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MOTIVATION:

1) Let F be a field and C = F — Vect. Let H be a Hopf algebra in C and let B be a
right H-comodule algebra with coaction pg : B — B® H, pg(b) = bo) ® b(1).
Y. Doi introduced in

e Y. Doi, On the structure of relative Hopf modules, Comm. Algebra 11 (1983), 243-
255.

the notion of (H, B)-Hopf module (Doi-Hopf module), as a generalization of the
classical notion of Hopf module, defined by Larson and Sweedler, in the following
way: Let M be a right B-module and a right H-comodule. If, for all m € M and
b € B, we write m.b for the action and pp(m) = mg ® myy for the coaction, we
will say that M is an (H, B)-Hopf module if the equality

pm(m-b) = mpoy.bo) @ myy ba)

holds, where myy;b(y) is the product in H of my) and byy).
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MOTIVATION:

1) Let F be a field and C = F — Vect. Let H be a Hopf algebra in C and let B be a
right H-comodule algebra with coaction pg : B — B® H, pg(b) = bo) ® b(1).
Y. Doi introduced in

e Y. Doi, On the structure of relative Hopf modules, Comm. Algebra 11 (1983), 243-
255.

the notion of (H, B)-Hopf module (Doi-Hopf module), as a generalization of the
classical notion of Hopf module, defined by Larson and Sweedler, in the following
way: Let M be a right B-module and a right H-comodule. If, for all m € M and
b € B, we write m.b for the action and pp(m) = mg ® myy for the coaction, we
will say that M is an (H, B)-Hopf module if the equality

pm(m-b) = mpoy.bo) @ myy ba)

holds, where myy;b(y) is the product in H of my) and byy).

A morphism between two (H, B)-Hopf modules is an F-linear map that is B-linear
and H-colinear. Hopf modules and morphisms of Hopf modules constitute the
category of (H, B)-Hopf modules denoted by MH.
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If there exists a right H-comodule map h : H — B which is an algebra map (i.e. h
is a multiplicative total integral), and

MeH = {me M| pu(m) = m@ 14}, BN ={be B|pp(b) = bo 14}

are the subobjects of coinvariants, MeoH is a right B<°H_module.
Using this property, Doi proved that for all M € Mg

M ~ MCOH ®BcoH B

as (H, B)-Hopf modules.
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If there exists a right H-comodule map h : H — B which is an algebra map (i.e. h
is a multiplicative total integral), and

MeH = {me M| pu(m) = m@ 14}, BN ={be B|pp(b) = bo 14}

are the subobjects of coinvariants, MeoH is a right B<°H_module.
Using this property, Doi proved that for all M € Mg

M ~ MCOH ®BcoH B

as (H, B)-Hopf modules.

In the previous conditions there are two functors
F=—Qgeot B:Cgeot = MH, G=()": M = Cheon

such that F 4 G. Moreover,
ME = Cgeon.
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If there exists a right H-comodule map h : H — B which is an algebra map (i.e. h
is a multiplicative total integral), and

MeH = {me M| pu(m) = m@ 14}, BN ={be B|pp(b) = bo 14}

are the subobjects of coinvariants, MeoH is a right B<°H_module.
Using this property, Doi proved that for all M € Mg

M ~ MCOH ®BcoH B

as (H, B)-Hopf modules.

In the previous conditions there are two functors
F=—Qgeot B:Cgeot = MH, G=()": M = Cheon
such that F 4 G. Moreover,
MY = Cheon.

This categorical equivalence for B = H and h = idy is the one derived from the
Fundamental Theorem of Hopf modules proved by Larson and Sweedler in

o R.G. Larson, M.E. Sweedler, An associative orthogonal bilinear form for Hopf algebras,
Amer. J. Math. 91 (1969), 75-93.
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If there exists a right H-comodule map h : H — B which is an algebra map (i.e. h
is a multiplicative total integral), and

MeH = {me M| pu(m) = m@ 14}, BN ={be B|pp(b) = bo 14}

are the subobjects of coinvariants, MeoH is a right B<°H_module.
Using this property, Doi proved that for all M € Mg

M ~ MCOH ®BcoH B

as (H, B)-Hopf modules.
In the previous conditions there are two functors
F=—Qgeot B:Cgeot = MH, G=()": M = Cheon
such that F 4 G. Moreover,
ME = Cgeon.
This categorical equivalence for B = H and h = idy is the one derived from the

Fundamental Theorem of Hopf modules proved by Larson and Sweedler in

o R.G. Larson, M.E. Sweedler, An associative orthogonal bilinear form for Hopf algebras,
Amer. J. Math. 91 (1969), 75-93.

In this case H°H =, M ~ M<°H @ H in M}, and M¥ ~F — Vect.
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2) Let C = F — Vect. Let H be a weak Hopf algebra in C, let I'I;:, : H — H be the
idempotent target morphism

Mg (h) = en(loyh)lay, Im(NE) = Hy

and let B be a right H-comodule algebra with coaction pg : B — B ® H. We can
define the notions of (H, B)-Hopf module and morphism of (H, B)-Hopf modules
as in the Hopf algebra setting. Hopf modules and morphisms of Hopf modules
constitute the category of (H, B)-Hopf modules denoted by M.
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2) Let C = F — Vect. Let H be a weak Hopf algebra in C, let I'I;:, : H — H be the
idempotent target morphism

Mg (h) = en(loyh)lay, Im(NE) = Hy

and let B be a right H-comodule algebra with coaction pg : B — B ® H. We can
define the notions of (H, B)-Hopf module and morphism of (H, B)-Hopf modules
as in the Hopf algebra setting. Hopf modules and morphisms of Hopf modules
constitute the category of (H, B)-Hopf modules denoted by M.

In this setting, for any M € M, the subobject of coinvariants is defined by
MH = {m e M| pm(m) = mp) ® Ny (mp))}-

Also,
B = {b € B| pg(b) = by ® N (bw))}

and, as in the Hopf algebra setting, M is a right B<°“-module if there exists a
right H-comodule map h: H — B which is an algebra map (i.e. his a multiplicative
total integral).
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2) Let C = F — Vect. Let H be a weak Hopf algebra in C, let I'I;:, : H — H be the
idempotent target morphism

Mg (h) = en(loyh)lay, Im(NE) = Hy

and let B be a right H-comodule algebra with coaction pg : B — B ® H. We can
define the notions of (H, B)-Hopf module and morphism of (H, B)-Hopf modules
as in the Hopf algebra setting. Hopf modules and morphisms of Hopf modules
constitute the category of (H, B)-Hopf modules denoted by M.

In this setting, for any M € M, the subobject of coinvariants is defined by
MH = {m e M| pm(m) = mp) ® Ny (mp))}-

Also,
B = {b € B| pg(b) = by ® N (bw))}

and, as in the Hopf algebra setting, M is a right B<°“-module if there exists a
right H-comodule map h: H — B which is an algebra map (i.e. his a multiplicative
total integral).
Using this fact, Zhang and Zhu proved in
e L. Zhang, S. Zhu, Fundamental theorems of weak Doi-Hopf modules and semisimple
weak smash product Hopf algebras, Comm. Algebra 32 (2004), 3403-3415.

that, for all M € M4,
M >~ MCOH ®BcoH B
as (H, B)-Hopf modules.
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In the previous conditions there are two functors
F=—®geot B:Cgeont = MU, G =()°": MU = Cgeon

such that F 4 G. Moreover,
MY = Cpeont.
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In the previous conditions there are two functors
F=—®geot B:Cgeont = MU, G =()°": MU = Cgeon

such that F 4 G. Moreover,

MY = Cpeont.
The previous categorical equivalence for B = H and h = idy, contains as a
particular instance the equivalence derived of the Fundamental Theorem of Hopf
modules for weak Hopf algebras proved by Béhm, Nill and Szlachanyi in

o G. Béhm, F. Nill, K. Szlachanyi, Weak Hopf algebras, I. Integral theory and C*-
structure, J. Algebra, 221 (1999), 385-438.
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In the previous conditions there are two functors
F=—®geot B:Cgeont = MU, G =()°": MU = Cgeon
such that F 4 G. Moreover,
MY = Cpeont.

The previous categorical equivalence for B = H and h = idy, contains as a
particular instance the equivalence derived of the Fundamental Theorem of Hopf
modules for weak Hopf algebras proved by Béhm, Nill and Szlachanyi in

o G. Béhm, F. Nill, K. Szlachanyi, Weak Hopf algebras, I. Integral theory and C*-
structure, J. Algebra, 221 (1999), 385-438.

In this case H°H = H;, M ~ M<°H @, H and

H
M~y
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3) Let F be a field and C = F — Vect. Let H be a Hopf quasigroup in C. T. Brzezinski
introduced in
o T. Brzezinski, Hopf modules and the fundamental theorem for Hopf (co)quasigroups,
Internat. Elec. J. Algebra, 8 (2010), 114-128.
the category of Hopf modules, denoted by Mﬂ In this case the notion of Hopf mo-
dule reflects the non-associativity of the product defined on H, and the morphisms
are H-quasilinear and H-colinear.
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3) Let F be a field and C = F — Vect. Let H be a Hopf quasigroup in C. T. Brzezinski
introduced in

o T. Brzezinski, Hopf modules and the fundamental theorem for Hopf (co)quasigroups,
Internat. Elec. J. Algebra, 8 (2010), 114-128.

the category of Hopf modules, denoted by Mﬂ In this case the notion of Hopf mo-
dule reflects the non-associativity of the product defined on H, and the morphisms
are H-quasilinear and H-colinear.

If for M € Mﬂ we define M°H as in the Hopf algebra setting, T. Brzezinski
proved that
M=~ M g H

as Hopf modules. Therefore the Fundamental Theorem of Hopf modules also holds
for Hopf quasigroups.
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3) Let F be a field and C = F — Vect. Let H be a Hopf quasigroup in C. T. Brzezinski
introduced in
o T. Brzezinski, Hopf modules and the fundamental theorem for Hopf (co)quasigroups,
Internat. Elec. J. Algebra, 8 (2010), 114-128.

the category of Hopf modules, denoted by Mﬂ In this case the notion of Hopf mo-
dule reflects the non-associativity of the product defined on H, and the morphisms
are H-quasilinear and H-colinear.

If for M € Mﬂ we define M°H as in the Hopf algebra setting, T. Brzezinski
proved that
M=~ M g H

as Hopf modules. Therefore the Fundamental Theorem of Hopf modules also holds
for Hopf quasigroups.

Moreover, there exist two functors
F=—-@H:C—oMl, G=()°H . Ml -c

such that F - G, and they induce a categorical equivalence. Thus, as it occurs in
the Hopf algebra ambit,
MM~ F — Vect
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4) Let C be a braided monoidal category where every idempotent morphism splits. Let

H be a weak Hopf quasigroup in C. Let nh : H — H be the idempotent target
morphism and H, = Im(MNk).
We can define the notions of H-Hopf module and morphism of H-Hopf modu-
les extending to the weak case the ideas proposed by T. Brzezinski to the Hopf
quasigroup setting. In particular we can construct the categories of Hopf modules,
denoted by A/lﬂ, and the category of strong Hopf modules, denoted by S/\/lﬂ.
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4) Let C be a braided monoidal category where every idempotent morphism splits. Let

H be a weak Hopf quasigroup in C. Let nh : H — H be the idempotent target
morphism and H, = Im(MNk).
We can define the notions of H-Hopf module and morphism of H-Hopf modu-
les extending to the weak case the ideas proposed by T. Brzezinski to the Hopf
quasigroup setting. In particular we can construct the categories of Hopf modules,
denoted by A/lﬂ, and the category of strong Hopf modules, denoted by S/\/lﬂ.

If M € MH and
MeoH — {m cM | pM(m) = mg ® I'I,’:,(mp])},

is the subobject of coinvariants, J.N. Alonso Alvarez, J.M. Fernandez Vilaboa, R.
Gonzalez Rodriguez proved in
o J.N. Alonso Alvarez, J.M. Fernandez Vilaboa, R. Gonzalez Rodriguez, Strong Hopf
modules for weak Hopf quasigroups, Colloq. Math. Warsaw 148, N. 2, 231-246 (2017)
(available in arXiv:1505.04586).
that, if M € SMH,

M~ Moy H

as strong H-Hopf modules. Then, the Fundamental Theorem of Hopf modules also
holds in this setting.
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In the previous conditions there are two functors
F=—Qu H:Cy —SMY, G=( )M :sMHi —cp,

such that F 4 G. Moreover, F and G induce a categorical equivalence between
SMﬂ and the category of right H;-modules:

SMi = Cp, .
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1969 Larson
+ Sweedler

1999 Bohm + Nill
+ Szlachanyi

2010 Brzezinski

Hopf algeb. Weak Hopf algeb. Hopf quasigroups Weak Hopf quasigroups
C =F — Vect C =F — Vect C =F — Vect C = BMC
h:H— B mti h:H— B mti
MY ~ Cgeon MY ~ Cgeon

1983 Doi 2004 Zhang + Zhu
B=H, h=idy B=H, h=idy

Mi=~cC MU~ Chy Mhi~cC SMH ~Cp,

2016 Alonso + Fernandez
+ Gonzalez
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Introduce a general theory of Doi-Hopf modules that permits to prove a general cate-
gorical equivalence encompassing the previous results.

Ramén Gonzalez Rodriguez
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@ Weak Hopf quasigroups

© Doi-Hopf modules for weak Hopf quasigroups

© Categorical equivalences
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Weak Hopf quasigroups

@ Weak Hopf quasigroups
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Weak Hopf quasigroups

@ From now on C denotes a braided monoidal category with tensor product denoted
by ® and unit object K. With ¢ we will denote the braiding.
Without loss of generality, by the coherence theorems, we can assume the monoidal
structure of C strict. Then, in this talk, we omit explicitly the associativity and unit
constraints.
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Weak Hopf quasigroups

@ From now on C denotes a braided monoidal category with tensor product denoted
by ® and unit object K. With ¢ we will denote the braiding.
Without loss of generality, by the coherence theorems, we can assume the monoidal
structure of C strict. Then, in this talk, we omit explicitly the associativity and unit
constraints.

o We also assume that every idempotent morphism g : Y — Y in C splits (C
is Cauchy complete), i.e. there exist an object Z (called the image of g) and
morphisms i : Z — Y and p: Y — Zsuchthat g=iopand poi=idz.
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Weak Hopf quasigroups

@ From now on C denotes a braided monoidal category with tensor product denoted
by ® and unit object K. With ¢ we will denote the braiding.
Without loss of generality, by the coherence theorems, we can assume the monoidal
structure of C strict. Then, in this talk, we omit explicitly the associativity and unit
constraints.

o We also assume that every idempotent morphism g : Y — Y in C splits (C
is Cauchy complete), i.e. there exist an object Z (called the image of g) and
morphisms i : Z — Y and p: Y — Zsuchthat g=iopand poi=idz.

o For simplicity of notation, given three objects V, U, B in C and a morphism
f:V — U, we write

B® f foridg ® f and f ® B for f ® idg.
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Weak Hopf quasigroups

@ From now on C denotes a braided monoidal category with tensor product denoted
by ® and unit object K. With ¢ we will denote the braiding.
Without loss of generality, by the coherence theorems, we can assume the monoidal
structure of C strict. Then, in this talk, we omit explicitly the associativity and unit
constraints.

o We also assume that every idempotent morphism g : Y — Y in C splits (C
is Cauchy complete), i.e. there exist an object Z (called the image of g) and
morphisms i : Z — Y and p: Y — Zsuchthat g=iopand poi=idz.

o For simplicity of notation, given three objects V, U, B in C and a morphism
f:V — U, we write

B® f foridg ® f and f ® B for f ® idg.
o (A,na,pa) is a unital magma, i.e. ng : K — A (unit) and pg : AQA — A
(product) are morphisms in C such that

paoc (A®na) =ida = pao(na® A).
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Weak Hopf quasigroups

@ From now on C denotes a braided monoidal category with tensor product denoted
by ® and unit object K. With ¢ we will denote the braiding.
Without loss of generality, by the coherence theorems, we can assume the monoidal
structure of C strict. Then, in this talk, we omit explicitly the associativity and unit
constraints.

o We also assume that every idempotent morphism g : Y — Y in C splits (C
is Cauchy complete), i.e. there exist an object Z (called the image of g) and
morphisms i : Z — Y and p: Y — Zsuchthat g=iopand poi=idz.

o For simplicity of notation, given three objects V, U, B in C and a morphism
f:V — U, we write

B® f foridg ® f and f ® B for f ® idg.

(A,na, ta) is a unital magma, i.e. 74 : K — A (unit) and pa : AQA — A
(product) are morphisms in C such that

paoc (A®na) =ida = pao(na® A).

(C,ec,dc¢) is a comonoid with comultiplication §¢ and counit ec.
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Weak Hopf quasigroups

@ From now on C denotes a braided monoidal category with tensor product denoted
by ® and unit object K. With ¢ we will denote the braiding.
Without loss of generality, by the coherence theorems, we can assume the monoidal
structure of C strict. Then, in this talk, we omit explicitly the associativity and unit
constraints.

o We also assume that every idempotent morphism g : Y — Y in C splits (C
is Cauchy complete), i.e. there exist an object Z (called the image of g) and
morphisms i : Z — Y and p: Y — Zsuchthat g=iopand poi=idz.

o For simplicity of notation, given three objects V, U, B in C and a morphism
f:V — U, we write

B® f foridg ® f and f ® B for f ® idg.

o (A,na,pa) is a unital magma, i.e. ng : K — A (unit) and pg : AQA — A
(product) are morphisms in C such that

paoc (A®na) =ida = pao(na® A).

o (C,ec,dc) is a comonoid with comultiplication §¢ and counit ec.

o If f,g: C — A are morphisms, f * g denotes the convolution product.

frg=pao(f®g)odc.
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Weak Hopf quasigroups

o Alonso Alvarez, J.N., Fernandez Vilaboa, J.M. y Gonzalez Rodriguez, R.: Weak
Hopf quasigroups, Asian Journal of Mathematics 20, N. 4, 665-694 (2016), ar-
Xiv:1410.2180.

o Alonso Alvarez, J.N., Fernandez Vilaboa, J.M. y Gonzalez Rodriguez, R.: A charac-
terization of weak Hopf (co)quasigroups Mediterranean Journal of Mathematics 13,
N. 5, 3747-3764 (2016), arXiv:1506.07664.
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Weak Hopf quasigroups

o Alonso Alvarez, J.N., Fernandez Vilaboa, J.M. y Gonzalez Rodriguez, R.: Weak
Hopf quasigroups, Asian Journal of Mathematics 20, N. 4, 665-694 (2016), ar-
Xiv:1410.2180.

o Alonso Alvarez, J.N., Fernandez Vilaboa, J.M. y Gonzalez Rodriguez, R.: A charac-
terization of weak Hopf (co)quasigroups Mediterranean Journal of Mathematics 13,
N. 5, 3747-3764 (2016), arXiv:1506.07664.

Definition
A weak Hopf quasigroup H in C is a unital magma (H,ny,nH) and a comonoid
(H,en,0y) such that the following axioms hold:

(al) dmopn = (pH @ pH) o (H® cun ® H) o (61 ® On).
(a2)  ewouno (uH ® H)

=eHopH o (H® pn)

= ((eHopH) ® (eH o pun)) o (H® on @ H)

= ((en © ) ® (e 0 pr)) © (H® (e © 1) ® H).
(@3)  (bH®H)odnony
(H®pn ® H)o ((1 0nH) @ (91 0 nH))
(H® (1h 0 ci73y) ® H) 0 (81 0 11) ® (8 0 1))

Fundamental theorems of Doi-Hopf mod. in a non-assoc. setting
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Weak Hopf quasigroups

(a4) There exists Ay : H — H in C (called the antipode of H) such that, if we denote
the morphisms idy * Ay by I'I,’:, (target morphism) and Ay * idy by I'If, (source
morphism),

(a4-1) N = ((en 0 pr) ® H) o (H ® ch,u) o (61 0 nH) ® H).

(a4-2) I'Iﬁ =(H® (en o pH)) o (cH,H ® H) o (H ® (dH © nH)).

(24-3) Ay * M =NF * Ay = An.

(24-4) pH o (AH ® pn)o (6w @ H) = pp o (N @ H).

(a4-5) pro(H® pn)o (H® Ay @ H) o (64 ® H) = pp o (MK ® H).
(24-6) pm o (1 @ An) o (H ® 6p) = pm o (H @ NE).

(24-7) pro(pH @ H) o (H® Ay @ H) o (H® dn) = pr o (HR® NR).
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Weak Hopf quasigroups

(a4) There exists Ay : H — H in C (called the antipode of H) such that, if we denote
the morphisms idy * Ay by I'I,’:, (target morphism) and Ay * idy by I'If, (source
morphism),

(a4-1) N = ((en 0 pw) @ H) o (H @ cr,p) © (51 0 mi) @ H).

(a4-2) I'Iﬁ =(H® (en o pH)) o (cH,H ® H) o (H ® (dH © nH)).

(24-3) Mg xME =NE « Ay = Ap.

(a4-4) pr o (An ® pn) o (5 ® H) = pm o (NF & H).

(a4-5) pro(H® pn)o (H® Ay @ H) o (64 ® H) = pp o (MK ® H).
(34-6) pr o (1 ® An) o (H® Sn) = pw o (H @ Ng).

(24-7) pro(pH @ H) o (H® Ay @ H) o (H® dn) = pr o (HR® NR).

Note that, if in the previous definition the triple (H, 7y, 1y) is @ monoid, we obtain
the braided monoidal version (Alonso, Fernandez and Gonzalez (Indiana U. Math. J.
(2008)) of the notion of weak Hopf algebra introduced by Béhm, Nill and Szlachanyi
(J. Algebra (1999)). On the other hand, if ey and y are morphisms of unital magmas,
Nk = NE =ny ®en. As a consequence, conditions (a2), (a3), (ad-1)-(a4-3) trivialize,
and we get the monoidal version of the notion of Hopf quasigroup defined by Klim and
Majid (J. Algebra (2010)).
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Weak Hopf quasigroups

Let B be a bicategory and denote by x, y, z, - - - the 0 cells, by f : x — y the 1-cells and
by a : f = g the 2-cells. For a 1-cell f : x — y, x is called the source of f, represented
by s(f), and y is called the target of f, denoted by t(f).
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Weak Hopf quasigroups

Example

Let B be a bicategory and denote by x, y, z, - - - the 0 cells, by f : x — y the 1-cells and
by a : f = g the 2-cells. For a 1-cell f : x — y, x is called the source of f, represented
by s(f), and y is called the target of f, denoted by t(f).

A bicategory is normal if the unit isomorphisms
/f:].t(f)of:>f, rf:fols(f):>f,

are identities. Every bicategory is biequivalent to a normal one.
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Weak Hopf quasigroups

Example

Let B be a bicategory and denote by x, y, z, - - - the 0 cells, by f : x — y the 1-cells and
by a : f = g the 2-cells. For a 1-cell f : x — y, x is called the source of f, represented
by s(f), and y is called the target of f, denoted by t(f).

A bicategory is normal if the unit isomorphisms
/f:].t(f)of:>f, rf:fols(f):>f,

are identities. Every bicategory is biequivalent to a normal one.

A 1-cell f is called an equivalence if there exists a 1-cell g : t(f) — s(f) and two
isomorphisms go f = 15r), f og = 1yy). In this case we will say that g € Inv(f) and,
equivalently, f € Inv(g).
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Weak Hopf quasigroups

Example

Let B be a bicategory and denote by x, y, z, - - - the 0 cells, by f : x — y the 1-cells and
by a : f = g the 2-cells. For a 1-cell f : x — y, x is called the source of f, represented
by s(f), and y is called the target of f, denoted by t(f).

A bicategory is normal if the unit isomorphisms
/f:].t(f)of:>f, rf:fols(f):>f,

are identities. Every bicategory is biequivalent to a normal one.

A 1-cell f is called an equivalence if there exists a 1-cell g : t(f) — s(f) and two
isomorphisms go f = 15r), f og = 1yy). In this case we will say that g € Inv(f) and,
equivalently, f € Inv(g).

A bigroupoid is a bicategory where every 1-cell is an equivalence and every 2-cell is an
isomorphism. J
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Weak Hopf quasigroups

Example

Let B be a bicategory and denote by x, y, z, - - - the 0 cells, by f : x — y the 1-cells and
by a : f = g the 2-cells. For a 1-cell f : x — y, x is called the source of f, represented
by s(f), and y is called the target of f, denoted by t(f).

A bicategory is normal if the unit isomorphisms
/f:].t(f)of:>f, rf:fols(f):>f,

are identities. Every bicategory is biequivalent to a normal one.

A 1-cell f is called an equivalence if there exists a 1-cell g : t(f) — s(f) and two
isomorphisms g o f = 1), f o g = 1. In this case we will say that g € Inv(f) and,
equivalently, f € Inv(g).

A bigroupoid is a bicategory where every 1-cell is an equivalence and every 2-cell is an
isomorphism. J

We will say that a bigroupoid B is finite if the set of O-cells By is finite and B(x, y) is
small for all x,y. J
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Example

Let B be a finite normal bigroupoid and denote by B; the set of 1-cells. Let F be a field
and FB the direct product
FB = (P Ff.

feBy

The vector space FB is a unital non-associative algebra where the product of two 1-
cells is equal to their 1-cell composition if the latter is defined and 0 otherwise, i.e.,
g.f =gofifs(g)=t(f)and g.f =0 if s(g) # t(f). The unit element is

;g = Y L

xEBo
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Weak Hopf quasigroups

Example

Let B be a finite normal bigroupoid and denote by B; the set of 1-cells. Let F be a field
and FB the direct product
FB = (P Ff.

feBy

The vector space FB is a unital non-associative algebra where the product of two 1-
cells is equal to their 1-cell composition if the latter is defined and 0 otherwise, i.e.,
g.f =gofifs(g)=t(f)and g.f =0 if s(g) # t(f). The unit element is

;g = Y L

xEBo

Let H = FB/I(B) be the quotient algebra where I(B) is the ideal of F3 generated by
h—go(foh), p—(pof)og,

with f € Bi1, g € Inv(f), and h,p € B; such that t(h) = s(f), t(f) = s(p). In what
follows, for any 1-cell f we denote its class in H by [f]. If we define [f]~! by the class
of g € Inv(f), we obtain that [f]~! is well-defined.
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Therefore the vector space H with the product

pr(lg] @ [f]) = [g-f]

and the unit

nu(le) = Y [1«]

xEBo

is a unital non-associative algebra.
Also, it is easy to show that H is a coalgebra with coproduct

Su([fl) = [f1® [f]
and counit
en([f]) = 1p.
Moreover, we have a morphism (the antipode) Ay : H — H defined by
Au([f]) = 171

Then, H is a weak Hopf quasigroup.
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Weak Hopf quasigroups

Therefore the vector space H with the product

pr(lg] @ [f]) = [g-f]

and the unit

nu(le) = Y [1«]

xEBo

is a unital non-associative algebra.
Also, it is easy to show that H is a coalgebra with coproduct

Su([fl) = [f1® [f]
and counit
en([f]) = 1p.
Moreover, we have a morphism (the antipode) Ay : H — H defined by
Au([f]) = 171

Then, H is a weak Hopf quasigroup.

Note that, if Bp = {x} we obtain that H is a Hopf quasigroup. Moreover, if |Bg| > 1
and the product defined in H is associative we have an example of weak Hopf aIgebra.J
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Proposition

The antipode of a weak Hopf quasigroup H is unique and leaves the unit and the counit
invariant, i.e. Ay ony =ny and ey o Ay = ep.
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The antipode of a weak Hopf quasigroup H is unique and leaves the unit and the counit
invariant, i.e. Ay ony =ny and ey o Ay = ep.

Definition

| \

Let H be a weak Hopf quasigroup. We define the morphisms ﬁf_, and ﬁf, by

Tify = (H® (e © ) 0 (51 0 1) ® H),

and

Ty = (e © ) @ H) o (H ® (81 0 1))

Ramén Gonzélez Rodriguez Fundamental theorems of Doi-Hopf mod. in a non-assoc. setting



Weak Hopf quasigroups

The antipode of a weak Hopf quasigroup H is unique and leaves the unit and the counit
invariant, i.e. Ay ony =ny and ey o Ay = ep.

Definition

| A

Let H be a weak Hopf quasigroup. We define the morphisms ﬁf_, and ﬁf, by

Tify = (H® (e © ) 0 (51 0 1) ® H),

and

Ty = (e © ) @ H) o (H ® (81 0 1))

Proposition

Let H be a weak Hopf quasigroup. The morphisms I'I;:,, I'If,, ﬁ;'_, and ﬁf, are idempotent.
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Proposition

Let H be a weak Hopf quasigroup. The following identities hold:
Nbofy=nk, Nkofip =Ty, TAnonk =5, Tyonk=nk,

NRofy =My, NRofiy=nR TLonf=nfk MAnonk =
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Let H be a weak Hopf quasigroup. The following identities hold:

Nk oMy =Nk, Nhofy=Mp, Mhonk =Ty, Mgonk=nk,
NRofy =My, NRofiy=nR TLonf=nfk MAnonk =

.

Let H be a weak Hopf quasigroup. The following identities hold:

Moy =NHoNE=XAyoNf, NEoXy=NfoNf =xy0nNy,

ﬂh:ﬁf’o)\H:)\Hoﬁb, nﬁ:ﬁbOAH:)\HOﬁEI
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Proposition

Let H be a weak Hopf quasigroup. The antipode of H is antimultiplicative and antico-
multiplicative, i.e. the following equalities hold:

AH O i = ptH © ¢4 H © (AH ® AH),

OH oAy = (AH ® Ay) 0 cH,H © OH,
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Let H be a weak Hopf quasigroup. Put H, = Im(I'I,’:,) and let pp : H — H; and
i : HL. — H be the morphisms such that I'I;'_, =i opL and p; o i = idy, . Then,

i OH
H —+ H " H®H

(H®|_|,l:,)0(5H

is an equalizer diagram and
HH

- pL

H®H H

_— >

Hp

w0 (H® ML)

is a coequalizer diagram.
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Weak Hopf quasigroups

Let H be a weak Hopf quasigroup. Put H, = Im(I'I,’:,) and let pp : H — H; and
i : HL. — H be the morphisms such that nh =i opL and p; o i = idy, . Then,
i OH R
H — H HeH
(H ® I'I,’:,) o 6,.,

is an equalizer diagram and
HH

R PL

H®H H

_— >

Hy

w0 (H® ML)

is a coequalizer diagram.

As a consequence, (Hp,mH, = pL © NH, tH, = pL© pH © (iL ® iL)) is a unital magma
in C. Also
(He,en, =enoir, 0 = (pL® pL)odpoir)

is a comonoid in C.
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Let H be a weak Hopf quasigroup. The following identities hold:

pH o ((tH o (iL® H)) ® H) = pp o (iL ® p),
pHo (H® (upo (it ® H))) = pro ((pHo (H® i) ® H),
pHo(H® (pHo (H® L)) = pH o (kH ®iL).

As a consequence, the unital magma H; is a monoid in C.
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Doi-Hopf modules for weak Hopf quasigroups

© Doi-Hopf modules for weak Hopf quasigroups
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o J.N. Alonso Alvarez, J.M. Fernandez Vilaboa, & R. Gonzalez Rodriguez: Cleft and
Galois extensions associated to a weak Hopf quasigroup J. Pure Applied Alg. 220, N.
3, 1002-1034, (2016), arXiv:1412.1622.

o J.N. Alonso Alvarez, J.M. Fernandez Vilaboa, & R. Gonzalez Rodriguez: Fun-
damental theorems of Doi-Hopf modules in a non-associative setting, (2017) ar-
Xiv:1703.03229.
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Doi-Hopf modules for weak Hopf quasigroups

Definition

Let H be a weak Hopf quasigroup and let B be a unital magma, which is also a right
H-comodule with coaction pg : B — B ® H. We will say that (B, pg) is a right
H-comodule magma if

pBeH © (B ® pB) = PB O KB- (1)

holds.
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Doi-Hopf modules for weak Hopf quasigroups

Definition

Let H be a weak Hopf quasigroup and let B be a unital magma, which is also a right
H-comodule with coaction pg : B — B ® H. We will say that (B, pg) is a right
H-comodule magma if

pBeH © (B ® pB) = PB O KB- (1)

holds.

If (B, pg) is a right H-comodule magma the following equivalent conditions hold:

(b1) (pg ® H)opgons = (B® (uH o cyly) ® H) o (o8 0 18) ® (61 0 11))-
(b2) (pg ® H)opgong = (B®pun ® H)o ((ps ons) ® (61 © nH)).

(b3) (B®T) 0 pp = (15 ® H) o (B ® (p5 0 718)),

(b4) (B@NE)ops = ((us o cgly) ® H) o (B® (pB o 18))-

(b5) (B®TI) 0 pg ong = pg o ne.

(b6) (B ® M) o ppons = pgons.
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Doi-Hopf modules for weak Hopf quasigroups

Let H be a weak Hopf quasigroup and let B be a unital magma, which is also a right

H-comodule with coaction pg : B — B ® H. We will say that (B, pg) is a right
H-comodule magma if

pBeoH © (pB ® PB) = PB © UB- (1)
holds.

If (B, pg) is a right H-comodule magma the following equivalent conditions hold:

(b1) (pg ® H)opgons = (B® (uH o cyly) ® H) o (o8 0 18) ® (61 0 11))-
(b2) (pg ® H)opgong = (B®ux®H)o ((pgons) ® (61 0 nH)).

(b3) (B®T) 0 pp = (15 ® H) o (B ® (p5 0 718)),

(b4) (B@NE)ops = ((us o cgly) ® H) o (B® (pB o 18))-

(b5) (B®TI) 0 pg ong = pg o ne.

(b6) (B ® M) o ppons = pgons.

Note that, if H is a Hopf quasigroup and B is a unital magma which is also a right
H-comodule with coaction pg : B — B ® H, we will say that (B, pg) is a right H-
comodule magma if it satisfies (1). Then, pg o ng = Ny ® Ng. In this case (bl)-(b6)
trivialize.
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If H is a (weak) Hopf quasigroup, (H,dy) is a right H-comodule magma. Also, if H is
cocommutative and C is symmetric, (HP, ppjor = (HR®Ay)0dy) is a right H-comodule
magma.
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Doi-Hopf modules for weak Hopf quasigroups

Example

If H is a (weak) Hopf quasigroup, (H,dy) is a right H-comodule magma. Also, if H is
cocommutative and C is symmetric, (HP, ppjor = (HR®Ay)0dy) is a right H-comodule
magma.

Definition

| N

Let H be a weak Hopf quasigroup and let (B, pg) be a right H-comodule magma. We
will say that h : H — B is an integral if it is a morphism of right H-comodules. The
integral will be called total if hony = np.

<
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Doi-Hopf modules for weak Hopf quasigroups

Example

If H is a (weak) Hopf quasigroup, (H,dy) is a right H-comodule magma. Also, if H is
cocommutative and C is symmetric, (HP, ppjor = (HR®Ay)0dy) is a right H-comodule
magma.

Definition

| \

Let H be a weak Hopf quasigroup and let (B, pg) be a right H-comodule magma. We
will say that h : H — B is an integral if it is a morphism of right H-comodules. The
integral will be called total if hony = np.

| \

Proposition

Let H be a weak Hopf quasigroup and let (B, pg) be a right H-comodule magma. Let
h: H — B be a total integral. The endomorphism

aBs ::;,LBO(B®(hO/\H))OpB:B_>B

satisfies
peoqe = (B®Nk)opsoqs,

and, as a consequence, gg is an idempotent morphism.
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Moreover, if B<°H (object of coinvariants) is the image of gg and pg : B — B°H,
ig : B — B are the morphisms such that qg = ig o pg and idgeon = pp © iB,

ig PB
BeoH ———» B g B® H,

(B@Nk)ops

is an equalizer diagram.
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Doi-Hopf modules for weak Hopf quasigroups

Moreover, the triple (B<°H, ngcon, tigeon) is a unital magma, where
NgeoH : K — Bt:oH7 HgeoH : BcoH ® BcoH N BcoH

are the factorizations through ig of the morphisms g and ug o (ig ® ig), respectively.
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Moreover, the triple (B<°H, ngcon, tigeon) is a unital magma, where
NgeoH : K — Bt:oH7 HgeoH : BcoH ® BcoH N BcoH

are the factorizations through ig of the morphisms g and ug o (ig ® ig), respectively.
”

In what follows, the object of coinvariants B<°H will be called the submagma of coinva-
riants of B. Note that, if B = H, pg = dy and h = idy, the submagma of coinvariants
is HeeH = H; and then, in this case, it is a monoid.
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Moreover, the triple (B<°H, ngcon, tigeon) is a unital magma, where
NgeoH : K — Bt:oH7 HgeoH : BcoH ® BcoH N BcoH

are the factorizations through ig of the morphisms g and ug o (ig ® ig), respectively.

In what follows, the object of coinvariants B<°H will be called the submagma of coinva-
riants of B. Note that, if B = H, pg = dy and h = idy, the submagma of coinvariants
is HeeH = H; and then, in this case, it is a monoid.

If the following equality

peo((uBo(B®ig))®B) = ugo(B® (uso(is® B))) (2)

holds, the submagma of coinvariants (B!, ngcon, fgeor) is @ monoid.
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Definition

Let H be a weak Hopf quasigroup and let (B, pg) be a right H-comodule magma. We
will say that h : H — B is an anchor morphism if it is a multiplicative total integral
(i.e., a right H-comodule morphism such that it is a morphism of unital magmas) and
the following equalities hold:

(c1) peo((ugo(B®h) @ (hoAn))o(B®dy) = ppo(B® (hoMNp)).

(c2) pgo((ug o (B® (hoAy))) ® h)o(B® ) =pso(B®(hoNk)).
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Doi-Hopf modules for weak Hopf quasigroups

Definition

Let H be a weak Hopf quasigroup and let (B, pg) be a right H-comodule magma. We
will say that h : H — B is an anchor morphism if it is a multiplicative total integral
(i.e., a right H-comodule morphism such that it is a morphism of unital magmas) and
the following equalities hold:

(c1) peo((ugo(B®h) @ (hoAn))o(B®dy) = ppo(B® (hoMNp)).

(c2) pgo((ug o (B® (hoAy))) ® h)o(B® ) =pso(B®(hoNk)).

Note that, if the product on B is associative, every multiplicative total integral h satisfies
(c1)-(c2) and therefore is an anchor morphism. J
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Definition

Let H be a weak Hopf quasigroup and let (B, pg) be a right H-comodule magma. We
will say that h : H — B is an anchor morphism if it is a multiplicative total integral
(i.e., a right H-comodule morphism such that it is a morphism of unital magmas) and

the following equalities hold:
(c1) pgo((ug o (B®h)® (hon))o(B®dn) = ppo(B® (hoMy)).

(c2) pgo((ug o (B® (hoAy))) ® h)o(B® ) =pso(B®(hoNk)).

Note that, if the product on B is associative, every multiplicative total integral h satisfies
(c1)-(c2) and therefore is an anchor morphism. J

The identity morphism idy is an anchor morphism for the right H-comodule magma
(H,dy). Also, if H is cocommutative and C is symmetric, Ay is an anchor morphism

for (HP, prop = (H ® Ay) 0 0py).
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Definition

Let H be a weak Hopf quasigroup and let (B, pg) be a right H-comodule magma.
Let h : H — B be an anchor morphism and let M be an object in C. We say that
(M, ¢m, pm) is a strong (H, B, h)-Hopf module if the following axioms hold:

(d1) The pair (M, pp) is a right H-comodule.
(d2) The morphism ¢y : M ® B — M satisfies:

)
(d2-1) ¢m o (M ® ng) = idm.
gd2 2) ¢mo((¢mo (M ®ig)) ® B) = ¢m o (M ® (us o (is ® B))).
(
(

d2-3) pm o om = (dm @ pH) o (M ® cH,8 @ H) o (pm ® pB)-
d2-4) ¢m o ((¢mo (M@ h)) @ (ho An)) o (M ® du) = ém o (M (hoTlE)).
d2-5) ¢Mo((¢Mo(M®(ho)\H)))®h)o(M®6H):¢Mo(M®(hoI'I5)).
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Definition

Let H be a weak Hopf quasigroup and let (B, pg) be a right H-comodule magma
Let h : H — B be an anchor morphism and let M be an object in C. We say that

(M, ¢m, pm) is a strong (H, B, h)-Hopf module if the following axioms hold:

(d1) The pair (M, pp) is a right H-comodule.
(d2) The morphism ¢y : M ® B — M satisfies:

)
(d2-1) ¢m o (M ® ng) = idm.
gd2 2) ¢mo ((¢mo (M ®is)) ® B) = ¢m o (M Q (ps © (is @ B))).
(
(

d2-3) pm o om = (dm @ pH) o (M ® cH,8 @ H) o (pm ® pB)-
d2-4) ¢m o ((¢mo (M@ h)) @ (ho An)) o (M ® du) = ém o (M (hoTlE)).
d2-5) ¢Mo((¢Mo(M®(ho)\H)))®h)o(M®6H):¢Mo(M®(hoH5)). )

For example, the triple (H, pp,0n) is a strong (H, H, idy)-Hopf module. Also, if the
equality (2) holds, the triple (B, g, pg) is a strong (H, B, h)-Hopf module.
v
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Proposition

Let H be a weak Hopf quasigroup and let (B, pg) be a right H-comodule magma. Let
h: H — B be an anchor morphism and let (M, ¢, ppm) be a strong (H, B, h)-Hopf
module. The endomorphism gy := ¢p0 (M ® (ho Ay)) o pp : M — M satisfies

pmoam = (M ® M%) o pm o g,

and, as a consequence, qp is an idempotent. Moreover, if M (object of coinvariants)
is the image of gp and ppy : M — M<H jy, - M°H — M are the morphisms such
that gp = im © pv and idy con = pm © i,
im P M
MecoH —— M® H,

is an equalizer diagram.
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Proposition

Let H be a weak Hopf quasigroup and let (B, pg) be a right H-comodule magma. Let
h: H — B be an anchor morphism. If (2) holds, for all strong (H, B, h)-Hopf module
(M, ¢m, pom), the object of coinvariants M is a right B<°H-module where

Dppeod = PM © P 0 (im ® ig)-
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Proposition

Let H be a weak Hopf quasigroup and let (B, pg) be a right H-comodule magma. Let
h: H — B be an anchor morphism. If (2) holds, for all strong (H, B, h)-Hopf module
(M, ¢m, pom), the object of coinvariants M is a right B<°H-module where

Dppeod = PM © P 0 (im ® ig)-

Proposition

Let H be a weak Hopf quasigroup and let (B, pg) be a right H-comodule magma. Let
h: H — B be an anchor morphism. Assume that (2) and

pgo(iB®pg) =g o ((u o (i ® B)) ® B) (3)

hold. Then if the category C admits coequalizers and the functors — ® B and — ® H
preserve coequalizers, for all strong (H, B, h)-Hopf module (M, ¢p, pm), the object
MeeH ®pgeon B, defined by the coequalizer of

Ti = bpeon ® B, Ty = MY @ (up o (ig ® B)),

is a strong (H, B, h)-Hopf module. Moreover, there exists and isomorphism wy of right
H-comodules between MH ®gcon B and M.
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Doi-Hopf modules for weak Hopf quasigroups

The object M<H ®pgeon H is defined by the coequalizer diagram

Tl
M NpjgecoH
McoH ® BcoH ® B - [\/]COH KB —— MCOH ®BcoH B7
T2
M
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Doi-Hopf modules for weak Hopf quasigroups

The object M<H ®pgeon H is defined by the coequalizer diagram

Tl
M NpjgecoH
McoH ® BcoH ® B - [\/]COH KB —— MCOH ®BcoH B7
T2
M

° ¢MCOH®BC.>HB : MM ®@peon B® B — M? ®geon B is the unique morphism
such that

¢MC0H®BCOHB o (nMcoH ® B) = NpjcoH © (MCOH ®[,LB)
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Doi-Hopf modules for weak Hopf quasigroups

The object M<H ®pgeon H is defined by the coequalizer diagram

Tl
M NpjgecoH
McoH ® BcoH ® B - [\/]COH KB —— MCOH ®BcoH B7
T2
M

° ¢MCOH®BC.>HB : MM ®@peon B® B — M? ®geon B is the unique morphism
such that

¢MC0H®BCOHB o (nMcoH ® B) = NpjcoH © (MCOH ®[,LB)

® PMeHg B Mt @ peo B — M©H @ geon B ® H is the unique morphism
such that

pMcoH®BcoHB O NpjcoH = (nMcoH ® H) o (MCOH ® pB).
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Doi-Hopf modules for weak Hopf quasigroups

The object M<H ®pgeon H is defined by the coequalizer diagram

Tl
M NpjgecoH
McoH ® BcoH ® B [\/]COH KB —— MCOH ®BcoH B7
T2
M

° ¢MCOH®BC.>HB : MM ®@peon B® B — M? ®geon B is the unique morphism
such that

¢MC0H®BCOHB o (nMcoH ® B) = NpjcoH © (MCOH ®[,LB)

® PMeHg B Mt @ peo B — M©H @ geon B ® H is the unique morphism
such that

pMcoH®BcoHB O NpjcoH = (nMcoH ® H) o (MCOH ® pB).
° wy : McoH ®pgeon B — M is the unique morphism such that

WM © NpgcoH = ¢M o (’M ® B)

wp is an isomorphism with inverse w;,ll = Nppeot © (P ® h) 0 pp.
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Doi-Hopf modules for weak Hopf quasigroups

In the following we will assume that:

@ The category C admits coequalizers (as a consequence, every idempotent morphism
splits).
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Doi-Hopf modules for weak Hopf quasigroups

In the following we will assume that:

@ The category C admits coequalizers (as a consequence, every idempotent morphism
splits).

o H is a weak Hopf quasigroup in C and (B, pg) is a right H-comodule magma.
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Doi-Hopf modules for weak Hopf quasigroups

In the following we will assume that:

@ The category C admits coequalizers (as a consequence, every idempotent morphism
splits).

o H is a weak Hopf quasigroup in C and (B, pg) is a right H-comodule magma.
@ — ® B and — ® H preserve coequalizers.
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Doi-Hopf modules for weak Hopf quasigroups

In the following we will assume that:

@ The category C admits coequalizers (as a consequence, every idempotent morphism
splits).

o H is a weak Hopf quasigroup in C and (B, pg) is a right H-comodule magma.

@ — ® B and — ® H preserve coequalizers.

@ There exists an anchor morphism h: H — B.
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Doi-Hopf modules for weak Hopf quasigroups

In the following we will assume that:

@ The category C admits coequalizers (as a consequence, every idempotent morphism
splits).

H is a weak Hopf quasigroup in C and (B, pg) is a right H-comodule magma.

— ® B and — ® H preserve coequalizers.

@ There exists an anchor morphism h: H — B.

@ The equalities (2), (3)

pgo (ko (B®ig))®B) = ugo(B® (ug o (ig ® B))),

ugo(ip®pg)=ugo((ugo(isg®B))® B)
hold.
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Doi-Hopf modules for weak Hopf quasigroups

Proposition

Let (P, ¢p, pp), (Q,9q,pq) be strong (H, B, h)-Hopf modules. If there exists a right
H-comodule isomorphism w : @ — P, the triple

(P,¢p =wopgo(w ' ®B),pp),

called the w-deformation of (P, ¢p, pp), is a strong (H, B, h)-Hopf module.
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Doi-Hopf modules for weak Hopf quasigroups

Proposition

Let (P, ¢p, pp), (Q,9q,pq) be strong (H, B, h)-Hopf modules. If there exists a right
H-comodule isomorphism w : @ — P, the triple

(P,¢p =wopgo(w ' ®B),pp),

called the w-deformation of (P, ¢p, pp), is a strong (H, B, h)-Hopf module.

Definition

We define the category of strong (H, B, h)-Hopf modules as the one whose objects are
strong (H, B, h)-Hopf modules, and whose morphisms f : M — N are morphisms of
right H-comodules and B-quasilinear, i.e.

SN o (F® B) = Fo gy,

where wpy : MM @ geont B — M, wpy : N @ gcon B — N are the isomorphisms of
right H-comodules obtained previously. This category will be denoted by SMH (h).
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Doi-Hopf modules for weak Hopf quasigroups

Proposition

Let (M, ¢m, pm) be an object in SMg(h). Let wpy be the isomorphism of right H-
comodules between M<H ®pgeon B and M. Then the identity

! = dm o (am ® (ug o (h® B))) o (oM ® B)

holds and qyM = qu, where gy = ¢ o (M ® (ho Ay)) o pp is the idempotent
morphism associated to the Hopf module (M, ¢yM, ppr). Then (M, ¢pM, ppg) has the
same object of coinvariants that (M, ¢p, pp)-

Moreover, for (M, qﬁ(;\)/,"”, pMm), the associated isomorphism of right H-comodules between

MeoH ®pgeo B and M is wyy, and the equality
($5)m = ot
holds. Finally, there exists an idempotent functor
D : SME(h) — SME(h),
called the w-deformation functor, defined on objects by
D((M, ém, pm)) = (M, 4™, pur)

and on morphisms by the identity.
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Doi-Hopf modules for weak Hopf quasigroups

For any object (M, ¢p, ppm) in SMg(h), the strong (H, B, h)-Hopf module

coH
(M ®BcoH B, ¢MC°H®BCOHB7pMCOH@gcoHB)’
is invariant for the w-deformation functor, i.e.,

H
D((M°" ®@geon B7¢M°°H®Bc°HB’pM"°”®BcoHB))

— coH
=(M @ pgeoH B,¢McaH®BcoHB,pMcoH®BcoHB)-
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Doi-Hopf modules for weak Hopf quasigroups

For any object (M, ¢p, ppm) in SMg(h), the strong (H, B, h)-Hopf module

coH
(M ®BcoH B, ¢MC°H®BCOHB7pMCOH@gcoHB)’
is invariant for the w-deformation functor, i.e.,

H
D((M°" ®@geon B7¢M°°H®Bc°HB’pM"°”®BcoHB))

— coH
=(M @ pgeoH B,¢McoH®BcoHB,pMcoH®BcaHB)-

Theorem. Fundamental Theorem of Hopf modules

Let (M, ¢m, pm) be an object in S/Vlg(h). Then

M~ M @geon B

in SMH(h).

A
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Categorical equivalences

© Categorical equivalences
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Categorical equivalences

Let (N, ¢n) be an object in Cgeon and consider the coequalizer diagram

on® B
- > nn
N®BC°H®B

N®B ———— + N®gewn B

N & (us o (i ® B))

Ramén Gonzalez Rodriguez
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Categorical equivalences

Let (N, ¢n) be an object in Cgeon and consider the coequalizer diagram

on® B -

N® B°H @ B N®B ——— NQ®geon B
N & (us o (i ® B))

Then, (ny ® B) o (pn ® pg) = (nn ® B) o (N® (pg o (ug o (i ® B)))) and, as a
consequence, there exists a unique morphism

,0N®BC,,,.,B . N®BcoH B — N®BcoH B®H

such that
pN®BcoHB onN = (nN X B) o (N & pB)

Ramén Gonzalez Rodriguez Fundamental theorems of Doi-Hopf mod. in a non-assoc. setting



Categorical equivalences

On the other hand, we have

ny o (én ® ug) = ny o (N® (ug o ((1s o (is ® B)) ® B))),

and then,using that the functor — ® B preserves coequalizers, there exists a unique
morphism
¢N®BcaHB : N®BcoH B® B — N®BcoH B

such that
PN geon B © (N ® B) = ny o (N ® ).

Moreover, we can prove that

(N ®pgeon B, ¢N®BCOHB7 pN®BcoHB)

is a strong (H, B, h)-Hopf module.
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Categorical equivalences

Proposition
There exists a functor F : Cgeon — SMg(h), called the induction functor, defined on
objects by

F(IN, ¢n)) = (N ®@peort B, ON® o Br PN® goots B)

and on morphisms by F(f) = f ® geon B

Fundamental theorems of Doi-Hopf mod. in a non-assoc. setti
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Categorical equivalences

Proposition

There exists a functor F : Cgeon — SMg(h), called the induction functor, defined on
objects by
F((N, ¢N)) = (N ®pgeoH Bv¢N®B“,H57PN®B“,HB)

and on morphisms by F(f) = f ® geon B

| A\

Proposition

There exists a functor G : SMH(h) — Cgeon, called the functor of coinvariants, defined
on objects by
G((M, ém,pm)) = (MM, ¢ ppeon)

and on morphisms by G(g) = g<H.
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Categorical equivalences

Proposition

There exists a functor F : Cgeon — SMg(h), called the induction functor, defined on
objects by
F((N7 ¢N)) = (N ®pgeoH Bv¢N®B“,H57PN®B“,HB)

and on morphisms by F(f) = f ® geon B

| A

Proposition

There exists a functor G : SMH(h) — Cgeon, called the functor of coinvariants, defined
on objects by
G((M, ém,pm)) = (MM, ¢ ppeon)

and on morphisms by G(g) = g<H.

Theorem

| A\

The functor F is left adjoint of G. Moreover, the categories SMH(h) and Cgeon are
equivalent.

v
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Categorical equivalences

Example

Let H be a Hopf quasigroup and A an unital magma in C. If there exists a morphism
pa: H® A — A such that
wao (N ® A) = ida,

pao(H®na) =en ®na,
hold, then the smash product A{H = (A ® H,nasH, tagH) defined by

NAtH = NA © NH,

pagH = (Ba ® pr) o (A® ¥f; ® H),

where
Vi = (pa® H) o (H® cy,a) 0 (5n ® A),

is a right H-comodule magma with comodule structure given by oasy = A® 6p.
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Categorical equivalences

Example

Let H be a Hopf quasigroup and A an unital magma in C. If there exists a morphism
pa: H® A — A such that
wao (N ® A) = ida,

pao(H®na) =en ®na,
hold, then the smash product A{H = (A ® H,nasH, tagH) defined by

NAtH = NA © NH,

pagH = (Ba ® pr) o (A® ¥f; ® H),

where
P = (pa® H) o (H® cn,a) 0 (51 ® A),

is a right H-comodule magma with comodule structure given by oasy = A® 6p.

Also, h =na® H : H— AfH is an anchor morphism. Moreover, gagy = AQ nH Q@ e,
patH = A®eH, iagp = A® 1y and

(AﬂH)COH — A
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Categorical equivalences

If Ais a monoid and the equality
pao(pa®pa)o(H® cha®A)o(dH®A®A) =pao(H® pa),

holds, then (2) and (3)

pazH © ((HagH © (A® H ® iagH)) ® H) = pagn o (A® H ® (pagH © (iasn ® A @ H))),

pagH © (iagH ® pagH) = agH © ((LagH © (iagH ® A® H)) ® A® H)

also hold.
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Categorical equivalences

If Ais a monoid and the equality
pao(pa®pa)o(H® cha®A)o(dH®A®A) =pao(H® pa),

holds, then (2) and (3)

pazH © ((HagH © (A® H ® iagH)) ® H) = pagn o (A® H ® (pagH © (iasn ® A @ H))),

pagH © (iagH ® pagH) = agH © ((LagH © (iagH ® A® H)) ® A® H)

also hold.

Therefore, if —®A and —® H preserve coequalizers, we have an equivalence of categories

SMZyn(h) = Ca

for h=na®H: H— AfH.
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Categorical equivalences

e Klim J., Majid S. Hopf quasigroups and the algebraic 7-sphere. J. Algebra, 2010,
323: 3067-3110.
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Categorical equivalences

e Klim J., Majid S. Hopf quasigroups and the algebraic 7-sphere. J. Algebra, 2010,
323: 3067-3110.

Let K be a field and let C be the symmetrict monoidal category of vector spaces over
K. Let G the abelian group Z3 and let F : G X G — K* be a 2-cochain, i.e. F is a
morphism such that F(0,a) = F(a,0) = 1 for all a € G where 0 is the group identity.
The group algebra of G, denoted by, KG is a K-vector space with basis

{ea; a€ G}
and also is a unital magma with the product:

eaep = F(a, b)eatp.
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Categorical equivalences

e Klim J., Majid S. Hopf quasigroups and the algebraic 7-sphere. J. Algebra, 2010,
323: 3067-3110.

Let K be a field and let C be the symmetrict monoidal category of vector spaces over
K. Let G the abelian group Z3 and let F : G X G — K* be a 2-cochain, i.e. F is a
morphism such that F(0,a) = F(a,0) = 1 for all a € G where 0 is the group identity.
The group algebra of G, denoted by, KG is a K-vector space with basis

{ea; a€ G}
and also is a unital magma with the product:

eaep = F(a, b)eatp.

In the following we will denote this magma by

KeG.

Ramén Gonzélez Rodriguez Fundamental theorems of Doi-Hopf mod. in a non-assoc. setting



Categorical equivalences

Moreover, K G is a composition algebra with respect to the Euclidean norm in basis G
if two suitable conditions hold for F (see Klim and Majid). This means that the norm

q(z Ua€a) = Z u? is multiplicative. Then
a a

S§2"1 = {Z Ua€s , Z u? =1k}
a a

is closed under the product in K G.
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Categorical equivalences

Moreover, K G is a composition algebra with respect to the Euclidean norm in basis G
if two suitable conditions hold for F (see Klim and Majid). This means that the norm

q(z Ua€a) = Z u? is multiplicative. Then
a a

S§2"1 = {Z Ua€s , Z u? =1k}
a a

is closed under the product in K G.

We know that S2"~1 is an I.P loop, and then its loop algebra, denoted by

Ks?" 1

is a cocommutative Hopf quasigroup.
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Categorical equivalences

Let H be KS2"~1 and let A the group algebra of G. Then, A is a monoid (it is a
cocommutative Hopf algebra) and we have an action ¢4 : H® A — A, where ® = Qk,
defined by

palea ® ep) = (—1)Pey,.
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Categorical equivalences

Let H be KS2"~1 and let A the group algebra of G. Then, A is a monoid (it is a
cocommutative Hopf algebra) and we have an action ¢4 : H® A — A, where ® = Qk,
defined by

pa(ea ® ep) = (—1)*Pe,

It is easy to see that ¢, satisfies the previous conditions and we have a categorical
equivalence

21
SME;"MKSZ" 1(h) zC]KZ'_‘I

for h = MKzZE ® iszz"—l-
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Categorical equivalences

Example

Let H be a cocommutative weak Hopf quasigroup and assume that C is symmetric. The
pair

(H®P, prer = (H ® An) 0 0n)
is an example of right H-comodule magma and h = Ay is an anchor morphism. Moreo-

ver, we have the equality:
= Mk
qHer = llg.

Therefore, iop = iy, pHor = py and (HOP)<°H = H;
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Categorical equivalences

Example

Let H be a cocommutative weak Hopf quasigroup and assume that C is symmetric. The
pair
(H®P, prer = (H ® An) 0 0n)
is an example of right H-comodule magma and h = Ay is an anchor morphism. Moreo-
ver, we have the equality:
qHep — I'I’,:,

Therefore, iop = iy, pHor = py and (HOP)<°H = H;

On the other hand,
puror © ((pher o (H ® i) ® H) = pper o (H ® (Her © (i @ H))),

M Hep O (IL ® p,Hop) = UHop O ((p,Hop (e] (IL ® H)) ® H)

also hold.
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Categorical equivalences

Example

Let H be a cocommutative weak Hopf quasigroup and assume that C is symmetric. The
pair
(H®P, prer = (H ® An) 0 0n)
is an example of right H-comodule magma and h = Ay is an anchor morphism. Moreo-
ver, we have the equality:
qHep — I'Ik,

Therefore, iyop = iy, pyer = pp and (H°P)°H = H,

On the other hand,
puror © ((pher o (H ® i) ® H) = pper o (H ® (Her © (i @ H))),

M Hep O (IL ® /J,Hop) = UHop O ((;I,Hop (e] (IL ® H)) ® H)

also hold.

As a consequence of this facts, if —® H preserve coequalizers, we obtain an equivalence

of categories
SMfion(At) = Ch -

If H is a Hopf quasigroup, the categories SMzop()\H) and C are equivalent.
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Categorical equivalences

1969 Larson
+ Sweedler

1999 Bohm + Nill
+ Szlachanyi

2010 Brzezinski

Hopf algeb. Weak Hopf algeb. Hopf quasigroups Weak Hopf quasigroups
C =F — Vect C =F — Vect C =F — Vect C = BMC
h:H— B mti h:H— B mti
MY~ Cgeon MY~ Cgeon

1983 Doi 2004 Zhang + Zhu
B=H, h=idy B=H, h=idy

Mi~cC M~ Cy, Mhi~cC SMi ~Cp,

2016 Alonso + Fernandez
+ Gonzélez
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Categorical equivalences

MY ~ Cgeon

MY ~ Cgeon

Hopf algeb. Weak Hopf algeb. Hopf quasigroups Weak Hopf quasigroups
C =F — Vect C =F — Vect C =BMC
h:H— B mti h:H— B mti h: H — B anchor

SMH(h) & Cgeon

1969 Larson
+ Sweedler

1999 Bohm + Nill
+ Szlachanyi

2010 Brzezinski

1983 Doi 2004 Zhang + Zhu
B =H, h=idy B =H, h=idy B=H, h=idy
Mz ~C Mﬂ%CHL Mﬂ ~C smﬂ(id,,):sxvlﬂzc,.,l_

2016 Alonso + Fernandez
+ Gonzalez

Fundamental theorems of Doi-Hopf mod. in a non-assoc. setting

Ramén Gonzélez Rodriguez




Categorical equivalences

Hopf quasigroups

Weak Hopf quasigroups

MY ~ Cgeon

MY ~ Cgeon

SMH(h) ~ Cgeon

Hopf algeb. Weak Hopf algeb.
C =F — Vect C =F — Vect C = BMC C = BMC
h:H— B mti h:H— B mti h: H — B anchor h: H — B anchor

SMH(h) ~ Cpeon

1969 Larson
+ Sweedler

1999 Bohm + Nill

+ Szlachanyi

2010 Brzezinski

1983 Doi 2004 Zhang + Zhu
B=H h=idy | B=H h=idy B=H, h=idy B=H, h=idy
Mi~cC M~ Ch, smH(idy) = M8 ~ ¢ sambjlidy) = sMH ~ ey,

2016 Alonso + Fernandez
+ Gonzalez
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Categorical equivalences

1969 Larson
+ Sweedler

1999 Bohm + Nill
+ Szlachanyi

2010 Brzezinski

Hopf algeb. Weak Hopf algeb. Hopf quasigroups Weak Hopf quasig.
C=TF — Vect C=TF — Vect C = BMC C = BMC
h:H— B mti h:H— B mti h: H — B anchor h: H — B anchor
MY~ Cgeon MY ~ Cgeon SMHE(h) =~ Cgeon SMH(h) & Cgeon
~ SMHE(h) ~ SMH(h)
1983 Doi 2004 Zhang + Zhu
B=H h=idy | B=H h=idy B=H, h=idy B=H, h=idy
M ~cC M~ Ch, SMH(idy) = mH ~ ¢ Smfl(idy) = sml} ~ ¢y,
~ SMZ(idH) ~ SMZ(idH)

2016 Alonso + Fernandez
+ Gonzalez

Ramén Gonzélez Rodriguez
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Categorical equivalences

1969 Larson
+ Sweedler

1999 Bohm + Nill
+ Szlachanyi

Hopf algeb. Weak Hopf algeb. Hopf quasigroups Weak Hopf quasig.
C=TF — Vect C=TF — Vect C = BMC C = BMC
h:H— B mti h:H— B mti h: H — B anchor h: H — B anchor
MY~ Cgeon MY ~ Cgeon SMHE(h) =~ Cgeon SMH(h) & Cgeon
~ SMHE(h) ~ SMH(h)
1983 Doi 2004 Zhang + Zhu
B=H h=idy | B=H h=idy B=H, h=idy B=H, h=idy
M ~cC M~ Ch, SMH(idy) = mH ~ ¢ Smfl(idy) = sml} ~ ¢y,
~ SMZ(idH) ~ SMZ(idH)

2010 Brzezinski

2016 Alonso + Fernandez
+ Gonzalez

Thank you

Ramén Gonzélez Rodriguez
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