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In the following C denotes a strict braided monoidal category with tensor product ⊗,
unit object K and braiding c. From now on we also assume in C that every idempotent
morphism splits.
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Definition.

Let H be a Hopf algebra and M an object in C. We say that (M, φM , ρM) is a right-right
H-Hopf module (or a right H-Hopf module for short) if the following axioms hold:

(i) The pair (M, φM) is a right H-module

(ii) The pair (M, ρM) is a right H-comodule.

(iii) ρM ◦ φM = (φM ⊗ µH) ◦ (M ⊗ cH,H ⊗ H) ◦ (ρM ⊗ δH), i.e. φM is a morphism of
right H-comodules with the codiagonal coaction on M ⊗ H.

Obviously, if H is a Hopf algebra, the triple (H, φH = µH , ρH = δH) is a right-right
H-Hopf module.

A morphism between two right H-Hopf modules is a morphism in C of right H-modules
and right H-comodules. WithMH

H we will denote the category of right H-Hopf modules
and morphisms of right H-Hopf modules.
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Proposition.

Let H be a Hopf algebra. If (M, φM , ρM) is a right H-Hopf module, the morphism

qM := φM ◦ (M ⊗ λH) ◦ ρM : M → M

is idempotent. Moreover, if McoH (object of coinvariants) is the image of qM and
pM : M → McoH , iM : McoH → M are the morphisms such that qM = iM ◦ pM and
idMcoH = pM ◦ iM ,

- -
-McoH M M ⊗ H

iM
ρM

M ⊗ ηH

is an equalizer diagram. Moreover, the following identities hold:

ρM ◦ qM = qM ⊗ ηH ,

φM ◦ (qM ⊗ H) ◦ ρM = idM ,

ρM ◦ φM ◦ (iM ⊗ H) = (φM ⊗ H) ◦ (iM ⊗ δH),

qM ◦ φM ◦ (iM ⊗ H) = iM ⊗ εH .
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Let If (M, φM , ρM) be a right H-Hopf module. If we define the morphisms

ωM : McoH ⊗ H → M, ω′M : M → McoH ⊗ H,

by ωM = φM ◦ (iM ⊗ H) and ω′M = (pM ⊗ H) ◦ ρM . Then, ωM ◦ ω′M = idM and
ω′M ◦ ωM = idMcoH⊗H . Therefore, ωM is an isomorphism and it is also a morphism of
right H-Hopf modules if we consider

φMcoH⊗H = McoH ⊗ µH , ρMcoH⊗H = McoH ⊗ δH .

Theorem. (Fundamental Theorem of Hopf modules)

Let H be a Hopf algebra and assume that (M, φM , ρM) is an object in the categoryMH
H .

Then, the right-right H-Hopf modules (M, φM , ρM) and (McoH⊗H, φMcoH⊗H , ρMcoH⊗H)

are isomorphic inMH
H .
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Let N be an object in C. Then,

(N ⊗ H, φN⊗H = N ⊗ µH , ρN⊗H = N ⊗ δH)

is an object in MH
H . Also, if f : N → P is a morphism in C, f ⊗ H is a morphism in

MH
H between (N ⊗ H, φN⊗H , ρN⊗H) and (N ⊗ H, φN⊗H , ρN⊗H).

Theorem.

Let H be a Hopf algebra. There exists a functor

F : C →MH
H ,

called the induction functor, defined on objects by F (N) = (N ⊗ H, φN⊗H , ρN⊗H) and
for morphisms by F (f ) = f ⊗ H.
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Let (M, φM , ρM) be a right-right H-Hopf module and consider the object of coinvariants
McoH . Let g : M → T be a morphism inMH

H . Using the comodule morphism condition
we obtain that ρT ◦ g ◦ iM = (g ◦ iM)⊗ ηH and this implies that there exists a unique
morphism g coH : McoH → T coH such that

iT ◦ g coH = g ◦ iM .

Theorem.

Let H be a Hopf algebra. There exists a functor

G :MH
H → C,

called the functor of coinvariants, defined on objects by G((M, φM , ρM)) = McoH and
for morphisms by G(g) = g coH .
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Theorem.

Let H be a Hopf algebra. The induction functor F : C → MH
H is left adjoint of the

functor of coinvariants G :MH
H → C.

Proof.

The unit and the counit of the adjunction are defined by:

uN = pN⊗H ◦ (N ⊗ ηH) = idN : N → (N ⊗ H)coH = N

vM = ωM : McoH ⊗ H → M

Theorem.

Let H be a Hopf algebra. The induction functor F : C → MH
H and the functor of

coinvariants G :MH
H → C induce an equivalence of categories.
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Proposition.

Let H be a weak Hopf algebra. If (M, φM , ρM) is a right H-Hopf module, the morphism

qM := φM ◦ (M ⊗ λH) ◦ ρM : M → M

satisfies ρM ◦ qM = (M ⊗ ΠL
H) ◦ ρM ◦ qM and, as a consequence, qM is idempotent.

Moreover, if McoH (object of coinvariants) is the image of qM and pM : M → McoH ,
iM : McoH → M are the morphisms such that qM = iM ◦ pM and idMcoH = pM ◦ iM ,

- -
-McoH M M ⊗ H

iM
ρM

(M ⊗ ΠL
H) ◦ ρM

is an equalizer diagram. Also,

- -
-McoH M M ⊗ H

iM
ρM

(M ⊗ Π
R
H) ◦ ρM

is an equalizer diagram.
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Moreover, the following identities hold:

φM ◦ (qM ⊗ H) ◦ ρM = idM ,

ρM ◦ φM ◦ (iM ⊗ H) = (φM ⊗ H) ◦ (iM ⊗ δH),

pM ◦ φM ◦ (iM ⊗ H) = pM ◦ φM ◦ (iM ⊗ ΠL
H).
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In the conditions of the previous proposition, the morphism

∇M := (pM ⊗ H) ◦ ρM ◦ φM ◦ (iM ⊗ H) : McoH ⊗ H → McoH ⊗ H

is idempotent and the equalities

∇M = ((pM ◦ φM)⊗ H) ◦ (iM ⊗ δH),

(McoH ⊗ δH) ◦ ∇M = (∇M ⊗ H) ◦ (McoH ⊗ δH).

hold. If we define the morphisms

ωM : McoH ⊗ H → M, ω′M : M → McoH ⊗ H,

by ωM = φM ◦ (iM ⊗ H) and ω′M = (pM ⊗ H) ◦ ρM . Then, ωM ◦ ω′M = idM and
∇M = ω′M ◦ ωM .
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Also, we have a commutative diagram

-

Z
Z
Z
ZZ~ �

�
���

�
�
�
��3 Z

Z
ZZ~

McoH ⊗ H McoH ⊗ H

M

McoH × H

ωM
ω′M

pMcoH⊗H iMcoH⊗H

∇M

where McoH × H denotes the image of ∇M and pMcoH⊗H , iMcoH⊗H are the morphisms
such that pMcoH⊗H ◦ iMcoH⊗H = idMcoH×H and iMcoH⊗H ◦ pMcoH⊗H = ∇M .
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Therefore, the morphism

αM = pMcoH⊗H ◦ ω
′
M : M → McoH × H

is an isomorphism of right H-Hopf modules with inverse α−1
M = ωM ◦ iMcoH⊗H . The

comodule structure of McoH × H is

ρMcoH×H = (pMcoH⊗H ⊗ H) ◦ (McoH ⊗ δH) ◦ iMcoH⊗H .

and the module structure is defined by

φMcoH×H = pMcoH⊗H ◦ (McoH ⊗ µH) ◦ (iMcoH⊗H ⊗ H).
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Let H be a weak Hopf algebra in a monoidal braided category. If HL = Im(ΠL
H), pL :

H → HL, and iL : HL → H are the morphisms such that ΠL
H = iL ◦pL and pL ◦ iL = idHL

,

- -
-HL H H ⊗ H

iL
δH

(H ⊗ ΠL
H) ◦ δH

is an equalizer diagram and

-
-

-

µH

µH ◦ (H ⊗ ΠL
H)

pL
H ⊗ H H HL

is a coequalizer diagram.
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As a consequence,

(HL, ηHL
= pL ◦ ηH , µHL

= pL ◦ µH ◦ (iL ⊗ iL))

is a monoid in C and

(HL, εHL
= εH ◦ iL, δH = (pL ⊗ pL) ◦ δH ◦ iL)

is a comonoid in C. Also, we have that

δH ◦ µH ◦ (iL ⊗ H) = (µH ⊗ H) ◦ (iL ⊗ δH),

δH ◦ µH ◦ (H ⊗ iL) = (µH ⊗ H) ◦ (H ⊗ cH,H) ◦ (δH ⊗ iL).
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From now on we assume that C admits coequalizers.
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With CHL
we will denote the category of right HL-modules. Note that the pair (H, ψH =

µH ◦ (H ⊗ iL)) is a right HL-module.

Let (N, ψN) be an object in CHL
and consider the coequalizer diagram

-
-

-
ψN ⊗ H

N ⊗ ϕH

nN
N ⊗ HL ⊗ H N ⊗ H N ⊗HL

H

where ϕH = µH ◦ (iL ⊗ H). We have

(nN⊗H)◦(ψN⊗δH) = ((nN ◦(N⊗ϕH))⊗H)◦(N⊗HL⊗δH) = (nN⊗H)◦(N⊗(δH ◦ϕH))

and, as a consequence, there exists a unique morphism

ρN⊗HL
H : N ⊗HL

H → (N ⊗HL
H)⊗ H

such that
ρN⊗HL

H ◦ nN = (nN ⊗ H) ◦ (N ⊗ δH).
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The pair (N ⊗HL
H, ρN⊗HL

H) is a right H-comodule.

On the other hand, we have

nN ◦ (ψN ⊗ µH) = nN ◦ (N ⊗ (µH ◦ (iL ⊗ µH))) = nN ◦ (N ⊗ (µH ◦ (ϕH ⊗ H))),

and then, if the functor −⊗ H preserves coequalizers, there exists a unique morphism

φN⊗HL
H : (N ⊗HL

H)⊗ H → N ⊗HL
H

such that
φN⊗HL

H ◦ (nN ⊗ H) = nN ◦ (N ⊗ µH).

The pair (N ⊗HL
H, φN⊗HL

H) is a right H-module

The triple
(N ⊗HL

H, φN⊗HL
H , ρN⊗HL

H)

is a right-right H-Hopf module.
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On the other hand, if f : N → P is a morphism in CHL
, we have that

nP ◦ (f ⊗ H) ◦ (ψN ⊗ H) = nP ◦ (f ⊗ H) ◦ (N ⊗ ϕH)

and, as a consequence, there exists an unique morphism f ⊗HL
H : N⊗HL

H → P⊗HL
H

such that
nP ◦ (f ⊗ H) = (f ⊗HL

H) ◦ nN .

The morphism f ⊗HL
H is a morphism inMH

H

Theorem.

Let H be a weak Hopf algebra such that the functor − ⊗ H preserves coequalizers.
There exists a functor

F : CHL
→MH

H ,

called the induction functor, defined on objects by

F ((N, ψN)) = (N ⊗HL
H, φN⊗HL

H , ρN⊗HL
H)

and for morphisms by F (f ) = f ⊗HL
H.
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Let (M, φM , ρM) be a right-right H-Hopf module. Then, the pair

(McoH , ψMcoH = pM ◦ φM ◦ (iM ⊗ iL))

is a right HL-module. Let g : M → T be a morphism in MH
H . Using the comodule

morphism condition we obtain that

ρT ◦ g ◦ iM = (T ⊗ Π
R
H) ◦ ρT ◦ g ◦ iM

and this implies that there exists a unique morphism g coH : McoH → T coH such that

iT ◦ g coH = g ◦ iM .

Then,
iT ◦ g coH ◦ pM = g ◦ qM = qT ◦ g

and, as a consequence,
g coH ◦ pM = pT ◦ g .

Therefore, we obtain that g coH is a morphism of right HL-modules.
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Theorem.

Let H be a weak Hopf algebra. There exists a functor

G :MH
H → CHL

,

called the functor of coinvariants, defined on objects by G((M, φM , ρM)) =
(McoH , ψMcoH ) and for morphisms by G(g) = g coH .

Proposition.

Let H be a weak Hopf algebra such that the functor − ⊗ H preserves coequalizers.
For any (M, φM , ρM) ∈ MH

H , the objects McoH ⊗HL
H and McoH × H are isomorphic

right-right H-Hopf modules.

Theorem. (Fundamental Theorem of Hopf modules)

Let H be a weak Hopf algebras and assume that (M, φM , ρM) is an object in the category
MH

H . If the functor functor −⊗H preserves coequalizers, the right-right H-Hopf modules
(M, φM , ρM) and (McoH ⊗HL

H, φMcoH⊗HL
H , ρMcoH⊗HL

H) are isomorphic inMH
H .
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Theorem.

Let H be a weak Hopf algebra such that the functor − ⊗ H preserves coequalizers.
The induction functor F : CHL

→ MH
H is left adjoint of the functor of coinvariants

G :MH
H → CHL

.

Proof.

For any right HL-module (N, ψN) define the unit of the adjunction by

uN : N → GF (N) = (N ⊗HL
H)coH

as the unique morphism such that

iN⊗HL
H ◦ uN = nN ◦ (N ⊗ ηH).

For any (M, φM , ρM) ∈MH
H the counit is defined by

vM = α−1
M ◦ sM : McoH ⊗HL

H → M,

where α−1
M = ωM ◦ iMcoH⊗H and sM is the isomorphism between McoH ⊗HL

H and
McoH × H.
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Theorem.

Let H be a Hopf algebra such that the functor − ⊗ H preserves coequalizers. The
induction functor F : CHL

→ MH
H and the functor of coinvariants G : MH

H → CHL

induce an equivalence of categories.
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1 The Hopf algebra case

2 The weak Hopf algebra case

3 The Hopf quasigroup case
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Definition.

Let H be a Hopf quasigroup and M an object in C. We say that (M, φM , ρM) is a
right-right H-Hopf module (or a right H-Hopf module for short) if the following axioms
hold:
(i) The pair (M, φM) satisfies

(i-1) φM ◦ (M ⊗ ηH ) = idM ,
(i-2) φM ◦ (φM ⊗H) ◦ (M ⊗ λH ⊗H) ◦ (M ⊗ δH ) = M ⊗ εH = φM ◦ (φM ⊗ λH ) ◦ (M ⊗ δH )

(ii) The pair (M, ρM) is a right H-comodule.

(iii) ρM ◦ φM = (φM ⊗ µH) ◦ (M ⊗ cH,H ⊗ H) ◦ (ρM ⊗ δH), i.e. φM is a morphism of
right H-comodules with the codiagonal coaction on M ⊗ H.

Obviously, if H is a Hopf quasigroup, the triple (H, φH = µH , ρH = δH) is a right-right
H-Hopf module.
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Definition.

Let H be a Hopf quasigroup. If (M, φM , ρM) is a right H-Hopf module, the morphism

qM := φM ◦ (M ⊗ λH) ◦ ρM : M → M

is idempotent. Moreover, if McoH (object of coinvariants) is the image of qM and
pM : M → McoH , iM : McoH → M are the morphisms such that qM = iM ◦ pM and
idMcoH = pM ◦ iM ,

- -
-McoH M M ⊗ H

iM
ρM

M ⊗ ηH

is an equalizer diagram. Moreover, the following identities hold:

ρM ◦ qM = qM ⊗ ηH ,

φM ◦ (qM ⊗ H) ◦ ρM = idM ,

ρM ◦ φM ◦ (iM ⊗ H) = (φM ⊗ H) ◦ (iM ⊗ δH),

qM ◦ φM ◦ (iM ⊗ H) = iM ⊗ εH .
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Let If (M, φM , ρM) be a right H-Hopf module. If we define the morphisms

ωM : McoH ⊗ H → M, ω′M : M → McoH ⊗ H,

by ωM = φM ◦ (iM ⊗ H) and ω′M = (pM ⊗ H) ◦ ρM . Then, ωM ◦ ω′M = idM and
ω′M ◦ ωM = idMcoH⊗H . Therefore, ωM is an isomorphism with inverse ω′M and it is also
a morphism of right H-comodules if we consider

φMcoH⊗H = McoH ⊗ µH , ρMcoH⊗H = McoH ⊗ δH .
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If (M, φM , ρM), (N, φN , ρN) are right-right H-Hopf modules and there exists a right
H-comodule isomorphism α : M → N, the triple (M, φαM = α−1 ◦ φN ◦ (α⊗H), ρM) is
a right-right H-Hopf module. Then, for the isomorphism ω′M we have that

(M, φ
ω′
M

M , ρM)

is a right-right H-Hopf module where φω
′
M

M = φM ◦ (qM ⊗ µH) ◦ (ρM ⊗ H) holds and

q
ω′
M

M = qM ,

where q
ω′
M

M = φ
ω′
M

M ◦ (M ⊗ λH) ◦ ρM is the idempotent morphism associated to the

Hopf module (M, φ
ω′
M

M , ρM). Therefore, (M, φM , ρM) and (M, φ
ω′
M

M , ρM) have tha same

coinvariants. Finally, (φ
ω′
M

M )ω
′
M = φ

ω′
M

M holds.

Note that the triple (H, φH = µH , ρH = δH) is a right-right H-Hopf module and

φ
ω′
H

H = φH .
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Definition.

Let H be a Hopf quasigroup and let (M, φM , ρM) and (N, φN , ρN) be right-right H-Hopf
modules. A morphism f : M → N in C is said to be H-quasilineal if the following identity
holds:

φ
ω′
N

N ◦ (f ⊗ H) = f ◦ φω
′
M

M .

A morphism of right-right H-Hopf modules between M and N is a morphism f : M → N
in C such that is both a morphism of right H-comodules and H-quasilineal. The collection
of all right H-Hopf modules with their morphisms forms a category which will be denoted
byMH

H .

Theorem. Fundamental Theorem of Hopf modules

Let H be a Hopf quasigroup and assume that (M, φM , ρM) is an object in the category
MH

H . Then, (M, φM , ρM) and (McoH ⊗ H, φMcoH⊗H , ρMcoH⊗H) are isomorphic inMH
H .
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Let N be an object in C. Then,

(N ⊗ H, φN⊗H = N ⊗ µH , ρN⊗H = N ⊗ δH)

is an object in MH
H . Also, if f : N → P is a morphism in C, f ⊗ H is a morphism in

MH
H between (N ⊗ H, φN⊗H , ρN⊗H) and (N ⊗ H, φN⊗H , ρN⊗H).

Theorem.

Let H be a Hopf quasigroup. There exists a functor

F : C →MH
H ,

called the induction functor, defined on objects by F (N) = (N ⊗ H, φN⊗H , ρN⊗H) and
for morphisms by F (f ) = f ⊗ H.
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Let (M, φM , ρM) be a right-right H-Hopf module and consider the object of coinvariants
McoH . Let g : M → T be a morphism inMH

H . Using the comodule morphism condition
we obtain that ρT ◦ g ◦ iM = (g ◦ iM)⊗ ηH and this implies that there exists a unique
morphism g coH : McoH → T coH such that

iT ◦ g coH = g ◦ iM .

Theorem.

Let H be a Hopf quasigroup. There exists a functor

G :MH
H → C,

called the functor of coinvariants, defined on objects by G((M, φM , ρM)) = McoH and
for morphisms by G(g) = g coH .
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Theorem.

Let H be a Hopf quasigroup. The induction functor F : C →MH
H is left adjoint of the

functor of coinvariants G :MH
H → C.

Proof.

The unit and the counit of the adjunction are defined by:

uN = pN⊗H ◦ (N ⊗ ηH) = idN : N → (N ⊗ H)coH = N

vM = ωM : McoH ⊗ H → M
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Theorem.

Let H be a Hopf quasigroup. The induction functor F : C → MH
H and the functor of

coinvariants G :MH
H → C induce an equivalence of categories.
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