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Some notation and conventions.

From now on C denotes a strict symmetric category with tensor product denoted by
⊗ and unit object K . With c we will denote the natural isomorphism of symmetry
and we also assume that every idempotent morphism q : Y → Y splits, i.e., there
exist an object Z and morphisms i : Z → Y and p : Y → Z such that q = i ◦ p
and p ◦ i = idZ .

(A, ηA, µA) is an associative algebra with multiplication µA and unit ηA.

(C , εC , δC ) is a coassociative coalgebra with comultiplication δC and counit εC .

For simplicity of notation, given three objects V , U, B in C and a morphism
f : V → U, we write

B ⊗ f for idB ⊗ f and f ⊗ B for f ⊗ idB .

For an algebra A we denote by Z(A) the center of A and by iZ(A) the inclusion
morphism of Z(A) on A.
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Definition.

A weak Hopf algebra in C is an object in C with an algebra structure (H, ηH , µH) and
a coalgebra structure (H, εH , δH) satisfying:

(1) δH ◦ µH = (µH ⊗ µH) ◦ (H ⊗ cH,H ⊗ H) ◦ (δH ⊗ δH).

(2) εH ◦ µH ◦ (µH ⊗ H) = ((εH ◦ µH)⊗ (εH ◦ µH)) ◦ (H ⊗ δH ⊗ H)

= ((εH ◦ µH)⊗ (εH ◦ µH)) ◦ (H ⊗ (cH,H ◦ δH)⊗ H).

(3) (δH ⊗ H) ◦ δH ◦ ηH = (H ⊗ µH ⊗ H) ◦ ((δH ◦ ηH)⊗ (δH ◦ ηH))

= (H ⊗ (µH ◦ cH,H)⊗ H) ◦ ((δH ◦ ηH)⊗ (δH ◦ ηH)).

(4) There exists a morphism λH : H → H in C (called the antipode of H) satisfying:

(4-1) idH ∧ λH = ((εH ◦ µH )⊗ H) ◦ (H ⊗ cH,H ) ◦ ((δH ◦ ηH )⊗ H).

(4-2) λH ∧ idH = (H ⊗ (εH ◦ µH )) ◦ (cH,H ⊗ H) ◦ (H ⊗ (δH ◦ ηH )).

(4-3) λH ∧ idH ∧ λH = λH .
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If H is a weak Hopf algebra in C, the antipode λH is unique, antimultiplicative, antico-
multiplicative and leaves the unit and the counit invariant:

λH ◦ µH = µH ◦ (λH ⊗ λH) ◦ cH,H , δH ◦ λH = cH,H ◦ (λH ⊗ λH) ◦ δH ,

λH ◦ ηH = ηH , εH ◦ λH = εH .

If we define the morphisms ΠL
H (target), ΠR

H (source), by

ΠL
H = ((εH ◦ µH)⊗ H) ◦ (H ⊗ cH,H) ◦ ((δH ◦ ηH)⊗ H),

ΠR
H = (H ⊗ (εH ◦ µH)) ◦ (cH,H ⊗ H) ◦ (H ⊗ (δH ◦ ηH)),

they are idempotent and we denote by HL, pL and iL the object and the morphisms such
that iL ◦ pL = ΠL

H and pL ◦ iL = idHL
.

Π
L
H = ΠL

Hcoop , Π
R
H = ΠR

Hcoop
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Definition.

A weak Hopf algebra H is cocommutative if δH = cH,H ◦ δH .

Example.

Let G be a finite groupoid and R a commutative ring. Let G0 be the set of objects
and G1 the set of morphisms.
The groupoid algebra is the direct product

RG =
⊕
σ∈G1

Rσ

with the product of two morphisms being equal to their composition if the latter is
defined and 0 in otherwise, i.e. στ = σ ◦ τ if s(σ) = t(τ) and στ = 0 if s(σ) 6= t(τ).
The unit element is 1RG =

∑
x∈G0

idx . RG is a cocommutative weak Hopf algebra,
with

δRG (σ) = σ ⊗ σ, εRG (σ) = 1, λRG (σ) = σ−̇1.

The morphisms target and source are ΠL
RG (σ) = idt(σ), ΠR

RG (σ) = ids(σ).
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Definition.

Let H be a weak Hopf algebra. We will say that a right H-comodule (A, ρA) is a right
H-comodule algebra if it satisfies

ρA ◦ µA = (µA ⊗ µH) ◦ (A⊗ cH,A ⊗ H) ◦ (ρA ⊗ ρA)

and any of the following equivalent conditions hold:

(1) (A⊗ ΠL
H) ◦ ρA = (µA ⊗ H) ◦ (A⊗ cH,A) ◦ ((ρA ◦ ηA)⊗ A).

(2) (A⊗ Π
R
H) ◦ ρA = (µA ⊗ H) ◦ (A⊗ (ρA ◦ ηA)).

(3) (A⊗ ΠL
H) ◦ ρA ◦ ηA = ρA ◦ ηA.

(4) (A⊗ Π
R
H) ◦ ρA ◦ ηA = ρA ◦ ηA.

(5) (ρA ⊗ H) ◦ ρA ◦ ηA = (A⊗ µH ⊗ H) ◦ (ρA ⊗ δH) ◦ (ηA ⊗ ηH).

(6) (ρA ⊗ H) ◦ ρA ◦ ηA = (A⊗ (µH ◦ cH,H)⊗ H) ◦ (ρA ⊗ δH) ◦ (ηA ⊗ ηH).
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If (A, ρA) is a right H-comodule algebra, the triple (A,H,Ψ) is a weak entwining struc-
ture where the entwining morphism is

Ψ = (A⊗ µH) ◦ (cH,A ⊗ H) ◦ (H ⊗ ρA) : H ⊗ A→ A⊗ H

Therefore the following identies hold:

(1) Ψ ◦ (H ⊗ µA) = (µA ⊗ H) ◦ (A⊗Ψ) ◦ (Ψ⊗ A),

(2) (A⊗ δH) ◦Ψ = (Ψ⊗ H) ◦ (H ⊗Ψ) ◦ (δH ⊗ A),

(3) Ψ ◦ (H ⊗ ηA) = (eA ⊗ H) ◦ δH ,
(4) (A⊗ εH) ◦Ψ = µA ◦ (eA ⊗ A),

where
eA = (A⊗ εH) ◦Ψ ◦ (H ⊗ ηA) : H → A.
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We denote by MH
A (Ψ) the category of weak entwined modules, i.e., the objects M in

C together with two morphisms φM : M ⊗ A → A and ρM : M → M ⊗ H such that
(M, φM) is a right A-module, (M, ρM) is a right H-comodule and such that the following
equality

ρM ◦ φM = (φM ⊗ H) ◦ (M ⊗Ψ) ◦ (ρM ⊗ A)

holds.
Then, if (A, ρA) is a right H-comodule algebra, (A, µA, ρA) is an object ofMH

A (Ψ).
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If (A, ρA) is a right H-comodule algebra, we define the subalgebra of coinvariants of A
as the equalizer:

- -
-AH A A⊗ H

iA
ρA

ζA

where
ζA = (µA ⊗ H) ◦ (A⊗ cH,A) ◦ ((ρA ◦ ηA)⊗ A).

Note that
ζA = (A⊗ ΠL

H) ◦ ρA.

Also

- -
-AH A A⊗ H

iA
ρA

(A⊗ Π
R
H) ◦ ρA

is an equalizer diagram.
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The triple
(AH , ηAH

, µAH
)

is an algebra, being ηAH
and µAH

the factorizations through the equalizer iA of the
morphisms ηA and µA ◦ (iA ⊗ iA), respectively.

For example, the weak Hopf algebra H is a right H-comodule algebra with right como-
dule structure giving by ρH = δH and subalgebra of coinvariants HH , the image of the
idempotent morphism ΠL

H , which we denoted by HL.
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Definition

Let H be a weak Hopf algebra and let (A, ρA) be a right H-comodule algebra. We define
an integral as a morphism of right H-comodules f : H → A. If moreover f ◦ ηH = ηA
we will say that the integral is total.
An integral f : H → A is convolution invertible if there exists a morphism f −1 : H → A
(called the convolution inverse of f ) such that

(1) f −1 ∧ f = eA.

(2) f ∧ f −1 = (A⊗ (εH ◦ µH)) ◦ ((ρA ◦ ηA)⊗ H).

(3) f −1 ∧ f ∧ f −1 = f −1.

Trivially, f −1 is unique and by (1), if f is an integral convolution invertible, we get that

f ∧ f −1 ∧ f = f .

Finally, when f is a total integral we can rewrite equality (1) as

f −1 ∧ f = f ◦ ΠR
H

and (2) as
f ∧ f −1 = f ◦ Π

L
H .
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Example

Let H be a weak Hopf algebra such that ΠL
H = Π

L
H (equivalently, ΠR

H = Π
R
H). Then

the identity idH is a total integral convolution invertible with inverse λH . Note that this
equality is always true in the Hopf algebra setting. In our case it holds, for example, if
H is a cocommutative weak Hopf algebra.

Definition

Let H be a weak Hopf algebra and (A, ρA) a right H-comodule algebra. We say that
AH ↪→ A is a H-cleft extension if there exists an integral f : H → A convolution
invertible and such that the morphism f ∧ f −1 factorizes through the equalizer iA. In
what follows, the morphism f will be called a cleaving morphism associated to the
H-cleft extension AH ↪→ A.

Ramón González Rodríguez Cleft extensions, integrals and crossed products in a weak setting



Cleft extensions for weak Hopf algebras
Crossed systems for weak Hopf algebras

Crossed systems and cohomology

Example

Let H be a weak Hopf algebra such that ΠL
H = Π

L
H (equivalently, ΠR

H = Π
R
H). Then

the identity idH is a total integral convolution invertible with inverse λH . Note that this
equality is always true in the Hopf algebra setting. In our case it holds, for example, if
H is a cocommutative weak Hopf algebra.

Definition

Let H be a weak Hopf algebra and (A, ρA) a right H-comodule algebra. We say that
AH ↪→ A is a H-cleft extension if there exists an integral f : H → A convolution
invertible and such that the morphism f ∧ f −1 factorizes through the equalizer iA. In
what follows, the morphism f will be called a cleaving morphism associated to the
H-cleft extension AH ↪→ A.

Ramón González Rodríguez Cleft extensions, integrals and crossed products in a weak setting



Cleft extensions for weak Hopf algebras
Crossed systems for weak Hopf algebras

Crossed systems and cohomology

Definition

Two H-cleft extensions AH ↪→ A and BH ↪→ B are equivalent

AH ↪→ A ∼ BH ↪→ B

if AH = BH and there is a morphism of right H-comodule algebras T : A→ B such
that T ◦ iA = iB .

Remark

If AH ↪→ A and BH ↪→ B are equivalent, the morphism T is an isomorphism.
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Proposition

Let H be a weak Hopf algebra and (A, ρA) a right H-comodule algebra such that
AH ↪→ A is a H-cleft extension with cleaving morphism f . Then the equality

ρA ◦ f −1 = (f −1 ⊗ λH) ◦ cH,H ◦ δH

holds.

Proposition

Let H be a cocommutative weak Hopf algebra and let (A, ρA) be a right H-comodule
algebra. If there exists a convolution invertible integral f : H → A, then AH ↪→ A is an
H-cleft extension.
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Let H be a weak Hopf algebra and let (A, ρA) be a right H-comodule algebra. In

Alonso Álvarez J.N., Fernández Vilaboa J.M., González Rodríguez R., Rodríguez
Raposo A.B., Weak C -cleft extensions, weak entwining structures and weak Hopf
algebras. J. of Algebra, 284, 2005, 679-704.

we introduce the set RegWR(H,A) as the one whose elements are the morphisms

h : H → A

such that there exists a morphism h−1 : H → A, called the left weak inverse of h, such
that

h−1 ∧ h = eA

where eA is the morphism associated to the right-right weak entwining structure Ψ
associated to (A, ρA).
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Definition

Let H be a weak Hopf algebra and let (A, ρA) be a right H-comodule algebra. We say
that AH ↪→ A is a weak H-cleft extension if there exists a morphism h : H → A in
RegWR(H,A) of right H-comodules such that

Ψ ◦ (H ⊗ h−1) ◦ δH = ζA ◦ h−1.

Proposition

Let H be a weak Hopf algebra and let (A, ρA) be a right H-comodule algebra. If there
exists h ∈ RegWR(H,A) of right H-comodules such that eA ∧h−1 = h−1, the following
assertions are equivalent:

(i) The morphism h ∧ h−1 factorizes through the equalizer iA and h−1 satisfies

ρA ◦ f −1 = (f −1 ⊗ λH) ◦ cH,H ◦ δH .

(ii) The equality
Ψ ◦ (H ⊗ h−1) ◦ δH = ζA ◦ h−1

holds.
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Corollary

Let H be a weak Hopf algebra and let (A, ρA) be a right H-comodule algebra. If AH ↪→ A
is an H-cleft extension then it is a weak H-cleft extension.
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Proposition

Let H be a weak Hopf algebra with invertible antipode. If AH ↪→ A is an H-cleft
extension with cleaving morphism f , then h = µA ◦ (f ⊗ (f −1 ◦ ηH))) is a total integral.
Moreover, if H is cocommutative h is convolution invertible.

Remark

As a consequence of the previous proposition, in the cocommutative setting we can
assume that the cleaving morphism is a total integral.
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Definition

Let H be a weak Hopf algebra. We will say that A is a weak left H-module algebra if
there exists a morphism ϕA : H ⊗ A→ A satisfying:

(1) ϕA ◦ (ηH ⊗ A) = idA.

(2) ϕA ◦ (H ⊗ µA) = µA ◦ (ϕA ⊗ ϕA) ◦ (H ⊗ cH,A ⊗ A) ◦ (δH ⊗ A⊗ A).

(3) ϕA ◦ (µH ⊗ ηA) = ϕA ◦ (H ⊗ (ϕA ◦ (H ⊗ ηA))).

and any of the following equivalent conditions hold:

(4) ϕA ◦ (ΠL
H ⊗ A) = µA ◦ ((ϕA ◦ (H ⊗ ηA)⊗ A).

(5) ϕA ◦ (Π
L
H ⊗ A) = µA ◦ cA,A ◦ ((ϕA ◦ (H ⊗ ηA)⊗ A).

(6) ϕA ◦ (ΠL
H ⊗ ηA) = ϕA ◦ (H ⊗ ηA).

(7) ϕA ◦ (Π
L
H ⊗ ηA) = ϕA ◦ (H ⊗ ηA).

(8) ϕA ◦ (H ⊗ (ϕA ◦ (H ⊗ ηA))) = ((ϕA ◦ (H ⊗ ηA))⊗ (εH ◦ µH)) ◦ (δH ⊗ H).

(9) ϕA ◦ (H⊗ (ϕA ◦ (H⊗ηA))) = ((εH ◦µH)⊗ (ϕA ◦ (H⊗ηA)))◦ (H⊗cH,H)◦ (δH⊗H).

If we replace (3) by

(3-1) ϕA ◦ (µH ⊗ A) = ϕA ◦ (H ⊗ ϕA)

we will say that (A, ϕA) is a left H-module algebra.
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Proposition

Let H be a cocommutative weak Hopf algebra. If AH ↪→ A is an H-cleft extension with
cleaving morphism f , the pair (AH , ϕAH

) is a weak left H-module algebra, being ϕAH

the factorization of the morphism

ϕA = µA ◦ (A⊗ (µA ◦ cA,A)) ◦ (((f ⊗ f −1) ◦ δH)⊗ iA)

through the equalizer iA.
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1 Cleft extensions for weak Hopf algebras

2 Crossed systems for weak Hopf algebras

3 Crossed systems and cohomology
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Definition

Let H be a cocommutative weak Hopf algebra and (A, ϕA) be a weak left H-module
algebra.
By RegϕA (HL,A) we denote the set of morphisms g : HL → A such that there exists
a morphism g−1 : HL → A satisfying

g ∧ g−1 = g−1 ∧ g = u0, g ∧ g−1 ∧ g = g , g−1 ∧ g ∧ g−1 = g−1

where u0 = u1 ◦ iL where u1 = ϕA ◦ (H ⊗ ηA).
By RegϕA (H,A), as the set of morphisms h : H → A such that there exists a
morphism h−1 : H → A satisfying the following equalities:
(1) h ∧ h−1 = h−1 ∧ h = u1,

(2) h ∧ h−1 ∧ h = h,

(3) h−1 ∧ h ∧ h−1 = h−1,

Note that
u1 = u0 ◦ pL.
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For n > 1, we denote by Hn the n-fold tensor power H ⊗ · · · ⊗ H. RegϕA (Hn,A) is
the set of morphisms σ : Hn → A such that there exists a morphism σ−1 : Hn → A
satisfying:

(1) σ ∧ σ−1 = σ−1 ∧ σ = un

(2) σ ∧ σ−1 ∧ σ = σ.

(3) σ−1 ∧ σ ∧ σ−1 = σ−1.

where un = ϕA ◦ (H ⊗ un−1).

If we denote by H0 the object HL, un ∈ RegϕA (Hn,A) and RegϕA (Hn,A) is a group with
neutral element un for all n ≥ 0. Also, if A is commutative, we have that RegϕA (Hn,A)
is an abelian group for all n ≥ 0.
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Definition

Let H be a cocommutative weak Hopf algebra, (A, ϕA) a weak left H-module algebra
and σ ∈ RegϕA (H2,A). We say that

(ϕA, σ)

is a crossed system for H over A if the following conditions hold:

(1) Twisted condition

µA ◦ (A⊗ ϕA) ◦ (σ ⊗ µH ⊗ A) ◦ (δH⊗H ⊗ A)

= µA ◦ ((ϕA ◦ (H ⊗ ϕA))⊗ A) ◦ (H ⊗H ⊗ cA,A) ◦ (H ⊗H ⊗ σ ⊗ A) ◦ (δH⊗H ⊗ A).

(2) Two cocycle condition

(ϕA ◦ (H ⊗ σ))∧ (σ ◦ (H ⊗ µH)) = (σ ◦ (H ⊗ (µH ◦ (H ⊗ΠL
H))))∧ (σ ◦ (µH ⊗H)).

(3) Normal condition

σ ◦ (H ⊗ ηH) = σ ◦ (ηH ⊗ H) = u1.
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Two crossed systems for H over A, (ϕA, σ) and (φA, τ) are said to be equivalent,
denoted by

(ϕA, σ) ≈ (φA, τ),

if
ϕA ◦ (H ⊗ ηA) = φA ◦ (H ⊗ ηA)

and there exists h in RegϕA (H,A) ∩ RegφA
(H,A) with h ◦ ηH = ηA and such that

ϕA = µA ◦ (µA ⊗ A) ◦ (h ⊗ φA ⊗ h−1) ◦ (δH ⊗ cH,A) ◦ (δH ⊗ A),

σ = µA ◦ (µA ⊗ h−1) ◦ (µA ⊗ τ ⊗ µH) ◦ (h⊗ φA ⊗ δH⊗H) ◦ (δH ⊗ h⊗ H ⊗ H) ◦ δH⊗H .

Proposition

Let H be a cocommutative weak Hopf algebra. Then ≈ is an equivalence relation.
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Proposition

Let H be a cocommutative weak Hopf algebra, (A, ϕA) a weak left H-module algebra
and σ ∈ RegϕA (H2,A) satisfying the twisted condition. The following assertions are
equivalent:
(i) (A, ϕA) is a left H-module algebra.
(ii) The morphism σ factors through the center of A.

Corollary

Let H be a cocommutative weak Hopf algebra and (A, ϕA) a weak left H-module
algebra. The following assertions are equivalent:
(i) (A, ϕA) is a left H-module algebra.
(ii) (ϕA, u2) is a crossed system for H over A.
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Let H be a weak Hopf algebra, (A, ϕA) a weak left H-module algebra and σ : H2 → A
a morphism. We define the morphisms

ψA
H : H ⊗ A→ A⊗ H, σA

H : H ⊗ H → A⊗ H,

by
ψA
H = (ϕA ⊗ H) ◦ (H ⊗ cH,A) ◦ (δH ⊗ A) : H ⊗ A→ A⊗ H

and
σA
H = (σ ⊗ µH) ◦ (H ⊗ cH,H ⊗ H) ◦ (δH ⊗ δH) : H ⊗ H → A⊗ H

The morphism ∇A⊗H : A⊗ H → A⊗ H defined by

∇A⊗H = (µA ⊗ H) ◦ (A⊗ ψA
H) ◦ (A⊗ H ⊗ ηA)

is idempotent.
With A × H, iA⊗H : A × H → A ⊗ H and pA⊗H : A ⊗ H → A × H we denote the
object, the injection and the projection associated to the factorization of ∇A⊗H .
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If σ satisfies the twisted and the cocycle conditions the object A × H admits an
associative product defined by

µA×σH = pA⊗H ◦ µA⊗σH ◦ (iA⊗H ⊗ iA⊗H)

where
µA⊗σH = (µA ⊗ H) ◦ (µA ⊗ σA

H) ◦ (A⊗ ψA
H ⊗ H).

Moreover, if the normal condition holds A× H is an algebra with unit

ηA×σH = pA⊗H ◦ (ηA ⊗ ηH).

In what follows we denote this algebra by

A×σ H
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Proposition

Let H be a cocommutative weak Hopf algebra and (ϕA, σ) a crossed system for H
over A. Then, the algebra A×σ H is a right H-comodule algebra for the coaction

ρA×σH = (pA⊗H ⊗ H) ◦ (A⊗ δH) ◦ iA⊗H .

Moreover, (A×σ H)H = A.

Proposition

Let H be a cocommutative weak Hopf algebra and (ϕA, σ) a crossed system for H
over A. Then A ↪→ A×σ H is an H-cleft extension.

Proposition

Let H be a cocommutative weak Hopf algebra and let A be an algebra. If (ϕA, α) and
(φA, β) are two equivalent crossed systems, so are the associated H-cleft extensions
A ↪→ A×α H and A ↪→ A×β H.
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Proposition

Let H be a cocommutative weak Hopf algebra. If AH ↪→ A is an H-cleft extension
with cleaving morphism f , the morphism

σA = (µA ◦ (f ⊗ f )) ∧ (f −1 ◦ µH) : H2 → A,

factors through the equalizer iA. Moreover, σAH
, the factorization of σA, is a morp-

hism in RegϕAH
(H2,AH) satisfying the normal condition with σ−1

AH
the factorization

through the equalizer iA of the morphism

σ−1
A = (f ◦ µH) ∧ (µA ◦ cA,A ◦ (f −1 ⊗ f −1)).

Proposition

Let H be a cocommutative weak Hopf algebra and let AH ↪→ A be an H-cleft
extension with cleaving morphism f . Then, the pair (ϕAH

, σAH
) is a crossed system

for H over AH . Moreover, the H-cleft extensions AH ↪→ A and AH ↪→ AH ×σAH H are
equivalent.
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Proposition

Let H be a cocommutative weak Hopf algebra and let (ϕA, σ) be a crossed system for
H over A. Let A ↪→ A ×σ H be the associated H-cleft extension. Then, if (φA, τ) is
the crossed system associated to the H-cleft extension A ↪→ A ×σ H, we have that
(φA, τ) = (ϕA, σ).

Proposition

Let H be a cocommutative weak Hopf algebra and let AH ↪→ A be an H-cleft
extension with cleaving morphism f . Assume that g : H → A is other cleaving
morphism with associated crossed system (φAH

, τAH
). Then the crossed systems

(ϕAH
, σAH

) and (φAH
, τAH

) are equivalent.

Corollary

Let H be a cocommutative weak Hopf algebra and let AH ↪→ A, AH ↪→ B two
equivalent H-cleft extensions with cleaving morphisms f and g respectively. Then
the corresponding crossed systems (ϕAH

, σAH
) and (φAH

, τAH
) are equivalent.

Ramón González Rodríguez Cleft extensions, integrals and crossed products in a weak setting



Cleft extensions for weak Hopf algebras
Crossed systems for weak Hopf algebras

Crossed systems and cohomology

Proposition

Let H be a cocommutative weak Hopf algebra and let (ϕA, σ) be a crossed system for
H over A. Let A ↪→ A ×σ H be the associated H-cleft extension. Then, if (φA, τ) is
the crossed system associated to the H-cleft extension A ↪→ A ×σ H, we have that
(φA, τ) = (ϕA, σ).

Proposition

Let H be a cocommutative weak Hopf algebra and let AH ↪→ A be an H-cleft
extension with cleaving morphism f . Assume that g : H → A is other cleaving
morphism with associated crossed system (φAH

, τAH
). Then the crossed systems

(ϕAH
, σAH

) and (φAH
, τAH

) are equivalent.

Corollary

Let H be a cocommutative weak Hopf algebra and let AH ↪→ A, AH ↪→ B two
equivalent H-cleft extensions with cleaving morphisms f and g respectively. Then
the corresponding crossed systems (ϕAH

, σAH
) and (φAH

, τAH
) are equivalent.

Ramón González Rodríguez Cleft extensions, integrals and crossed products in a weak setting



Cleft extensions for weak Hopf algebras
Crossed systems for weak Hopf algebras

Crossed systems and cohomology

Proposition

Let H be a cocommutative weak Hopf algebra and let (ϕA, σ) be a crossed system for
H over A. Let A ↪→ A ×σ H be the associated H-cleft extension. Then, if (φA, τ) is
the crossed system associated to the H-cleft extension A ↪→ A ×σ H, we have that
(φA, τ) = (ϕA, σ).

Proposition

Let H be a cocommutative weak Hopf algebra and let AH ↪→ A be an H-cleft
extension with cleaving morphism f . Assume that g : H → A is other cleaving
morphism with associated crossed system (φAH

, τAH
). Then the crossed systems

(ϕAH
, σAH

) and (φAH
, τAH

) are equivalent.

Corollary

Let H be a cocommutative weak Hopf algebra and let AH ↪→ A, AH ↪→ B two
equivalent H-cleft extensions with cleaving morphisms f and g respectively. Then
the corresponding crossed systems (ϕAH

, σAH
) and (φAH

, τAH
) are equivalent.

Ramón González Rodríguez Cleft extensions, integrals and crossed products in a weak setting



Cleft extensions for weak Hopf algebras
Crossed systems for weak Hopf algebras

Crossed systems and cohomology

Theorem

Let H be a cocommutative weak Hopf algebra. Two H-cleft extensions AH ↪→ A,
AH ↪→ B are equivalent if and only if so are their respective associated crossed systems.

Theorem

Let H be a cocommutative weak Hopf algebra and (A, ρA) a right H-comodule
algebra. There exists a bijective correspondence between the equivalence classes of
H-cleft extensions AH ↪→ B and the equivalence classes of crossed systems for H
over AH .

F : CS(H,AH)→ Cleft(AH), G : Cleft(AH)→ CS(H,AH)

F ([(ϕAH
, σAH

)]) = [AH ↪→ AH ×σAH H]

G([AH ↪→ B]) = [(φAH
, τAH

)].
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Theorem

Let H be a cocommutative weak Hopf algebra and (A, ρA) a right H-comodule
algebra. There exists a bijective correspondence between the equivalence classes of
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over AH .
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Alonso Álvarez J.N., Fernández Vilaboa J.M., González Rodríguez R.
Cohomology of algebras over weak Hopf algebras (2012). arXiv:1206.3850

Let H be a cocommutative weak Hopf algebra. If (A, ϕA) is a left H-module algebra,
the groups RegϕA (Hn,A), n ≥ 0 are the objects of a semicosimplicial complex of groups
with coface operators defined by

∂0,i : RegϕA (HL,A)→ RegϕA (H,A), i ∈ {0, 1}

∂0,0(g) = ϕA ◦ (H ⊗ (g ◦ pL ◦ ΠR
H)) ◦ δH , ∂0,1(g) = g ◦ pL.

∂1,i : RegϕA (H,A)→ RegϕA (H2,A), i ∈ {0, 1, 2}

∂1,0(h) = ϕA ◦ (H ⊗ h), ∂1,1(h) = h ◦ µH , ∂1,2(h) = h ◦ µH ◦ (H ⊗ ΠL
H).
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∂k−1,i : RegϕA (Hk−1,A)→ RegϕA (Hk ,A), k > 2, i ∈ {0, 1, · · · , k}

∂k−1,i (σ) =


∂k−1,0(σ) = ϕA ◦ (H ⊗ σ),

∂k−1,i (σ) = σ ◦ (H i−1 ⊗ µH ⊗ Hk−i−1), i ∈ {1, · · · , k − 1}

∂k−1,k (σ) = σ ◦ (Hk−2 ⊗ (µH ◦ (H ⊗ ΠL
H))),
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For this complex the codegeneracy operators are defined by

s1,0 : RegϕA (H,A)→ RegϕA (HL,A),

s1,0(h) = h ◦ iL,

s2,i : RegϕA (H2,A)→ RegϕA (H,A), i ∈ {0, 1}

s2,0(σ) = σ ◦ (ηH ⊗ H), s2,1(σ) = σ ◦ (H ⊗ ηH),
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sk+1,i : RegϕA (Hk+1,A)→ RegϕA (Hk ,A), k ≥ 2, i ∈ {0, 1, · · · , k}

sk+1,i (σ) =


sk+1,0(σ) = σ ◦ (ηH ⊗ Hk ),

sk+1,i (σ) = σ ◦ (H i ⊗ ηH ⊗ Hk−i ), i ∈ {1, · · · , k − 1}

sk+1,k (σ) = σ ◦ (Hk ⊗ ηH).
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Let
Dk
ϕA

= ∂k,0 ∧ ∂−1
k,1 ∧ · · · ∧ ∂

(−1)k+1

k,k+1

be the coboundary morphisms of the cochain complex

RegϕA (HL,A)
D0
ϕA−→ RegϕA (H,A)

D1
ϕA−→ RegϕA (H2,A)

D2
ϕA−→ · · ·

· · ·
Dk−1
ϕA−→ RegϕA (Hk ,A)

Dk
ϕA−→ RegϕA (Hk+1,A)

Dk+1
ϕA−→ · · ·

associated to the cosimplicial complex RegϕA (H•,A).
Then, when (A, ϕA) is a commutative left H-module algebra, (RegϕA (H•,A),D•ϕA

) gives
the Sweedler cohomology of H in (A, ϕA). Therefore, the kth group, will be defined by

Ker(Dk
ϕA

)

Im(Dk−1
ϕA

)

for k ≥ 1 and Ker(D0
ϕA

) for k = 0. We will denote it by Hk
ϕA

(H,A).
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Proposition

Let H be a cocommutative weak Hopf algebra and let AH ↪→ A be an H-cleft extension.
We denote by (ϕAH

, σAH
) the corresponding crossed system defined by the convolution

invertible total integral f : H → A. Then (Z(AH), ϕZ(AH )) is a left H-module algebra,
where ϕZ(AH ) is the factorization through the morphism iZ(AH ) of the morphism ϕAH

◦
(H ⊗ iZ(AH )).
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Theorem.

Let H be a cocommutative weak Hopf algebra and let AH ↪→ A be an H-cleft extension.
We denote by (ϕAH

, σAH
) the corresponding crossed system defined by the cleaving

morphism f : H → A. Then there is a bijective correspondence between the second
cohomology group H2

ϕZ(AH )
(H,Z(AH)) and the equivalence classes of crossed systems

for H over AH having ϕAH
as weak H-module algebra structure.

References:

Alonso Álvarez, J.N., Fernández Vilaboa, J.M. y González Rodríguez, R.:
Integrals and crossed products over weak Hopf algebras (2012). arXiv:1207.5363
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