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Definition.

A bicategory B consists of :

(i) A class B0, whose elements x are called 0-cells.

(ii) For each x , y ∈ B0, a category B(x , y) whose objects f : x → y are called 1-cells
and whose morphisms α : f ⇒ g are called 2-cells. The composition of 2-cells is
called the vertical composition of 2-cells and if f is a 1-cell in B(x , y), x is called
the source of f , represented by s(f ), and y is called the target of f , denoted by
t(f ).

(ii) For each x ∈ B0, an object 1x ∈ B(x , x), called the identity of x ; and for each
x , y , z ∈ B0, a functor

B(y , z)× B(x , y)→ B(x , z)

which in objects is called the 1-cell composition (g , f ) 7→ g ◦ f , and on arrows is
called horizontal composition of 2-cells:

f , f ′ ∈ B(x , y), g , g ′ ∈ B(y , z), α : f ⇒ f ′, β : g ⇒ g ′

(β, α) 7→ β • α : g ◦ f ⇒ g ′ ◦ f ′.
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(iv) For each f ∈ B(x , y), g ∈ B(y , z), h ∈ B(z,w), an associative isomorphisms

ξh,g,f : (h ◦ g) ◦ f ⇒ h ◦ (g ◦ f );

and for each 1-cell f , unit isomorphisms

lf : 1t(f ) ◦ f ⇒ f , rf : f ◦ 1s(f ) ⇒ f ,

satisfying the following coherence axioms:
(iv-1) The morphism ξh,g,f is natural in h, f and g and lf , rf are natural in f .
(iv-2) Pentagon axiom: ξk,h,g◦f ◦ ξk◦h,g,f = (idk • ξh,g,f ) ◦ ξk,h◦g,f ◦ (ξk,h,g • idf ).
(iv-3) Triangle axiom: rg • idf = (idg • lf ) ◦ ξg,1t(f ),f

.
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Definition.

A bicategory is normal if the unit isomorphisms are identities.

Theorem.

Every bicategory is biequivalent to a normal one.

Definition.

A 1-cell f is called an equivalence if there exists a 1-cell g : t(f ) → s(f ) and two
isomorphisms g ◦ f ⇒ 1s(f ), f ◦ g ⇒ 1t(f ). In this case we will say that g ∈ Inv(f ) and,
equivalently, f ∈ Inv(g).

Definition.

A 2-category is a bicategory where ξ, l , and r are identities.
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Examples.

There is a 2-category Cat whose 0-cells are small categories, whose 1-cells are
functors, and whose 2-cells are natural transformations.

Let (C,⊗,K , a, l , r) be a monoidal category. Then we can construct a bicategory
B in the following way:

B0 = {1}.
B(1, 1) = C0. The composition in B(1, 1) is given by V ◦ U = V ⊗ U.
The 2-cells between to objects of C (1-cells), U, V are the morphisms in
HomC(U,V ). The horizontal composition in 2-cells is the tensor product.
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Another example of bicategory can be found in the theory of bimodules. We chose
as 0-cells the rings with identity. A 1-cell from the ring R to the ring S is a (R,S)-
bimodule M. Given two (R, S)-bimodules M, N, we chosse as a 2-cells from M to
N the (R, S)-linear mappings f : M → N. This yields a bicategory Bim(R, S) of
(R, S)-bimodules and their morphisms.
For a third ring T , the composition

Bim(R,S)× Bim(S ,T )→ Bim(R,T )

is defined by the tensor product. If M is a (R,S)-bimodule and N is a (S,T )-
bimodule, we have that M ⊗S N is a (R,T )-bimodule.

Ramón González Rodríguez The Next Step: Weak Hopf Quasigroups



Bicategories and bigroupoids
Weak Hopf quasigroups

Hopf modules for weak Hopf quasigroups
Strong Hopf modules for weak Hopf quasigroups

Definition.

A bigroupoid is a bicategory where every 1-cell is an equivalence and every 2-cell is an
isomorphism. We will say that a bigroupoid B is finite if B0 is finite and B(x , y) is small
for all x , y .

Note that if B is a bigroupoid where B(x , y) is small for all x , y and we pick a finite
number of 0-cells, considering the full sub-bicategory generated by these 0-cells, we have
an example of finite bigroupoid.
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In the following we will to assume that C is a strict braided monoidal category where
every idempotent morphism splits.

Definition.

A weak Hopf quasigroup H in C is a unital magma (H, ηH , µH) and a comonoid
(H, εH , δH) such that the following axioms hold:

(i) δH ◦ µH = (µH ⊗ µH) ◦ δH⊗H .

(ii) εH ◦ µH ◦ (µH ⊗ H) = εH ◦ µH ◦ (H ⊗ µH)

= ((εH ◦ µH)⊗ (εH ◦ µH)) ◦ (H ⊗ δH ⊗ H)

= ((εH ◦ µH)⊗ (εH ◦ µH)) ◦ (H ⊗ (c−1
H,H ◦ δH)⊗ H).

(iii) (δH ⊗ H) ◦ δH ◦ ηH = (H ⊗ µH ⊗ H) ◦ ((δH ◦ ηH)⊗ (δH ◦ ηH))

= (H ⊗ (µH ◦ c−1
H,H)⊗ H) ◦ ((δH ◦ ηH)⊗ (δH ◦ ηH)).
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(iv) There exists λH : H → H in C (called the antipode of H) such that, if we denote
the morphisms idH ∗ λH by ΠL

H (target morphism) and λH ∗ idH by ΠR
H (source

morphism),

(iv-1) ΠL
H = ((εH ◦ µH )⊗ H) ◦ (H ⊗ cH,H ) ◦ ((δH ◦ ηH )⊗ H).

(iv-2) ΠR
H = (H ⊗ (εH ◦ µH )) ◦ (cH,H ⊗ H) ◦ (H ⊗ (δH ◦ ηH )).

(iv-3) λH ∗ ΠL
H = ΠR

H ∗ λH = λH .

(iv-4) µH ◦ (λH ⊗ µH ) ◦ (δH ⊗ H) = µH ◦ (ΠR
H ⊗ H).

(iv-5) µH ◦ (H ⊗ µH ) ◦ (H ⊗ λH ⊗ H) ◦ (δH ⊗ H) = µH ◦ (ΠL
H ⊗ H).

(iv-6) µH ◦ (µH ⊗ λH ) ◦ (H ⊗ δH ) = µH ◦ (H ⊗ ΠL
H ).

(iv-7) µH ◦ (µH ⊗ H) ◦ (H ⊗ λH ⊗ H) ◦ (H ⊗ δH ) = µH ◦ (H ⊗ ΠR
H ).

Note that, if in the previous definition the triple (H, ηH , µH) is a monoid, we obtain the
notion of weak Hopf algebra introduced by Böhm, Nill and Szlachányi. On the other
hand, if εH and δH are morphisms of unital magmas, ΠL

H = ΠR
H = ηH ⊗ εH . As a

consequence, conditions (ii), (iii), (iv-1)-(iv-3) trivialize, and we get the notion of Hopf
quasigroup defined by Klim and Majid.
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Let B be a finite normal bigroupoid and denote by B1 the set of 1-cells. Let F be a field
and FB the direct product

FB =
⊕
f∈B1

Ff .

The vector space FB is a unital non-associative algebra where the product of two 1-
cells is equal to their 1-cell composition if the latter is defined and 0 otherwise, i.e.,
g .f = g ◦ f if s(g) = t(f ) and g .f = 0 if s(g) 6= t(f ). The unit element is

1FB =
∑
x∈B0

1x .

Let H = FB/I (B) be the quotient algebra where I (B) is the ideal of FB generated by

h − g ◦ (f ◦ h), p − (p ◦ f ) ◦ g ,

with f ∈ B1, g ∈ Inv(f ), and h, p ∈ B1 such that t(h) = s(f ), t(f ) = s(p). In what
follows, for any 1-cell f we denote its class in H by [f ]. If we assume that I (B) is a
proper ideal and for [f ] we define [f ]−1 by the class of g ∈ Inv(f ), we obtain that [f ]−1

is well-defined.
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Therefore the vector space H with the product

µH([g ]⊗ [f ]) = [g .f ]

and the unit
ηH(1F) =

∑
x∈B0

[1x ]

is a unital non-associative algebra.
Also, it is easy to show that H is a coalgebra with coproduct and counit

δH([f ]) = [f ]⊗ [f ], εH([f ]) = 1F.

Moreover, we have a morphism (the antipode) λH : H → H defined by

λH([f ]) = [f ]−1.

Then, H is a weak Hopf quasigroup.

Note that, if B0 = {x} we obtain that H is a Hopf quasigroup. Moreover, if |B0| > 1
and the product defined in H is associative we have an example of weak Hopf algebra.
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Proposition

The antipode of a weak Hopf quasigroup H is unique and leaves the unit and the counit
invariant, i.e. λH ◦ ηH = ηH and εH ◦ λH = εH .

Definition.

Let H be a weak Hopf quasigroup. We define the morphisms Π
L
H and Π

R
H by

Π
L
H = (H ⊗ (εH ◦ µH)) ◦ ((δH ◦ ηH)⊗ H),

and
Π
R
H = ((εH ◦ µH)⊗ H) ◦ (H ⊗ (δH ◦ ηH)).

Proposition.

Let H be a weak Hopf quasigroup. The morphisms ΠL
H , ΠR

H , Π
L
H and Π

R
H are idempotent.
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Proposition.

Let H be a weak Hopf quasigroup. The following identities hold:

ΠL
H ◦ Π

L
H = ΠL

H , ΠL
H ◦ Π

R
H = Π

R
H , Π

L
H ◦ ΠL

H = Π
L
H , Π

R
H ◦ ΠL

H = ΠL
H ,

ΠR
H ◦ Π

L
H = Π

L
H , ΠR

H ◦ Π
R
H = ΠR

H , Π
L
H ◦ ΠR

H = ΠR
H , Π

R
H ◦ ΠR

H = Π
R
H .

Proposition.

Let H be a weak Hopf quasigroup. The following identities hold:

ΠL
H ◦ λH = ΠL

H ◦ ΠR
H = λH ◦ ΠR

H , ΠR
H ◦ λH = ΠR

H ◦ ΠL
H = λH ◦ ΠL

H ,

ΠL
H = Π

R
H ◦ λH = λH ◦ Π

L
H , ΠR

H = Π
L
H ◦ λH = λH ◦ Π

R
H .
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Proposition.

Let H be a weak Hopf quasigroup. The antipode of H is antimultiplicative and antico-
multiplicative, i.e. the following equalities hold:

λH ◦ µH = µH ◦ cH,H ◦ (λH ⊗ λH),

δH ◦ λH = (λH ⊗ λH) ◦ cH,H ◦ δH ,
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Proposition.

Let H be a weak Hopf quasigroup. Put HL = Im(ΠL
H) and let pL : H → HL and

iL : HL → H be the morphisms such that ΠL
H = iL ◦ pL and pL ◦ iL = idHL

. Then,

- -
-HL H H ⊗ H

iL
δH

(H ⊗ ΠL
H) ◦ δH

is an equalizer diagram and

-
-

-

µH

µH ◦ (H ⊗ ΠL
H)

pL
H ⊗ H H HL

is a coequalizer diagram.

As a consequence, (HL, ηHL
= pL ◦ ηH , µHL

= pL ◦ µH ◦ (iL ⊗ iL)) is a unital magma in
C. Also

(HL, εHL
= εH ◦ iL, δH = (pL ⊗ pL) ◦ δH ◦ iL)

is a comonoid in C.
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Proposition.

Let H be a weak Hopf quasigroup. The following identities hold:

µH ◦ ((µH ◦ (iL ⊗ H))⊗ H) = µH ◦ (iL ⊗ µH),

µH ◦ (H ⊗ (µH ◦ (iL ⊗ H))) = µH ◦ ((µH ◦ (H ⊗ iL))⊗ H),

µH ◦ (H ⊗ (µH ◦ (H ⊗ iL))) = µH ◦ (µH ⊗ iL).

As a consequence, the unital magma HL is a monoid in C.

As in the weak Hopf algebra setting, HL is a Frobenius separable monoid.
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Definition.

Let H be a weak Hopf quasigroup and M an object in C. We say that (M, φM , ρM) is
a right-right H-Hopf module if the following axioms hold:

(i) The pair (M, ρM) is a right H-comodule, i.e., ρM : M → M ⊗ H is a morphism
such that (M ⊗ εH) ◦ ρM = idM and (ρM ⊗ H) ◦ ρM = (M ⊗ δH) ◦ ρM .

(ii) The morphism φM : M ⊗ H → M satisfies:
(ii-1) φM ◦ (M ⊗ ηH ) = idM .
(ii-2) ρM ◦ φM = (φM ⊗ µH ) ◦ (M ⊗ cH,H ⊗ H) ◦ (ρM ⊗ δH ).

(iii) φM ◦ (φM ⊗ λH) ◦ (M ⊗ δH) = φM ◦ (M ⊗ ΠL
H).

(iv) φM ◦ (φM ⊗ H) ◦ (M ⊗ λH ⊗ H) ◦ (M ⊗ δH) = φM ◦ (M ⊗ ΠR
H).

(v) φM ◦ (φM ⊗ H) ◦ (M ⊗ ΠL
H ⊗ H) ◦ (M ⊗ δH) = φM .

Obviously,the triple (H, φH = µH , ρH = δH) is a right-right H-Hopf module. Moreover,
if (M, φM , ρM) is a right-right H-Hopf module, the axiom (v) is equivalent to

φM ◦ (φM ⊗ ΠR
H) ◦ (M ⊗ δH) = φM .
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Proposition.

Let H be a weak Hopf quasigroup and (M, φM , ρM) a right-right H-Hopf module. The
endomorphism qM := φM ◦ (M ⊗ λH) ◦ ρM : M → M satisfies

ρM ◦ qM = (M ⊗ ΠL
H) ◦ ρM ◦ qM

and, as a consequence, is an idempotent. Moreover, if McoH (object of coinvariants)
is the image of qM and pM : M → McoH , iM : McoH → M the morphisms such that
qM = iM ◦ pM and idMcoH = pM ◦ iM ,

- -
-McoH M M ⊗ H

iM
ρM

(M ⊗ ΠL
H) ◦ ρM

is an equalizer diagram.
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Proposition.

Let H be a weak Hopf quasigroup, (M, φM , ρM) a right-right H-Hopf module. The
endomorphism

∇M := (pM ⊗ H) ◦ ρM ◦ φM ◦ (iM ⊗ H) : McoH ⊗ H → McoH ⊗ H

is idempotent and the equalities

∇M = ((pM ◦ φM)⊗ H) ◦ (iM ⊗ δH),

(McoH ⊗ δH) ◦ ∇M = (∇M ⊗ H) ◦ (McoH ⊗ δH),

hold.
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Let be the morphisms ωM : McoH ⊗ H → M, ω′M : M → McoH ⊗ H defined by
ωM = φM◦(iM⊗H) and ω′M = (pM⊗H)◦ρM . Then, ωM◦ω′M = idM and∇M = ω′M◦ωM .
Also, we have a commutative diagram

-
Z
Z
ZZ~ �

�
��

�
�
��3 Z

ZZ~
McoH ⊗ H McoH ⊗ H

M

McoH × H

ωM ω′M

pMcoH⊗H iMcoH⊗H

∇M

where McoH × H denotes the image of ∇M and pMcoH⊗H , iMcoH⊗H are the morphisms
such that pMcoH⊗H ◦ iMcoH⊗H = idMcoH×H and iMcoH⊗H ◦ pMcoH⊗H = ∇M . Therefore,
the morphism

αM = pMcoH⊗H ◦ ω
′
M

is an isomorphism of right H-modules (i.e., ρMcoH×H ◦ αM = (αM ⊗ H) ◦ ρM) with
inverse α−1

M = ωM ◦ iMcoH⊗H . The comodule structure of McoH ×H is the one induced
by the isomorphism αM and it is equal to

ρMcoH×H = (pMcoH⊗H ⊗ H) ◦ (McoH ⊗ δH) ◦ iMcoH⊗H .
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Proposition.

Let H be a weak Hopf quasigroup and (M, φM , ρM), (N, φN , ρN) right-right H-Hopf
modules. If there exists a right H-comodule isomorphism α : M → N, the triple

(M, φαM = α−1 ◦ φN ◦ (α⊗ H), ρM)

(the α-deformation of (M, φM , ρM)) is a right-right H-Hopf module.

Proposition.

Let H be a weak Hopf quasigroup, (M, φM , ρM) a right-right H-Hopf module. The triple
(McoH × H, φMcoH×H , ρMcoH×H) where

φMcoH×H = pMcoH⊗H ◦ (McoH ⊗ µH) ◦ (iMcoH⊗H ⊗ H),

and
ρMcoH×H = (pMcoH⊗H ⊗ H) ◦ (McoH ⊗ δH) ◦ iMcoH⊗H ,

is a right-right H-Hopf module.
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Proposition.

Let H be a weak Hopf quasigroup, (M, φM , ρM) be a right-right H-Hopf module and
αM : M → McoH ×H be the isomorphism of right H-comodules defined previously. The
triple (M, φ

αM
M , ρM) is a right-right H-Hopf module and the identity

φ
αM
M = φM ◦ (qM ⊗ µH) ◦ (ρM ⊗ H)

holds and
q
αM
M = qM ,

where q
αM
M = φ

αM
M ◦ (M ⊗ λH) ◦ ρM is the idempotent morphism associated to the

Hopf module (M, φ
αM
M , ρM). Then, (M, φ

αM
M , ρM) has the same object of coinvariants

of (M, φM , ρM). Moreover, for (M, φ
αM
M , ρM) we have that

∇αM
M = ∇M

and then, for (M, φ
αM
M , ρM), the associated isomorphism between M and McoH × H is

αM . Finally,
(φ
αM
M )αM = φ

αM
M

holds.
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Let H be a weak Hopf quasigroup. The triple (H, φH = µH , ρH = δH) is a right-right
H-Hopf module and φαH

H = φH because

φ
αH
H = µH ◦ (ΠL

H ⊗ µH) ◦ (δH ⊗ H) = µH .

Proposition.

Let H be a weak Hopf quasigroup and let (M, φM , ρM) be an object inMH
H . Then, for

(McoH × H, φMcoH×H , ρMcoH×H) the identity φ
α
McoH×H

McoH×H
= φMcoH×H holds.
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Definition.

Let H be a weak Hopf quasigroup and let (M, φM , ρM) and (N, φN , ρN) be right-right
H-Hopf modules. A morphism f : M → N is said to be H-quasilineal if the following
identity holds

φ
αN
N ◦ (f ⊗ H) = f ◦ φαM

M .

A morphism of right-right H-Hopf modules between M and N is a morphism f : M → N
such that is both a morphism of right H-comodules and H-quasilineal. The collection of
all right H-Hopf modules with their morphisms forms a category which will be denoted
by

MH
H

Theorem: Fundamental Theorem of Hopf modules

Let H be a weak Hopf quasigroup and let (M, φM , ρM) be an object in MH
H . Then,

the right-right H-Hopf modules (M, φM , ρM) and (McoH × H, φMcoH×H , ρMcoH×H) are
isomorphic inMH

H .
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From now on we assume that C admits coequalizers. Remember that HL is a monoid
and then we can consider CHL

, the category of right HL-modules.

Let (N, ψN) be an object in CHL
and consider the coequalizer diagram

-
-

-
ψN ⊗ H

N ⊗ ϕH

nN
N ⊗ HL ⊗ H N ⊗ H N ⊗HL

H

where ϕH = µH ◦ (H ⊗ iL).

The morphism ΓN = (nN ⊗H) ◦ (N ⊗ δH) is such that ΓN ◦ (ψN ⊗H) = ΓN ◦ (N ⊗ϕH).
Then, there exists a unique morphism

ρN⊗HL
H : N ⊗HL

H → (N ⊗HL
H)⊗ H

such that ρN⊗HL
H ◦ nN = ΓN . The pair (N ⊗HL

H, ρN⊗HL
H) is a right H-comodule.
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On the other hand, if TN = nN ◦ (N ⊗ µH),

TN ◦ (ψN ⊗ H ⊗ H) = TN ◦ (N ⊗ (ϕH ⊗ H))

and then, if −⊗ H preserves coequalizers, there exists a unique morphism

φN⊗HL
H : (N ⊗HL

H)⊗ H → N ⊗HL
H

such that
φN⊗HL

H ◦ (nN ⊗ H) = TN .

If −⊗H preserves coequalizers, the triple (N ⊗HL
H, φN⊗HL

H , ρN⊗HL
H) is a right-right

H-Hopf module.

Also
φ
αN⊗HL

H

N⊗HL
H = φN⊗HL

H

holds.
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Proposition.

Let H be a weak Hopf quasigroup such that the functor − ⊗ H preserve coequalizers.
There exists a functor

F : CHL
→MH

H ,

called the induction functor, defined on objects by

F ((N, ψN)) = (N ⊗HL
H, φN⊗HL

H , ρN⊗HL
H)

and for morphisms by F (f ) = f ⊗HL
H.
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Definition.

Let H be a weak Hopf quasigroup. With SMH
H we will denote the full subcategory

of MH
H whose objects are the right-right H-Hopf modules (M, φM , ρM) such that the

following equality holds:

(1) φM ◦ ((φM ◦ (M ⊗ iL))⊗ H) = φM ◦ (M ⊗ (µH ◦ (iL ⊗ H))),

The objects of SMH
H will be called right-right strong H-Hopf modules.

Note that if H is a Hopf quasigroup, (1) holds because iL = ηH . Then, in this particular
setting SMH

H =MH
H .

Also the previous equality holds trivially for any Hopf module associated to a weak Hopf
algebra.
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Proposition.

Let H be a weak Hopf quasigroup such that the functor − ⊗ H preserve coequalizers.
The induction functor F : CHL

→MH
H factorizes through the category SMH

H .

Proposition.

Let H be a weak Hopf quasigroup. There exists a functor

G : SMH
H → CHL

,

called the functor of coinvariants, defined on objects by

G((M, φM , ρM)) = (McoH , ψMcoH = pM ◦ φM ◦ (iM ⊗ iL))

and for morphisms by G(g) = g coH .

Proposition.

Let H be a weak Hopf quasigroup such that the functor − ⊗ H preserve coequalizers.
For any (M, φM , ρM) ∈ SMH

H , the objects McoH ⊗HL
H and McoH × H are isomorphic

as right-right H-Hopf modules.
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Theorem.

For any weak Hopf quasigroup H such the the functor − ⊗ H preserve coequalizers,
F a G and the category SMH

H is equivalent to the category CHL
.
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