ V ) ◦ (W ⊗ σAV ), (80)

the equality (ii) of Definition 2.3 holds because:
(µA ⊗ V ⊗W ) ◦ (A⊗ σAV ⊗W ) ◦ (ψAV ⊗ τVW ) ◦ (V ⊗ σAW ⊗ V ) ◦ (τVW ⊗W ⊗ V )

= (((µA⊗V )◦ (A⊗σAV )◦ (ψAV ⊗V )◦ (V ⊗ψAV ))⊗W )◦ (V ⊗V ⊗σAW )◦ (V ⊗ τVW ⊗W )◦ (τVW ⊗ τVW )
= (((µA ⊗ V ) ◦ (A⊗ ψAV ) ◦ (σAV ⊗A))⊗W ) ◦ (V ⊗ V ⊗ σAW ) ◦ (V ⊗ τVW ⊗W ) ◦ (τVW ⊗ τVW )
= (µA⊗V ⊗W ) ◦ (A⊗ψAV ⊗W ) ◦ (A⊗V ⊗σAW ) ◦ (A⊗ τVW ⊗W ) ◦ (ψAW ⊗V ⊗W ) ◦ (V ⊗σAV ⊗W )
◦(W ⊗ V ⊗ τVW )
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where the first equality follows by (79), the second one by (4) for the quadruple AV and the last one
by (80).

3. Some examples

The aim of this section is to provide some examples of the iteration process introduced in the previous
ones.

Example 3.1. The category of endofunctors of C is a strict monoidal category with the composition
of functors, denoted by ⊗, as the tensor product and the identity functor as the unit. We denote this
category by End(C). The morphisms in End(C) are natural transformations between endofunctors and
we denote the composition (the vertical composition) of these morphisms by ◦. The tensor product of
morphisms in End(C) is defined by the horizontal composition of natural transformations and in this
paper is denoted by the same symbol used for the composition of functors (see [21] for the details of the
horizontal and vertical compositions). Note that, if C is a category where every idempotent morphism
splits it is easy to show that every idempotent morphism splits in End(C). Given objects S, T , D and a
morphism τ : T → D, we write S } τ for idS } τ and τ } S for τ } idS where idS denotes the identity
morphism for the object S.

A monad on C consists of a endofunctor S : C → C together with two natural transformations ηS :
idC → S (where idC denotes the identity functor on C) and µS : S2 = S } S → S. These are required to
fulfill the following conditions

µS ◦ (S } ηS) = µS ◦ (ηS } S) = idS , (81)

µS ◦ (S } µS) = µS ◦ (µS } S). (82)
Then, a monad on C can alternatively be defined as a monoid in the strict monoidal category End(C).
The notion of wreath was introduced by Lack and Street in [19]. A monad S in C is a wreath if there

exist an object in T ∈ End(C) and morphisms in End(C), ψ : T } S → S } T , τ : idC → S } T and
v : T } T → S } T satisfying the following conditions:

(µS } T ) ◦ (S } ψ) ◦ (ψ } S) = ψ ◦ (T } µS), (83)

ψ ◦ (T } ηS) = ηS } T, (84)
(µS } T ) ◦ (S } τ) = (µS } T ) ◦ (S } ψ) ◦ (τ } S), (85)

(µS } T ) ◦ (S } v) ◦ (ψ } T ) ◦ (T } ψ) = (µS } T ) ◦ (S } ψ) ◦ (v } S), (86)
(µS } T ) ◦ (S } v) ◦ (v } T ) = (µS } T ) ◦ (S } v) ◦ (ψ } T ) ◦ (T } v), (87)

(µS } T ) ◦ (S } v) ◦ (τ } T ) = ηS } T = (µS } T ) ◦ (S } v) ◦ (ψ } T ) ◦ (T } τ). (88)
If we put ψST = ψ and σST = v, we obtain that ST = (S, T, ψST , σ

S
T ) is a quadruple satisfying (1), (4)

and (5) where the associated idempotent defined in (2) is ∇S}T = idS}T because ψ satisfies the identity
(84). Then, the product induced by a wreath (wreath product) defined by

µS}T = (µS } T ) ◦ (µS } v) ◦ (S } ψ } T )

is the one defined in (11) and it is associative because satisfies (iv) (twisted condition) and (v) (cocycle
condition). Then S } T is a monad with unit ηS}T = τ .

An example of wreath products cames from the notion of distributive law introduced by Beck in [4]
(see also [26]). Suppose that T and S are two monads on C. A distributive law of the monad S over the
monad T is a natural transformation

λ : T } S → S } T

such that
λ ◦ (µT } S) = (S } µT ) ◦ (λ} T ) ◦ (T } λ), (89)

λ ◦ (ηT } S) = S } ηT , (90)
λ ◦ (T } µS) = (µS } T ) ◦ (S } λ) ◦ (λ} S), (91)

λ ◦ (T } ηS) = ηS } T. (92)
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Then, if τ = ηS } ηT and v = ηS } µT we obtain a wreath for the monad S and also a weak crossed
product associated to the quadruple ST = (S, T, ψST , σ

S
T ) where ψST = λ, σST = v and

µS}T = (µS } µT ) ◦ (S } λ} T ).

Suppose that S, T and D are monads in C such that there exists the following distributive laws between
them

λ1 : T } S → S } T, λ2 : D } T → T }D, λ3 : D } S → S }D,

satisfying the compatibility identity (called the Yang-Baxter relation or the hexagon equation)

(S } λ2) ◦ (λ3 } T ) ◦ (D } λ1) = (λ1 }D) ◦ (T } λ3) ◦ (λ2 } S). (93)

Then, under these conditions we have two quadruples

ST = (S, T, ψST = λ1, σ
S
T = ηS } µT ),

SD = (S,D,ψSD = λ3, σ
S
D = ηS } µD),

satisfying (1), (4), (5). If we put ∆T}D = idT}D as a link morphism (note that in this case the equalities
(70), (71) and (72) are trivial) and τTD = λ2 we have that the condition (i) of Definition 2.3 holds because
we assume (93). On the other hand, the condition (ii) of the same Definition also holds because:

(µS } T }D) ◦ (S } σST }D) ◦ (ψST } τ
T
D)} (T } σSD } T ) ◦ (τTD }D } T )

= (ηS } ((µT } µD) ◦ (T } λ2 }D) ◦ (λ2 } λ2)))
= (µS } T }D) ◦ (S } ψST }D) ◦ (S } T } σSD) ◦ (S } τTD }D) ◦ (ψSD } T }D) ◦ (D } σST }D)◦
◦(D } T } τTD).

Therefore, τTD = λ2 is a twisting morphism between the quadruples ST and SD. As a consequence, by
Lemma 2.2 and Theorem 2.4, the quadruple

ST}D = (S, T }D,ψST}D, σ
S
T}D),

where
ψST}D = (ψST }D) ◦ (T } ψSD) = (λ1 }D) ◦ (T } λ3)

and

σST}D = (µS } T }D) ◦ (S } ψST }D) ◦ (σST } σ
S
D) ◦ (T } τTD ⊗D) = ηS } ((µT } µD) ◦ (T } λ2 }D)),

satisfies the equalities (4) and (5). Then, the pair, (S } T }D,µS}T}D) is the iterated weak crossed of
(S } T, µS}T ) and (S }D,µS}D) with associated product

µS}T}D = (µS } T }D) ◦ (µS } σ
S
T}D) ◦ (S } ψST}D } T }D) =

(µS } µT } µD) ◦ (S } ((λ1 } λ2) ◦ (T } λ3 } T ))}D).

In this case the preunits are units. The object S } T }D is a monad with unit

ηS}T}D = ηS } ηT } ηD

because S } T and S }D are also monads with unit ηS}T = ηS } ηT and ηS}D = ηS } ηD respectively.
Therefore, (73) and (74) holds and the morphism νT}S defined in (75) is ηS}T}D.

On the other hand, the morphism ψ, introduced in (77), is

ψ = ηS } λ2.

Then, it is a distributive law of (S } T, µS}T ) over (S }D,µS}D). As a consequence, in this case, the
ψ-iterated product is the one defined in Theorem 2.4.

For example, if C is a strict monoidal category and A, B are monoids in C the twisted tensor product of
algebras introduced in [11], [28] is an example weak crossed product associated to a wreath for the monad
S = A⊗−. In this case T = B ⊗− and λ = R⊗− where R : B ⊗A→ A⊗B is the twisting morphism.
Furthermore, the natural transformation λ = R ⊗− is a distributive law of the monad S = A⊗− over
the monad T = B ⊗− if and only if R : B ⊗A→ A⊗B is a unital twisting morphism. Suppose that A,
B and C are monoids, let

R1 : B ⊗A→ A⊗B, R2 : C ⊗B → B ⊗ C, R3 : C ⊗A→ A⊗ C,
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unital twisting morphisms, and consider the monads S = A ⊗ −, T = B ⊗ −, D = C ⊗ −, the induced
quadruples ST , SD and the twisting morphism τTD = R2 ⊗ −. Then the iterated product defined in
Theorem 2.1 of [17] is the one associated to the quadruple

ST}D = (S, T }D,ψST}D, σ
S
T}D)

when we apply the functors in the unit object of the category.

Example 3.2. Given to monads S and T , the notion of weak distributive law of the monad S over the
monad T was introduced by Ross Street in [27] as follows. It consists of a natural transformation

λ : T } S → S } T

such that satisfies (89), (91) and

λ ◦ (ηT } S) = (µS } T ) ◦ (S } (λ ◦ (ηT } ηS))), (94)
λ ◦ (T } ηS) = (S } µT ) ◦ ((λ ◦ (ηT } ηS))} T ). (95)

In this definition the axioms (94) and (95) can be replaced for the identity [[27], Proposition 2.2]:

(S } µT ) ◦ ((λ ◦ (ηT } S)} T ) = (µS } T ) ◦ (S } (λ ◦ (T } ηS))). (96)

For a weak distributive law, the weak wreath product of T over S with respect to λ was defined by
Street in Definition 2.5 of [27] as

µS}T = (µS } µT ) ◦ (S } λ} T ).

The same set of axioms for monoids in category of modules over a commutative ring can be found in
[10]. Then, the conditions used in [10] define a weak wreath product associated to monads induced by
monoids.

It follows by (89) and (91) that µS}T is an associative product but possibly without unity. In any
case, if we take the quadruple

ST = (S, T, ψST = λ, σST = (S } µT ) ◦ ((λ ◦ (T } ηS))} T )),

we obtain that ST satisfies (1), (4), (5) and (10). The associated idempotent defined in (2) is

∇S}T = (µS } T ) ◦ (S } (λ ◦ (T } ηS))).

Then, the weak wreath product defined by the weak distributive law is the one induced by the quadruple
ST . Therefore, every weak wreath product with respect to λ is a weak crossed product. In this setting
the morphism νT = ∇S}T ◦ (ηS } ηT ) is a preunit and S × T is a monoid with unit ηS×T = pS}T ◦ νT
(see also [[14], Example 3.16]).

Note that the equality (96) implies that

σST = (S } µT ) ◦ ((∇S}T ◦ (ηS } T )} T ) = ∇S}T ◦ (ηS } µT ) = λ ◦ (µT } ηS). (97)

Suppose that S, T and D are monads in C such that there exists tree weak distributive laws between
them

λ1 : T } S → S } T, λ2 : D } T → T }D, λ3 : D } S → S }D,

satisfying the Yang-Baxter relation (93). Then, under these conditions we have two quadruples

ST = (S, T, ψST = λ1, σ
S
T = (S } µT ) ◦ ((λ1 ◦ (T } ηS))} T )),

SD = (S,D,ψSD = λ3, σ
S
D = (S } µD) ◦ ((λ3 ◦ (D } ηS))}D)),

satisfying (1), (4), (5) and (10). If we put ∆T}D = ∇T}D we obtain a link morphism. Indeed, we have
that (65) holds because

(S }∇T}D) ◦ ψST}D
= (S } µT } µD) ◦ (λ1 } λ2 }D) ◦ (T } λ3 } λ2) ◦ ((λ2 ◦ (ηD } T ))} λ3 } ηT )
= (S}((µT}µD)◦(T}λ2}D)◦(λ2}T}D)))◦(λ3}T}T}D)◦(D}λ1}λ2)◦(ηD}D}λ3}ηT )
= (S } T } µD) ◦ (S } λ2 }D) ◦ (λ3 }∇T}D) ◦ (D } λ1 }D) ◦ (ηD } T } λ3)
= (S } T } µD) ◦ (((S } λ2) ◦ (λ3 } T ) ◦ (D } λ1))}D) ◦ (ηD } T } λ3)
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= (λ1 } µD) ◦ (T } λ3 }D) ◦ ((λ2 ◦ (ηD } T ))} λ3)
= ψST}D

In the last equalities, the first one follows by (89) for λ3 and λ2, the second one follows by (93), the
third one follows by (91) for λ2, the fourth one follows by

(T } µD) ◦ (λ2 }D) ◦ (D }∇T}D) = (T } µD) ◦ (λ2 }D), (98)

the fifth one relies on (93) and the last one is a consequence of (89) for λ3.
The equality (66) follows by

∇S}T}D ◦ (λ1 }D) ◦ (T } λ3)
= (((µS } µT ) ◦ (S } λ1 } T ))}D) ◦ (λ1 } ((λ1 }D) ◦ (T } λ3) ◦ (λ2 } S))) ◦ (T } λ3 } ηT } ηS)
= (((µS } µT ) ◦ (S } λ1 } T ))}D) ◦ (λ1 } ((S } λ2) ◦ (λ3 } T ) ◦ (D} λ1))) ◦ (T } λ3 } ηT } ηS)
= (S } µT }D) ◦ (λ1 } λ2) ◦ (T } λ3 } T ) ◦ (T }D } (∇S}T ◦ (S } ηT )))
= (S } µT }D) ◦ (λ1 } T }D) ◦ (T } (((S } λ2) ◦ (λ3 } T ) ◦ (D } λ1)) ◦ (D } ηT } S)))
= (S } µT }D) ◦ (λ1 } T }D) ◦ (T } (((λ1 }D) ◦ (T } λ3) ◦ (λ2 } S)) ◦ (D } ηT } S)))
= ψST}D

where, the first and the sixth equalities follow by (89) for λ1, the second and the fifth ones follow by
(93), the third relies on (91) for λ1 and λ3 and, finally, the fourth one follows by (96).

On the other hand, if τTD = λ2 we obtain that the condition (i) of Definition 2.3 holds by (93).
Moreover, condition (ii) of the same Definition also holds because we have the following:

(µS } T }D) ◦ (S } σST }D) ◦ (ψST } τ
T
D)} (T } σSD } T ) ◦ (τTD }D } T )

= (S } µT }D) ◦ (λ1 } (λ2 ◦ (µD } T ))) ◦ (((T } λ3) ◦ (λ2 } ηS))}D } T )
= (S } ((µT } µD) ◦ (T } λ2 }D) ◦ (λ2 } T }D))) ◦ (((λ3 } T ) ◦ (D } (λ1 ◦ (T } ηS))))} λ2)
= (S } T } µD) ◦ (((S } λ2) ◦ (λ3 } µT ) ◦ (D } (λ1 ◦ (T } ηS))} T ))}D) ◦ (D } T } λ2)
= (S } T } µD) ◦ (((S } λ2) ◦ (λ3 } T ) ◦ (D } (λ1 ◦ (µT } ηS))))}D) ◦ (D } T } λ2)
= (λ1 } µD) ◦ (T } λ3 }D) ◦ ((λ2 ◦ (D } µT ))} ηS }D) ◦ (D } T } λ2)
= (((S } µT ) ◦ (λ1 } T ))}D) ◦ (T } ((λ1 } µD) ◦ (T } λ3 }D) ◦ (λ2 } ηS }D))) ◦ (λ2 } λ2)
= (S } µT } µD) ◦ (((λ1 } λ2) ◦ (T } λ3 } T ) ◦ (λ2 } (λ1 ◦ (T } ηS))))}D) ◦ (D } T } λ2)
= (S} ((µT }µD)◦ (T }λ2}D)◦ (λ2}T }D)))◦ (λ3}T }T }D)◦ (D} (λ1 ◦ (T }µS))}T }D)
◦(D } T } ηS } (((λ1 ◦ (T } ηS))}D) ◦ λ2))

= (µS } ((µT } µD) ◦ (T } λ2 }D) ◦ (λ2 } T }D))) ◦ (S } λ3 } T } T }D) ◦ (λ3 } λ1 } T }D)
◦(D } (λ1 ◦ (T } ηS))} (((λ1 ◦ (T } ηS))}D) ◦ λ2))

= (µS}T}µD)◦(S}S}λ2}D)◦(S}λ3}T}D)◦(λ3}(λ1◦(µT}ηS)))}D)◦(D}(λ1◦(T}ηS))}λ2)
= (µS } T }D) ◦ (S } ψST }D) ◦ (S } T } σSD) ◦ (S } τTD }D) ◦ (ψSD } T }D) ◦ (D } σST }D)◦
◦(D } T } τTD).

In the last equalities, the fist one follows by (91) for λ1 and

(S } µT ) ◦ (λ1 } T ) ◦ (T }∇S}T ) = (S } µT ) ◦ (λ1 } T ),

the second one follows by (89) for λ2 and (93), the third one follows by (91) for λ2 and the fourth one
is a consequence of (97) for λ1. In the fifth one we used (93) and the sixth one relies on (91) for λ2 and
(89) for λ1. The seventh one follows by (93), the eighth one follows by λ1 ◦ (T } ηS) = ∇S}T ◦ (ηS } T )
and (93). Finally, in the ninth one we used (91) for λ1 and λ3, the tenth one follows by (91) for λ2 and
(89) for λ1 and the last one follows by (93).

Therefore, τTD = λ2 is a twisting morphism between the quadruples ST and SD.
If we put

σST}D = (µS } T }D) ◦ (S } ψST }D) ◦ (σST } σ
S
D) ◦ (T } τTD ⊗D)

we obtain that
σST}D = (λ1 } µD) ◦ (µT } λ3 }D) ◦ (T } λ2 } ηS }D) (99)

and σST}D satisfies (70), (71) and (72). Indeed: the equality (70) follows by

(µT }D) ◦ (T } λ2) ◦ (∇T}D } T ) = (µT }D) ◦ (T } λ2) (100)
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and the proof for (71) is
σST}D ◦ (T }D }∇T}D)

= (λ1 }D) ◦ (µT } (λ3 ◦ (µD } ηS))) ◦ (T } λ2 }D) ◦ (T }D }∇T}D)
= (λ1 }D) ◦ (µT } (λ3 ◦ (µD } ηS))) ◦ (T } λ2 }D)
= σST}D

where the first and the third equalities follows by

(S } µD) ◦ ((λ3 ◦ (D } ηS))}D) = λ3 ◦ (µD } ηS) (101)

and the second one follows by (98).
Finally, by

∇T}D ◦ (T } µD) = (T } µD) ◦ (∇T}D }D),

∇T}D ◦ (µT }D) ◦ (T } λ2) = (µT }D) ◦ (T } λ2)

and (93) we obtain (72).
As a consequence, by Lemma 2.2 and Theorem 2.4, the quadruple

ST}D = (S, T }D,ΓST}D, σ
S
T}D),

where
ΓST}D = (λ1 }D) ◦ (T } λ3) ◦ (∇T}D } S),

satisfies the equalities (4) and (5). Then, (S } T }D,µS}T}D) is the iterated weak crossed product of
(S } T, µS}T ) and (S }D,µS}D) with associated product

µS}T}D = (µS } T }D) ◦ (µS } σ
S
T}D) ◦ (S } ΓST}D } T }D),

and equivalently

µS}T}D = (µS } µT } µD) ◦ (S } ((λ1 } λ2) ◦ (T } λ3 } T ) ◦ (∇T}D }∇S}T ))}D) (102)

= (µS } µT } µD) ◦ (S } ((λ1 } λ2) ◦ (T } λ3 } T ) ◦ (T }D }∇S}T ))}D).

Also, we have the preunit conditions of Theorem 2.6. Indeed, the proof for (73) is the following:
(µS } T }D) ◦ (S } σST }D) ◦ (λ1 } λ2) ◦ (T } λ3 } T ) ◦ (T }D } νT )

= (S } µT }D) ◦ (λ1 } λ2) ◦ (T } λ3 } T ) ◦ (T }D } νT )
= (S } µT }D) ◦ (λ1 } T }D) ◦ (T } ((S } λ2) ◦ (λ3 } T ) ◦ (D } λ1))) ◦ (T }D } ηT } ηS)
= (S } µT }D) ◦ (λ1 } T }D) ◦ (T } ((λ1 }D) ◦ (T } λ3) ◦ (λ2 } S))) ◦ (T }D } ηT } ηS)
= ∇S}T}D ◦ (ηS } T }D)

where the first equality follows by (96) and (91) for λ1, the second one follows by the definition of
∇S}T , the third one relies on (93) and the last one is a consequence (89) for λ1.

Finally, (74) follows by
(µS } T }D) ◦ (S } λ1 }D) ◦ (S } T } σSD) ◦ (S } λ2 }D) ◦ (νD } T }D)

= (S } T } µD) ◦ (((S } λ2) ◦ (λ3 } T ) ◦ (D } λ1))}D) ◦ (ηD } T } ηS }D)
= (λ1 } µD) ◦ (T } λ3 }D) ◦ (λ2 } S }D) ◦ (ηD } T } ηS }D)
= ∇S}T}D ◦ (ηS } T }D)

where the first equality is a consequence of (93) and

(µS }D) ◦ (S } λ3) ◦ (∇S}D } S) = (µS }D) ◦ (S } λ3),

the second one of (93) and the last one of (101).
Therefore,

νT}D = ∇S}T}D ◦ (µS } T }D) ◦ (S } λ1 }D) ◦ (νT } νD)

is a preunit for µS}T}D and we have that

νT}D = (λ1 }D) ◦ (T } λ3) ◦ (λ2 } S) ◦ (ηD } ηT } ηS).

In this case the morphism ψ, introduced in (77), is

ψ = (S } λ2) ◦ (λ3 } T ) ◦ (D } (λ1 ◦ (T } ηS)).
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It is not a distributive law of (S } T, µS}T ) over (S }D,µS}D), because the conditions (56), and (57)
do not hold. In any case, it is a weak distributive law. Note that, using (89), (91), and (93) it is easy to
show that (52), (53), (54), and (55) hold. Moreover, using that

γS = (µS } λ2) ◦ (S } λ3 } T ) ◦ ((λ3 ◦ (ηD } S))} (λ1 ◦ (T } ηS)))

we obtain the equality

γS ◦ νT = (S } λ2) ◦ (λ3 } T ) ◦ (D } λ1) ◦ (ηD } ηT } ηS),

and then, applying (89), (91), (93) and (96), we can prove (58) and (59). As a consequence, the ψ-iterated
product is the one defined in Theorem 2.4.

Example 3.3. In this example we will show that the iteration process proposed recently by Dăuş and
Panaite in [13] for Brzeziński’s crossed products, is a particular case of the weak iterated products
defined in this paper. First we recall from [9] the construction of Brzeziński’s crossed product in a strict
monoidal category: Let (A, ηA, µA) be a monoid and V an object equipped with a distinguished morphism
ηV : K → V . Then the object A⊗V is a monoid with unit ηA⊗ ηV and whose product has the property
µA⊗V ◦ (A ⊗ ηV ⊗ A ⊗ V ) = µA ⊗ V , if and only if there exists two morphisms ψAV : V ⊗ A → A ⊗ V ,
σAV : V ⊗ V → A⊗ V satisfying (1), the twisted condition (4), the cocycle condition (5) and

ψAV ◦ (ηV ⊗A) = A⊗ ηV , (103)

ψAV ◦ (V ⊗ ηA) = ηA ⊗ V, (104)

σAV ◦ (ηV ⊗ V ) = σAV ◦ (V ⊗ ηV ) = ηA ⊗ V. (105)

If this is the case, the product of A ⊗ V is the one defined in (11). Note that Brzeziński’s crossed
products are examples of weak crossed products where the associated idempotent is the identity, that is,
∇A⊗V = idA⊗V . Also, in this case the preunit ν = ηA ⊗ ηV is a unit.

Given two Brzeziński’s crossed products for A⊗V and A⊗W , in [13] a new crossed product is defined
in A⊗ V ⊗W if there exists a morphism τVW : W ⊗ V → V ⊗W satisfying the condition (i) of Definition
2.3, (79), (80) and

τVW ◦ (ηW ⊗ V ) = V ⊗ ηW , (106)

τVW ◦ (W ⊗ ηV ) = ηV ⊗W. (107)

In this case, ψAV⊗W = (ψAV ⊗W ) ◦ (V ⊗ ψAW ), σAV⊗W is defined as in (69) and ηV⊗W = ηV ⊗ ηW .
Under these conditions, by Remark 2.9, we have that τVW is a twisting morphism and, if we consider

the link morphism ∆V⊗W = idV⊗W , we obtain that the iterated crossed product proposed in [13] is a
particular instance of the iterated weak crossed product introduced in Theorem 2.4. Moreover, in this
setting, if the equality (ii) of Definition 2.3 holds, composing with W ⊗ V ⊗ ηW ⊗ V in both sides we
obtain (80), and composing with W ⊗ ηV ⊗W ⊗ V we obtain (79).

Note that, in this case, we also have that the morphism ψ, introduced in (77), is a distributive law of
(A⊗ V, µA⊗V ) over (A⊗W,µA⊗W ). In this case, the ψ-iterated product is the one defined in Theorem
2.4.

4. A different characterization of the iterated weak crossed product

In this section we obtain a new characterization of the iteration process following Theorem 1.4 of [15].
This theorem asserts the following:

Theorem 4.1. Let T and B be a monoids in C. Then the following are equivalent:
(i) There exist a weak crossed product (B⊗W,µB⊗W ) with preunit ν and an isomorphism of monoids

ω : B ×W → T .
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(ii) There exist an algebra B, an object W , morphisms

iB : B → T, iW : W → T, ∇B⊗W : B ⊗W → B ⊗W, ω : B ×W → T

such that iB is a monoid morphism, ∇B⊗W is an idempotent morphism of left B-modules for the
action ϕB⊗W = µB ⊗W , and ω is an isomorphism such that

ω ◦ pB⊗W = µT ◦ (iB ⊗ iW )

where B ×W is the image of ∇B⊗W and pB⊗W is the associated projection.

Theorem 4.2. Let AV = (A, V, ψAV , σ
A
V ), AW = (A,W,ψAW , σ

A
W ) be two quadruples satisfying (4) and (5)

with a link morphism ∆V⊗W : V ⊗W → V ⊗W and with a twisting morphism τVW : W ⊗ V → V ⊗W
between them. Let (A⊗V, µA⊗V ) and (A⊗W,µA⊗W ) be the weak crossed products associated to AV and
AW and suppose that νV : K → A⊗V and νW : K → A⊗W are preunits for µA⊗V and µA⊗W . Assume
that the morphism σAV⊗W , defined in (69), satisfies (70), (71), (72) and assume also that the equalities
(73) and (74) hold.

(i) Let iA×V : A× V → A× (V ⊗W ) be the morphism defined by

iA×V = pA⊗V⊗W ◦ (µA ⊗ V ⊗W ) ◦ (A⊗ ψAV ⊗W ) ◦ (iA⊗V ⊗ vW ),

where A× (V ⊗W ) is the image of the idempotent morphism ∇A⊗V⊗W introduced in Definition
2.1 and pA⊗V⊗W its associated projection.

If the equality

∇A⊗V⊗W ◦ (((µA ⊗ V ) ◦ (A⊗ ψAV ) ◦ (σAV ⊗A))⊗W ) ◦ (V ⊗ V ⊗ νW ) (108)

= ∇A⊗V⊗W ◦ (((µA ⊗ V ) ◦ (A⊗ σAV ))⊗W ) ◦ (ψAV ⊗ τVW ) ◦ (V ⊗ νW ⊗ V ),

holds, iA×V is a monoid morphism.
(ii) If A×V , pA×V and iA×V are the image, the projection and the injection associated a ∇A⊗V , the

morphism ∇(A×V )⊗W : (A× V )⊗W → (A× V )⊗W defined by

∇(A×V )⊗W = (pA⊗V ⊗W ) ◦ ∇A⊗V⊗W ◦ (iA⊗V ⊗W ),

is idempotent. Moreover, if the following identity holds

∇A⊗V⊗W ◦ (σAV ⊗W ) = (((µA ⊗ V ) ◦ (A⊗ ψAV ))⊗W ) ◦ (σAV ⊗ ψAW ) ◦ (V ⊗∆V⊗W ⊗ ηA), (109)

∇(A×V )⊗W is a morphism of left A× V -modules for ϕ(A×V )⊗W = µA×V ⊗W .
(iii) The morphism ω : (A× V )×W → A× (V ⊗W ) defined by

ω = pA⊗V⊗W ◦ (iA⊗V ⊗W ) ◦ i(A×V )⊗W ,

where i(A×V )⊗W is the injection associated to ∇(A×V )⊗W , is an isomorphism. Moreover, if the
equality

∇A⊗V⊗W ◦ (ψAV ⊗W ) ◦ (V ⊗ σAW ) = (ψAV ⊗W ) ◦ (V ⊗ σAW ) ◦ (∆V⊗W ⊗W ) (110)

holds, then
ω ◦ p(A×V )⊗W = µA×(V⊗W ) ◦ (iA×V ⊗ iW )

for
iW = pA⊗V⊗W ◦ (νV ⊗W ).

Therefore, if (108), (109) and (110) hold, A× (V ⊗W ) and (A×V )×W are isomorphic as monoids.

Proof. The proof for (i) is the following:
µA×(V⊗W ) ◦ (iA×V ⊗ iA×V )

= pA⊗V⊗W ◦ (µA ⊗ V ⊗W ) ◦ (µA ⊗ σAV⊗W ) ◦ (A⊗ ΓAV⊗W ⊗ V ⊗W )

◦(((µA⊗V ⊗W )◦(A⊗ψAV ⊗W )◦(iA⊗V ⊗νW ))⊗((µA⊗V ⊗W )◦(A⊗ψAV ⊗W )◦(iA⊗V ⊗νW )))
= pA⊗V⊗W ◦(µA⊗V ⊗W )◦(µA⊗((µA⊗V ⊗W )◦(A⊗ψAV ⊗W )◦(σAV ⊗σAW )))◦(µA⊗ψAV ⊗V ⊗W⊗W )
◦(A⊗ψAV ⊗((A⊗τVW )◦(ψAW ⊗V )◦(W⊗ψAV ))⊗W )◦(A⊗V ⊗ψAW ⊗V ⊗A⊗W )◦(((µA⊗∆V⊗W )
◦(A⊗ ψAV ⊗W ) ◦ (iA⊗V ⊗ νW ))⊗ iA⊗W ⊗ νW )
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= pA⊗V⊗W ◦ (µA ⊗ V ⊗W ) ◦ (A⊗ µA ⊗ V ⊗W ) ◦ (A⊗A⊗ ψAV ⊗W )
◦(µA ⊗ ((µA ⊗ V ) ◦ (A⊗ σAV ) ◦ (ψAV ⊗ V ) ◦ (V ⊗ ψAV ))⊗ σAW ) ◦ (A⊗A⊗ V ⊗ V ⊗ ψAW ⊗W )
◦(µA ⊗A⊗ V ⊗ τVW ⊗ νW ) ◦ (A⊗A⊗ ((ψAV ⊗W ) ◦ (V ⊗ ψAW ) ◦ (∆V⊗W ⊗A))⊗ V )
◦(((A⊗ ψAV ⊗W ) ◦ (iA⊗V ⊗ νW ))⊗ iA⊗V )

= pA⊗V⊗W ◦ (µA ⊗ V ⊗W ) ◦ (A⊗ µA ⊗ V ⊗W ) ◦ (A⊗A⊗ ψAV ⊗W )
◦(µA ⊗ ((µA ⊗ V ) ◦ (A⊗ ψAV ) ◦ (σAV ⊗ V ))⊗ σAW ) ◦ (A⊗A⊗ V ⊗ V ⊗ ψAW ⊗W )
◦(µA ⊗A⊗ V ⊗ τVW ⊗ νW ) ◦ (A⊗A⊗ (∇A⊗V⊗W ◦ (ψAV ⊗W ) ◦ (V ⊗ ψAW ))⊗ V )
◦(((A⊗ ψAV ⊗W ) ◦ (iA⊗V ⊗ νW ))⊗ iA⊗V )

= pA⊗V⊗W ◦ (µA ⊗ V ⊗W ) ◦ (A⊗ µA ⊗ V ⊗W ) ◦ (A⊗A⊗ ψAV ⊗W )
(µA ⊗ σAV ⊗ ((µA ⊗W ) ◦ (A⊗ σAW ) ◦ (ψAW ⊗W ) ◦ (W ⊗ νW ))) ◦ (A⊗ µA ⊗ V ⊗ τVW )
◦(A⊗A⊗ (∇A⊗V⊗W ◦ (ψAV ⊗W ) ◦ (V ⊗ψAW ))⊗ V ) ◦ (((A⊗ψAV ⊗W ) ◦ (iA⊗V ⊗ νW ))⊗ iA⊗V )

= pA⊗V⊗W ◦ (µA⊗V ⊗W )◦ (A⊗µA⊗V ⊗W )◦ (A⊗A⊗ψAV ⊗W )◦ (µA⊗σAV ⊗ (ψAW ◦ (W ⊗ηA)))
◦(A⊗A⊗V ⊗τVW )◦(A⊗(∇A⊗V⊗W ◦(A⊗ψAV ⊗W )◦(V ⊗((µA⊗W )◦(A⊗ψAW )◦(νW ⊗A))⊗V )
◦(iA⊗V ⊗ iA⊗V )

= pA⊗V⊗W ◦ (µA ⊗ V ⊗W ) ◦ (A⊗ ψAV ⊗W ) ◦ (A⊗ V ⊗ (ψAW ◦ (W ⊗ ηA)))
◦(µA ⊗ V ⊗W ) ◦ (A⊗ σAV ⊗W ) ◦ (A⊗ V ⊗ τVW ) ◦ (∇A⊗V⊗W ⊗ V )
◦(µA ⊗ V ⊗W ⊗ V ) ◦ (A⊗ ψAV ⊗W ⊗ V ) ◦ (iA⊗V ⊗ ((βνW ⊗ V ) ◦ iA⊗V ))

= pA⊗V⊗W ◦ (µA ⊗ V ⊗W ) ◦ (A⊗ ψAV ⊗W ) ◦ (A⊗ V ⊗ (ψAW ◦ (W ⊗ ηA)))
◦(µA⊗V ⊗W )◦(µA⊗((µA⊗V ⊗W )◦(A⊗σAV ⊗W )◦(ψAV ⊗τVW )◦(V ⊗σAW ⊗V )◦(τVW ⊗W⊗V )))
◦(A⊗νW ⊗V ⊗W ⊗V )◦ (µA⊗V ⊗W ⊗V )◦ (A⊗ψAV ⊗W ⊗V )◦ (iA⊗V ⊗ ((βνW ⊗V )◦ iA⊗V ))

= pA⊗V⊗W ◦ (µA⊗V ⊗W ) ◦ (A⊗ ((µA⊗V ) ◦ (A⊗ψAV ))⊗W ) ◦ (µA⊗A⊗V ⊗ (ψAW ◦ (W ⊗ ηA)))
(A⊗((µA⊗((ψAV ⊗W )◦(V ⊗σAW )◦(τVW ⊗W )))◦(A⊗ψAW ⊗V ⊗W )◦(νW ⊗σAV ⊗W )◦(V ⊗τVW )))
◦(µA ⊗ V ⊗W ⊗ V ) ◦ (A⊗ ψAV ⊗W ⊗ V ) ◦ (iA⊗V ⊗ ((βνW ⊗ V ) ◦ iA⊗V ))

= pA⊗V⊗W ◦ (µA ⊗ V ⊗W ) ◦ (A⊗ ψAV ⊗W ) ◦ (µA ⊗ V ⊗ (∇A⊗W ◦ σAW ))
◦(A⊗ ((µA ⊗ τVW ) ◦ (A⊗ ψAW ⊗ V ) ◦ (νW ⊗ σAV ))⊗W ) ◦ (A⊗ V ⊗ τVW )
◦(µA ⊗ V ⊗W ⊗ V ) ◦ (A⊗ ψAV ⊗W ⊗ V ) ◦ (iA⊗V ⊗ ((βνW ⊗ V ) ◦ iA⊗V ))

= pA⊗V⊗W ◦ (µA ⊗ V ⊗W ) ◦ (A⊗ ψAV ⊗W ) ◦ (µA ⊗ V ⊗ σAW )
◦(A⊗ ((µA ⊗ τVW ) ◦ (A⊗ βνW ⊗ V ) ◦ (A⊗ σAV ))⊗W ) ◦ (A⊗A⊗ V ⊗ τVW )
◦(A⊗ ψAV ⊗W ⊗ V ) ◦ (iA⊗V ⊗ ((βνW ⊗ V ) ◦ iA⊗V ))

= pA⊗V⊗W ◦ (µA ⊗ V ⊗W ) ◦ (µA ⊗ µA ⊗ V ⊗W )
◦(A⊗A⊗A⊗ ((µA⊗V ⊗W )◦ (A⊗ψAV ⊗W )◦ (A⊗V ⊗σAW )◦ (A⊗ τVW ⊗W )◦ (νW ⊗V ⊗W )))
◦(A⊗ µA ⊗ σAV ⊗W ) ◦ (A⊗A⊗ ψAV ⊗ τVW ) ◦ (A⊗ ψAV ⊗ νW ⊗ V ) ◦ (iA⊗V ⊗ iA⊗V )

= pA⊗V⊗W ◦ (µA ⊗ V ⊗W ) ◦ (µA ⊗ µA ⊗ V ⊗W )
◦(A⊗A⊗A⊗ (ψAV⊗W ◦ (V ⊗W ⊗ ηA)))

◦(A⊗ µA ⊗ σAV ⊗W ) ◦ (A⊗A⊗ ψAV ⊗ τVW ) ◦ (A⊗ ψAV ⊗ νW ⊗ V ) ◦ (iA⊗V ⊗ iA⊗V )
= pA⊗V⊗W ◦ (µA ⊗ V ⊗W )

(A⊗ (∇A⊗V⊗W ◦ (µA ⊗ V ⊗W ) ◦ (A⊗ σAV ⊗W ) ◦ (ψAV ⊗ τVW ) ◦ (V ⊗ νW ⊗ V )))
◦(µA ⊗ V ⊗ V ) ◦ (A⊗ ψAV ⊗ V ) ◦ (iA⊗V ⊗ iA⊗V )

= pA⊗V⊗W ◦ (µA ⊗ V ⊗W )
(A⊗ (∇A⊗V⊗W ◦ (µA ⊗ V ⊗W ) ◦ (A⊗ ψAV ⊗W ) ◦ (σAV ⊗ νW )))
◦(µA ⊗ V ⊗ V ) ◦ (A⊗ ψAV ⊗ V ) ◦ (iA⊗V ⊗ iA⊗V )

= iA×V ◦ µA×V .

The first equality follows because µA⊗V⊗W is normalized for ∇A⊗V⊗W , the second one relies on (1) for
AW and AV , and the third one follows by (i) of Definition 2.3 and the associativity of µA. In the fourth
one we applied (66) and (4) for AV . The fifth one follows by (1) for AV and the associativity of µA; the
sixth one follows by the left linearity for ∇A⊗V⊗W , (17) for νW and (1) for AV ; the seventh one follows
by (19) for νW , the left linearity for ∇A⊗V⊗W and the associativity of µA. The eighth one relies on (74)
and the associativity of µA, the ninth one is a consequence of (ii) of Definition 2.3 and the associativity
of µA, and the tenth one follows by (1) for AV . In the eleventh one we used (19) for νW , (19) for νW
and (10) for σAW . The twelfth one follows by (1) for AV and the associativity of µA; the thirteenth one



24

follows by (74) and the fourteenth one follows by the left linearity for ∇A⊗V⊗W . The fifteenth one is a
consequence of (108) and the last one follows by the associativity of µA, the left linearity for ∇A⊗V⊗W
and by (3) for AV .

Therefore, iA×V is multiplicative and, by (22), we have

iA×V ◦ ηA×V = pA⊗V⊗W ◦ (µA ⊗ V ⊗W ) ◦ (A⊗ ψAV ⊗W ) ◦ ((∇A⊗V ◦ νV )⊗ νW )

= pA⊗V⊗W ◦ (µA ⊗ V ⊗W ) ◦ (A⊗ ψAV ⊗W ) ◦ (νV ⊗ νW ) = ηA×(V⊗W ).

(ii) The morphism ∇(A×V )⊗W = (pA⊗V ⊗W ) ◦ ∇A⊗V⊗W ◦ (iA⊗V ⊗W ), is idempotent because
∇(A×V )⊗W ◦ ∇(A×V )⊗W

= (pA⊗V ⊗W ) ◦ ∇A⊗V⊗W ◦ ((∇A⊗V ◦ (µA ⊗ V ) ◦ (A⊗ ψAV ))⊗W ) ◦ (A⊗ V ⊗ (ψAW ◦ (W ⊗ ηA)))
◦(A⊗∆V⊗W ) ◦ (iA⊗V ⊗W )

= (pA⊗V ⊗W )◦ (µA⊗V ⊗W )◦ (A⊗ψAV ⊗W )◦ (µA⊗V ⊗ (ψAW ◦ (W ⊗ηA)))◦ (A⊗ ((A⊗∆V⊗W )
◦(ΓAV⊗W ◦ (V ⊗W ⊗ ηA)))) ◦ (iA⊗V ⊗W )

= (pA⊗V ⊗W )◦ (µA⊗V ⊗W )◦ (A⊗ ((µA⊗V ⊗W )◦ (A⊗ψAV ⊗W )◦ (ψAV ⊗ψAW )◦ (V ⊗ψAW ⊗A)
◦(V ⊗W ⊗ ηA ⊗ ηA))) ◦ (A⊗∆V⊗W ) ◦ (iA⊗V ⊗W )

= ∇(A×V )⊗W ,

where the first equality follows by definition, the second one follows by (3), the third one relies on (65),
and the las one follows by (1) for AV and AW .

On the other hand,
∇(A×V )⊗W ◦ ϕ(A×V )⊗W

= (pA⊗V ⊗W )◦∇A⊗V⊗W ◦ ((∇A⊗V ◦ (µA⊗V )◦ (µA⊗σAV )◦ (A⊗ψAV ⊗V )◦ (iA⊗V ⊗ iA⊗V ))⊗W )
= (pA⊗V ⊗W )◦(µA⊗V ⊗W )◦(µA⊗(∇A⊗V⊗W ◦(σAV ⊗W )))◦(((A⊗ψAV ⊗V )◦(iA⊗V ⊗iA⊗V ))⊗W )
= (pA⊗V ⊗W ) ◦ (µA⊗V ⊗W ) ◦ (µA⊗ ((µA⊗V ⊗W ) ◦ (A⊗ψAV ⊗W ) ◦ (σAV ⊗ (ψAW ◦ (W ⊗ ηA)))
◦(V ⊗∆V⊗W ))) ◦ (((A⊗ ψAV ⊗ V ) ◦ (iA⊗V ⊗ iA⊗V ))⊗W )

= (pA⊗V ⊗W ) ◦ (µA ⊗ V ⊗W ) ◦ (µA ⊗ ((µA ⊗ V ) ◦ (A⊗ σAV ) ◦ (ψAV ⊗ V ) ◦ (V ⊗ ψAV ))⊗W )
◦(A⊗ ψAV ⊗ V ⊗ (ψAW ◦ (W ⊗ ηA))) ◦ (A⊗ V ⊗A⊗∆V⊗W ) ◦ (iA⊗V ⊗ iA⊗V ⊗W )

= ϕ(A×V )⊗W ◦ (A× V ⊗∇(A×V )⊗W )

where the first equality follows by definition, the second one follows by the left linearity of ∇A⊗V and
(10), the third one relies on (109) and the fifth one is a consequence of (3), (1) for AV and the associativity
of µA.

Finally, we will prove (iii). The morphism ω = pA⊗V⊗W ◦ (iA⊗V ⊗W ) ◦ i(A×V )⊗W is an isomorphism
with inverse

ω−1 = p(A×V )⊗W ◦ (pA⊗V ⊗W ) ◦ iA⊗V⊗W
because

ω−1 ◦ ω = p(A×V )⊗W ◦ ∇(A×V )⊗W ◦ i(A×V )⊗W = id(A×V )⊗W

and, by (3), (66) and the left linearity of ∇A⊗V⊗W , we have
ω ◦ ω−1

= pA⊗V⊗W ◦((∇A⊗V ◦(µA⊗V )◦(A⊗ψAV ))⊗W )◦(A⊗V ⊗ψAW )◦(A⊗∆V⊗W ⊗ηA)◦(∇A⊗V ⊗W )
◦iA⊗V⊗W

= pA⊗V⊗W ◦ (((µA ⊗ V ) ◦ (A⊗ ψAV ))⊗W ) ◦ (A⊗ V ⊗ ψAW ) ◦ (A⊗∆V⊗W ⊗ ηA) ◦ (∇A⊗V ⊗W )
◦iA⊗V⊗W

= pA⊗V⊗W ◦(µA⊗V ⊗W )◦(A⊗∇A⊗V⊗W )◦(A⊗ψAV ⊗W )◦(A⊗V ⊗((ψAW ◦(W⊗ηA))))◦(∇A⊗V ⊗W )
◦iA⊗V⊗W

= pA⊗V⊗W ◦(µA⊗V ⊗W )◦(A⊗ψAV ⊗W )◦(A⊗V ⊗((ψAW ◦(W ⊗ηA))))◦(∇A⊗V ⊗W )◦ iA⊗V⊗W
= pA⊗V⊗W ◦ (µA ⊗ V ⊗W ) ◦ (A⊗ ψAV ⊗W ) ◦ (A⊗ V ⊗ ((ψAW ◦ (W ⊗ ηA)))) ◦ iA⊗V⊗W
= pA⊗V⊗W ◦(µA⊗V ⊗W )◦(A⊗∇A⊗V⊗W )◦(A⊗ψAV ⊗W )◦(A⊗V ⊗((ψAW ◦(W⊗ηA))))◦iA⊗V⊗W
= pA⊗V⊗W ◦(µA⊗V ⊗W )◦(A⊗ψAV ⊗W )◦(A⊗V ⊗((ψAW ◦(W ⊗ηA))))◦(A⊗∆V⊗W )◦ iA⊗V⊗W
= idA×(V⊗W ).

Moreover, if (110) holds, we have the following:
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µA×(V⊗W ) ◦ (iA×V ⊗ iW )

= pA⊗V⊗W ◦ (µA ⊗ V ⊗W ) ◦ (µA ⊗ ψAV ⊗W ) ◦ (A⊗A⊗ V ⊗ σAW )
◦(µA ⊗ ((µA ⊗ V ⊗W ) ◦ (A⊗ σAV ⊗W ) ◦ (ψAV ⊗ τVW ) ◦ (V ⊗ ψAW ⊗ V ) ◦ (∆V⊗W ⊗ νV ))⊗W )
◦(A⊗ ψAV ⊗W ⊗W ) ◦ (iA⊗V ⊗ νW ⊗W )

= pA⊗V⊗W ◦ (µA ⊗ V ⊗W ) ◦ (A⊗ µA ⊗ V ⊗W ) ◦ (A⊗A⊗ ψAV ⊗W ) ◦ (µA ⊗ ψAV ⊗ σAW )
◦(A⊗A⊗V ⊗(ψAW ◦(W⊗ηA))⊗W )◦(A⊗A⊗∆V⊗W⊗W )◦(A⊗ψAV ⊗W⊗W )◦(iA⊗V ⊗νW⊗W )

= pA⊗V⊗W ◦(µA⊗V ⊗W )◦(A⊗ψAV ⊗W )◦(µA⊗V ⊗((µA⊗W )◦(A⊗σAW )◦((ψAW ◦(W⊗ηA))⊗W )
◦(A⊗A⊗∆V⊗W ⊗W ) ◦ (A⊗ ψAV ⊗W ⊗W ) ◦ (iA⊗V ⊗ νW ⊗W )

= pA⊗V⊗W ◦(µA⊗V ⊗W )◦(A⊗ψAV ⊗W )◦(µA⊗V ⊗((µA⊗W )◦(A⊗σAW )◦(∇A⊗W ◦(ηA⊗W ))))
◦(A⊗A⊗∆V⊗W ⊗W ) ◦ (A⊗ ψAV ⊗W ⊗W ) ◦ (iA⊗V ⊗ νW ⊗W )

= pA⊗V⊗W ◦ (µA⊗V ⊗W ) ◦ (µA⊗ ((ψAV ⊗W ) ◦ (V ⊗σAW ) ◦ (∆V⊗W ⊗W ))) ◦ (A⊗ψAV ⊗W ⊗W )
◦(iA⊗V ⊗ νW ⊗W )

= pA⊗V⊗W ◦ (µA ⊗ V ⊗W ) ◦ (µA ⊗ (∇A⊗V⊗W ◦ (ψAV ⊗W ) ◦ (V ⊗ σAW ))) ◦ (A⊗ ψAV ⊗W ⊗W )
◦(iA⊗V ⊗ νW ⊗W )

= pA⊗V⊗W ◦ (µA ⊗ V ⊗W ) ◦ (A⊗ ψAV ⊗W ) ◦ (iA⊗V ⊗ ((µA ⊗W ) ◦ (A⊗ σAW ) ◦ (νW ⊗W )))
= pA⊗V⊗W ◦ (µA⊗V ⊗W ) ◦ (A⊗ (∇A⊗V⊗W ◦ (ψAV ⊗W ) ◦ (V ⊗ (ψAW ◦ (W ⊗ ηA))))) ◦ (iA⊗V ⊗W )
= pA⊗V⊗W ◦ (∇A⊗V ⊗W ) ◦ ∇A⊗V⊗W ◦ (iA⊗V ⊗W )
= ω ◦ p(A×V )⊗W ,

where the first equality follows because µA⊗V⊗W is normalized for ∇A⊗V⊗W and by the associativity
of µA, the second one follows by (74) and by the associativity of µA, the third one relies on (1) for AV
and the fourth one is a consequence of the properties of ∇A⊗W . The fifth one follows by (9) and by the
associativity of µA, the sixth one follows by (110), and in the seventh one we used the left linearity of
∇A⊗V and (1) for AV . In the eighth one we applied the left linearity of ∇A⊗V and (18) for νW . The
ninth one follows by (66) and by (3), and the last one follows by definition.

The final assertion of this theorem follows by Theorem 4.1.
�

Example 4.3. In this example we will see that the equalities (108), (109) and (110) hold in the examples
(3.1), (3.2) and (3.3) of the previous section.

For the Example (3.1) the identities (108), (109) and (110) hold because

ψST = λ1, σ
S
T = µT } ηS , τ

D
T = λ2, νD = ηS } ηD,

and
∆T}D = idT}D, ∇S}T}D = idS}T}D.

In the case of the Example (3.2) we have that

ψST = λ1, σ
S
T = λ1 ◦ (µT } ηS), τDT = λ2, νD = ∇S}D ◦ (ηS } ηD),

and ∆T}D = ∇T}D. Therefore, by the usual arguments, we obtain that (108), (109) and (110) hold
because

∇S}T}D ◦ (µS } T }D) ◦ (S } σST }D) ◦ (ψTS } τ
D
T ) ◦ (T } νD } T )

= (λ1 }D) ◦ (T } λ3) ◦ ((∇T}D ◦ (µT } ηD))} ηS)

= ∇S}T}D ◦ (µS } T }D) ◦ (S } ψST }D) ◦ (σST } νD),

∇S}T}D ◦ (σST }D) = (S } µT }D) ◦ (λ1 } λ2) ◦ (T } λ3 } T ) ◦ (µT }D } (λ1 ◦ (ηT } ηS)))

= (µS } T }D) ◦ (S } ψST }D) ◦ (σST } ψ
S
D) ◦ (T }∆T}D } ηS),

and

(ψST }D) ◦ (T }σSD) ◦ (∆T}D}D) = (S}µT }D) ◦ (λ1}λ2) ◦ (T }λ3}T ) ◦ (T }µD} (λ1 ◦ (ηT } ηS)))

= ∇S}T}D ◦ (ψST }D) ◦ (T } σSD).

Finally, in Example (3.3) we have that

νW = ηA ⊗ ηW , ∆V⊗W = idV⊗W , ∇A⊗V⊗W = idA⊗V⊗W ,
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and then (108), (109) and (110) follow easily.
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