Cleft extensions, integrals and crossed products in a weak setting

Ramón González Rodríguez

Universidade de Vigo

Departamento de Matemática Aplicada II

Based in a joint work with J.N. Alonso Álvarez and J.M. Fernández Vilaboa Research supported by Ministerio de Ciencia e Innovación: MTM2010-15634.

> Recend Trends in Rings and Algebras Murcia, 3-7 June 2013

Outline

2 Crossed systems for weak Hopf algebras

3 Crossed systems and cohomology

Some notation and conventions.

From now on C denotes a strict symmetric category with tensor product denoted by
 ⊗ and unit object K. With c we will denote the natural isomorphism of symmetry
 and we also assume that every idempotent morphism q : Y → Y splits, i.e., there
 exist an object Z and morphisms i : Z → Y and p : Y → Z such that q = i ∘ p
 and p ∘ i = id_Z.

Some notation and conventions.

- From now on C denotes a strict symmetric category with tensor product denoted by \otimes and unit object K. With c we will denote the natural isomorphism of symmetry and we also assume that every idempotent morphism $q: Y \to Y$ splits, i.e., there exist an object Z and morphisms $i: Z \to Y$ and $p: Y \to Z$ such that $q = i \circ p$ and $p \circ i = id_Z$.
- (A, η_A, μ_A) is an associative algebra with multiplication μ_A and unit η_A .

Some notation and conventions.

- From now on C denotes a strict symmetric category with tensor product denoted by \otimes and unit object K. With c we will denote the natural isomorphism of symmetry and we also assume that every idempotent morphism $q: Y \to Y$ splits, i.e., there exist an object Z and morphisms $i: Z \to Y$ and $p: Y \to Z$ such that $q = i \circ p$ and $p \circ i = id_Z$.
- (A, η_A, μ_A) is an associative algebra with multiplication μ_A and unit η_A .
- $(C, \varepsilon_C, \delta_C)$ is a coassociative coalgebra with comultiplication δ_C and counit ε_C .

Some notation and conventions.

- From now on C denotes a strict symmetric category with tensor product denoted by
 ⊗ and unit object K. With c we will denote the natural isomorphism of symmetry
 and we also assume that every idempotent morphism q : Y → Y splits, i.e., there
 exist an object Z and morphisms i : Z → Y and p : Y → Z such that q = i ∘ p
 and p ∘ i = id_Z.
- (A, η_A, μ_A) is an associative algebra with multiplication μ_A and unit η_A .
- $(C, \varepsilon_C, \delta_C)$ is a coassociative coalgebra with comultiplication δ_C and counit ε_C .
- For simplicity of notation, given three objects V, U, B in C and a morphism $f: V \to U$, we write

 $B \otimes f$ for $id_B \otimes f$ and $f \otimes B$ for $f \otimes id_B$.

Some notation and conventions.

- From now on C denotes a strict symmetric category with tensor product denoted by \otimes and unit object K. With c we will denote the natural isomorphism of symmetry and we also assume that every idempotent morphism $q: Y \to Y$ splits, i.e., there exist an object Z and morphisms $i: Z \to Y$ and $p: Y \to Z$ such that $q = i \circ p$ and $p \circ i = id_Z$.
- (A, η_A, μ_A) is an associative algebra with multiplication μ_A and unit η_A .
- $(C, \varepsilon_C, \delta_C)$ is a coassociative coalgebra with comultiplication δ_C and counit ε_C .
- For simplicity of notation, given three objects V, U, B in C and a morphism $f: V \to U$, we write

 $B \otimes f$ for $id_B \otimes f$ and $f \otimes B$ for $f \otimes id_B$.

• For an algebra A we denote by Z(A) the center of A and by $i_{Z(A)}$ the inclusion morphism of Z(A) on A.

Cleft extensions for weak Hopf algebras

Cleft extensions for weak Hopf algebras

2 Crossed systems for weak Hopf algebras

3 Crossed systems and cohomology

A weak Hopf algebra in C is an object in C with an algebra structure (H, η_H, μ_H) and a coalgebra structure $(H, \varepsilon_H, \delta_H)$ satisfying:

(1)
$$\delta_H \circ \mu_H = (\mu_H \otimes \mu_H) \circ (H \otimes c_{H,H} \otimes H) \circ (\delta_H \otimes \delta_H).$$

(2)
$$\varepsilon_H \circ \mu_H \circ (\mu_H \otimes H) = ((\varepsilon_H \circ \mu_H) \otimes (\varepsilon_H \circ \mu_H)) \circ (H \otimes \delta_H \otimes H)$$

= $((\varepsilon_H \circ \mu_H) \otimes (\varepsilon_H \circ \mu_H)) \circ (H \otimes (c_{H,H} \circ \delta_H) \otimes H).$

(3)
$$(\delta_H \otimes H) \circ \delta_H \circ \eta_H = (H \otimes \mu_H \otimes H) \circ ((\delta_H \circ \eta_H) \otimes (\delta_H \circ \eta_H))$$

= $(H \otimes (\mu_H \circ c_{H,H}) \otimes H) \circ ((\delta_H \circ \eta_H) \otimes (\delta_H \circ \eta_H)).$

(4) There exists a morphism $\lambda_H : H \to H$ in C (called the antipode of H) satisfying:

$$(4-1) id_H \wedge \lambda_H = ((\varepsilon_H \circ \mu_H) \otimes H) \circ (H \otimes c_{H,H}) \circ ((\delta_H \circ \eta_H) \otimes H).$$

$$(4-2) \ \lambda_H \wedge id_H = (H \otimes (\varepsilon_H \circ \mu_H)) \circ (c_{H,H} \otimes H) \circ (H \otimes (\delta_H \circ \eta_H)).$$

(4-3) $\lambda_H \wedge id_H \wedge \lambda_H = \lambda_H$.

If *H* is a weak Hopf algebra in C, the antipode λ_H is unique, antimultiplicative, anticomultiplicative and leaves the unit and the counit invariant:

 $\lambda_{H} \circ \mu_{H} = \mu_{H} \circ (\lambda_{H} \otimes \lambda_{H}) \circ c_{H,H}, \quad \delta_{H} \circ \lambda_{H} = c_{H,H} \circ (\lambda_{H} \otimes \lambda_{H}) \circ \delta_{H},$

 $\lambda_H \circ \eta_H = \eta_H, \quad \varepsilon_H \circ \lambda_H = \varepsilon_H.$

If *H* is a weak Hopf algebra in C, the antipode λ_H is unique, antimultiplicative, anticomultiplicative and leaves the unit and the counit invariant:

$$\begin{split} \lambda_{H} \circ \mu_{H} &= \mu_{H} \circ (\lambda_{H} \otimes \lambda_{H}) \circ c_{H,H}, \quad \delta_{H} \circ \lambda_{H} &= c_{H,H} \circ (\lambda_{H} \otimes \lambda_{H}) \circ \delta_{H}, \\ \lambda_{H} \circ \eta_{H} &= \eta_{H}, \quad \varepsilon_{H} \circ \lambda_{H} &= \varepsilon_{H}. \end{split}$$

If we define the morphisms Π_{H}^{L} (target), Π_{H}^{R} (source), by

$$\Pi_{H}^{L} = ((\varepsilon_{H} \circ \mu_{H}) \otimes H) \circ (H \otimes c_{H,H}) \circ ((\delta_{H} \circ \eta_{H}) \otimes H),$$

$$\Pi_{H}^{R} = (H \otimes (\varepsilon_{H} \circ \mu_{H})) \circ (c_{H,H} \otimes H) \circ (H \otimes (\delta_{H} \circ \eta_{H})),$$

they are idempotent and we denote by H_L , p_L and i_L the object and the morphisms such that $i_L \circ p_L = \prod_H^L$ and $p_L \circ i_L = id_{H_L}$.

If *H* is a weak Hopf algebra in C, the antipode λ_H is unique, antimultiplicative, anticomultiplicative and leaves the unit and the counit invariant:

$$\begin{split} \lambda_{H} \circ \mu_{H} &= \mu_{H} \circ (\lambda_{H} \otimes \lambda_{H}) \circ c_{H,H}, \quad \delta_{H} \circ \lambda_{H} &= c_{H,H} \circ (\lambda_{H} \otimes \lambda_{H}) \circ \delta_{H}, \\ \lambda_{H} \circ \eta_{H} &= \eta_{H}, \quad \varepsilon_{H} \circ \lambda_{H} &= \varepsilon_{H}. \end{split}$$

If we define the morphisms Π_{H}^{L} (target), Π_{H}^{R} (source), by

$$\Pi_{H}^{L} = ((\varepsilon_{H} \circ \mu_{H}) \otimes H) \circ (H \otimes c_{H,H}) \circ ((\delta_{H} \circ \eta_{H}) \otimes H),$$

$$\Pi_{H}^{R} = (H \otimes (\varepsilon_{H} \circ \mu_{H})) \circ (c_{H,H} \otimes H) \circ (H \otimes (\delta_{H} \circ \eta_{H})),$$

they are idempotent and we denote by H_L , p_L and i_L the object and the morphisms such that $i_L \circ p_L = \prod_H^L$ and $p_L \circ i_L = id_{H_L}$.

$$\overline{\Pi}_{H}^{L} = \Pi_{H^{coop}}^{L}, \quad \overline{\Pi}_{H}^{R} = \Pi_{H^{coop}}^{R}$$

A weak Hopf algebra *H* is cocommutative if $\delta_H = c_{H,H} \circ \delta_H$.

A weak Hopf algebra *H* is cocommutative if $\delta_H = c_{H,H} \circ \delta_H$.

Example.

Let G be a finite groupoid and R a commutative ring. Let G_0 be the set of objects and G_1 the set of morphisms.

The groupoid algebra is the direct product

$$\mathsf{RG} = \bigoplus_{\sigma \in G_1} \mathsf{R}\sigma$$

with the product of two morphisms being equal to their composition if the latter is defined and 0 in otherwise, i.e. $\sigma\tau = \sigma \circ \tau$ if $s(\sigma) = t(\tau)$ and $\sigma\tau = 0$ if $s(\sigma) \neq t(\tau)$. The unit element is $1_{RG} = \sum_{x \in G_0} id_x$. RG is a cocommutative weak Hopf algebra, with

$$\delta_{RG}(\sigma) = \sigma \otimes \sigma, \quad \varepsilon_{RG}(\sigma) = 1, \quad \lambda_{RG}(\sigma) = \sigma^{-1}.$$

The morphisms target and source are $\Pi_{RG}^{L}(\sigma) = id_{t(\sigma)}, \quad \Pi_{RG}^{R}(\sigma) = id_{s(\sigma)}.$

Let *H* be a weak Hopf algebra. We will say that a right *H*-comodule (A, ρ_A) is a right *H*-comodule algebra if it satisfies

$$\rho_{A} \circ \mu_{A} = (\mu_{A} \otimes \mu_{H}) \circ (A \otimes c_{H,A} \otimes H) \circ (\rho_{A} \otimes \rho_{A})$$

and any of the following equivalent conditions hold:

(1)
$$(A \otimes \Pi_{H}^{R}) \circ \rho_{A} = (\mu_{A} \otimes H) \circ (A \otimes c_{H,A}) \circ ((\rho_{A} \circ \eta_{A}) \otimes A).$$

(2) $(A \otimes \overline{\Pi}_{H}^{R}) \circ \rho_{A} = (\mu_{A} \otimes H) \circ (A \otimes (\rho_{A} \circ \eta_{A})).$
(3) $(A \otimes \Pi_{H}^{L}) \circ \rho_{A} \circ \eta_{A} = \rho_{A} \circ \eta_{A}.$
(4) $(A \otimes \overline{\Pi}_{H}^{R}) \circ \rho_{A} \circ \eta_{A} = (A \otimes \mu_{H} \otimes H) \circ (\rho_{A} \otimes \delta_{H}) \circ (\eta_{A} \otimes \eta_{H}).$
(5) $(\rho_{A} \otimes H) \circ \rho_{A} \circ \eta_{A} = (A \otimes (\mu_{H} \circ c_{H,H}) \otimes H) \circ (\rho_{A} \otimes \delta_{H}) \circ (\eta_{A} \otimes \eta_{H}).$
(6) $(\rho_{A} \otimes H) \circ \rho_{A} \circ \eta_{A} = (A \otimes (\mu_{H} \circ c_{H,H}) \otimes H) \circ (\rho_{A} \otimes \delta_{H}) \circ (\eta_{A} \otimes \eta_{H}).$

If (A, ρ_A) is a right *H*-comodule algebra, the triple (A, H, Ψ) is a weak entwining structure where the entwining morphism is

$$\Psi = (A \otimes \mu_H) \circ (c_{H,A} \otimes H) \circ (H \otimes \rho_A) : H \otimes A \to A \otimes H$$

Therefore the following identies hold:

(1)
$$\Psi \circ (H \otimes \mu_A) = (\mu_A \otimes H) \circ (A \otimes \Psi) \circ (\Psi \otimes A),$$

(2) $(A \otimes \delta_H) \circ \Psi = (\Psi \otimes H) \circ (H \otimes \Psi) \circ (\delta_H \otimes A),$
(3) $\Psi \circ (H \otimes \eta_A) = (e_A \otimes H) \circ \delta_H,$
(4) $(A \otimes \varepsilon_H) \circ \Psi = \mu_A \circ (e_A \otimes A),$
where

$$e_A = (A \otimes \varepsilon_H) \circ \Psi \circ (H \otimes \eta_A) : H \to A.$$

We denote by $\mathcal{M}^H_A(\Psi)$ the category of weak entwined modules, i.e., the objects M in \mathcal{C} together with two morphisms $\phi_M : M \otimes A \to A$ and $\rho_M : M \to M \otimes H$ such that (M, ϕ_M) is a right A-module, (M, ρ_M) is a right H-comodule and such that the following equality

$$\rho_{M} \circ \phi_{M} = (\phi_{M} \otimes H) \circ (M \otimes \Psi) \circ (\rho_{M} \otimes A)$$

holds.

Then, if (A, ρ_A) is a right *H*-comodule algebra, (A, μ_A, ρ_A) is an object of $\mathcal{M}_A^H(\Psi)$.

If (A, ρ_A) is a right *H*-comodule algebra, we define the subalgebra of coinvariants of *A* as the equalizer:

$$A_H \xrightarrow{i_A} A \xrightarrow{\rho_A} A \otimes H$$

where

$$\zeta_A = (\mu_A \otimes H) \circ (A \otimes c_{H,A}) \circ ((\rho_A \circ \eta_A) \otimes A).$$

Note that

$$\zeta_A = (A \otimes \Pi_H^L) \circ \rho_A.$$

If (A, ρ_A) is a right *H*-comodule algebra, we define the subalgebra of coinvariants of *A* as the equalizer:

$$A_H \xrightarrow{i_A} A \xrightarrow{\rho_A} A \otimes H$$

where

$$\zeta_A = (\mu_A \otimes H) \circ (A \otimes c_{H,A}) \circ ((\rho_A \circ \eta_A) \otimes A).$$

Note that

$$\zeta_A = (A \otimes \Pi_H^L) \circ \rho_A.$$

Also

$$A_H \xrightarrow{i_A} A \xrightarrow{\rho_A} A \otimes H$$

$$(A \otimes \overline{\Pi}_H^R) \circ \rho_A$$

is an equalizer diagram.

The triple

$(A_H, \eta_{A_H}, \mu_{A_H})$

is an algebra, being η_{A_H} and μ_{A_H} the factorizations through the equalizer i_A of the morphisms η_A and $\mu_A \circ (i_A \otimes i_A)$, respectively.

The triple

$(A_H, \eta_{A_H}, \mu_{A_H})$

is an algebra, being η_{A_H} and μ_{A_H} the factorizations through the equalizer i_A of the morphisms η_A and $\mu_A \circ (i_A \otimes i_A)$, respectively.

For example, the weak Hopf algebra H is a right H-comodule algebra with right comodule structure giving by $\rho_H = \delta_H$ and subalgebra of coinvariants H_H , the image of the idempotent morphism Π_{H}^L , which we denoted by H_L .

Definition

Let *H* be a weak Hopf algebra and let (A, ρ_A) be a right *H*-comodule algebra. We define an integral as a morphism of right *H*-comodules $f : H \to A$. If moreover $f \circ \eta_H = \eta_A$ we will say that the integral is total.

An integral $f : H \to A$ is convolution invertible if there exists a morphism $f^{-1} : H \to A$ (called the convolution inverse of f) such that

(1)
$$f^{-1} \wedge f = e_A$$
.
(2) $f \wedge f^{-1} = (A \otimes (\varepsilon_H \circ \mu_H)) \circ ((\rho_A \circ \eta_A) \otimes H)$.
(3) $f^{-1} \wedge f \wedge f^{-1} = f^{-1}$.

Definition

Let *H* be a weak Hopf algebra and let (A, ρ_A) be a right *H*-comodule algebra. We define an integral as a morphism of right *H*-comodules $f : H \to A$. If moreover $f \circ \eta_H = \eta_A$ we will say that the integral is total.

An integral $f : H \to A$ is convolution invertible if there exists a morphism $f^{-1} : H \to A$ (called the convolution inverse of f) such that

(1) $f^{-1} \wedge f = e_A$. (2) $f \wedge f^{-1} = (A \otimes (\varepsilon_H \circ \mu_H)) \circ ((\rho_A \circ \eta_A) \otimes H)$. (3) $f^{-1} \wedge f \wedge f^{-1} = f^{-1}$.

Trivially, f^{-1} is unique and by (1), if f is an integral convolution invertible, we get that

$$f \wedge f^{-1} \wedge f = f.$$

Finally, when f is a total integral we can rewrite equality (1) as

$$f^{-1} \wedge f = f \circ \Pi^R_H$$

and (2) as

$$f \wedge f^{-1} = f \circ \overline{\Pi}_H^L.$$

Example

Let *H* be a weak Hopf algebra such that $\Pi_{H}^{L} = \overline{\Pi}_{H}^{L}$ (equivalently, $\Pi_{H}^{R} = \overline{\Pi}_{H}^{R}$). Then the identity id_{H} is a total integral convolution invertible with inverse λ_{H} . Note that this equality is always true in the Hopf algebra setting. In our case it holds, for example, if *H* is a cocommutative weak Hopf algebra.

Example

Let *H* be a weak Hopf algebra such that $\Pi_{H}^{L} = \overline{\Pi}_{H}^{L}$ (equivalently, $\Pi_{H}^{R} = \overline{\Pi}_{H}^{R}$). Then the identity id_{H} is a total integral convolution invertible with inverse λ_{H} . Note that this equality is always true in the Hopf algebra setting. In our case it holds, for example, if *H* is a cocommutative weak Hopf algebra.

Definition

Let *H* be a weak Hopf algebra and (A, ρ_A) a right *H*-comodule algebra. We say that $A_H \hookrightarrow A$ is a *H*-cleft extension if there exists an integral $f : H \to A$ convolution invertible and such that the morphism $f \wedge f^{-1}$ factorizes through the equalizer i_A . In what follows, the morphism *f* will be called a cleaving morphism associated to the *H*-cleft extension $A_H \hookrightarrow A$.

Two *H*-cleft extensions $A_H \hookrightarrow A$ and $B_H \hookrightarrow B$ are equivalent

$$A_H \hookrightarrow A \sim B_H \hookrightarrow B$$

if $A_H = B_H$ and there is a morphism of right H-comodule algebras $T : A \to B$ such that $T \circ i_A = i_B$.

Two *H*-cleft extensions $A_H \hookrightarrow A$ and $B_H \hookrightarrow B$ are equivalent

$$A_H \hookrightarrow A \sim B_H \hookrightarrow B$$

if $A_H = B_H$ and there is a morphism of right H-comodule algebras $T : A \to B$ such that $T \circ i_A = i_B$.

Remark

If $A_H \hookrightarrow A$ and $B_H \hookrightarrow B$ are equivalent, the morphism T is an isomorphism.

Proposition

Let H be a weak Hopf algebra and (A, ρ_A) a right H-comodule algebra such that $A_H \hookrightarrow A$ is a H-cleft extension with cleaving morphism f. Then the equality

$$\rho_A \circ f^{-1} = (f^{-1} \otimes \lambda_H) \circ c_{H,H} \circ \delta_H$$

holds.

Proposition

Let H be a weak Hopf algebra and (A, ρ_A) a right H-comodule algebra such that $A_H \hookrightarrow A$ is a H-cleft extension with cleaving morphism f. Then the equality

$$\rho_A \circ f^{-1} = (f^{-1} \otimes \lambda_H) \circ c_{H,H} \circ \delta_H$$

holds.

Proposition

Let *H* be a cocommutative weak Hopf algebra and let (A, ρ_A) be a right *H*-comodule algebra. If there exists a convolution invertible integral $f : H \to A$, then $A_H \hookrightarrow A$ is an *H*-cleft extension.

Let H be a weak Hopf algebra and let (A, ρ_A) be a right H-comodule algebra. In

 Alonso Álvarez J.N., Fernández Vilaboa J.M., González Rodríguez R., Rodríguez Raposo A.B., Weak C-cleft extensions, weak entwining structures and weak Hopf algebras. J. of Algebra, 284, 2005, 679-704.

we introduce the set $Reg^{WR}(H, A)$ as the one whose elements are the morphisms

 $h: H \rightarrow A$

such that there exists a morphism $h^{-1}: H \to A$, called the left weak inverse of h, such that

$$h^{-1} \wedge h = e_A$$

where e_A is the morphism associated to the right-right weak entwining structure Ψ associated to (A, ρ_A) .

Definition

Let *H* be a weak Hopf algebra and let (A, ρ_A) be a right *H*-comodule algebra. We say that $A_H \hookrightarrow A$ is a weak *H*-cleft extension if there exists a morphism $h : H \to A$ in $Reg^{WR}(H, A)$ of right *H*-comodules such that

 $\Psi \circ (H \otimes h^{-1}) \circ \delta_H = \zeta_A \circ h^{-1}.$

Let *H* be a weak Hopf algebra and let (A, ρ_A) be a right *H*-comodule algebra. We say that $A_H \hookrightarrow A$ is a weak *H*-cleft extension if there exists a morphism $h : H \to A$ in $Reg^{WR}(H, A)$ of right *H*-comodules such that

$$\Psi \circ (H \otimes h^{-1}) \circ \delta_H = \zeta_A \circ h^{-1}.$$

Proposition

Let *H* be a weak Hopf algebra and let (A, ρ_A) be a right *H*-comodule algebra. If there exists $h \in Reg^{WR}(H, A)$ of right *H*-comodules such that $e_A \wedge h^{-1} = h^{-1}$, the following assertions are equivalent:

(i) The morphism $h \wedge h^{-1}$ factorizes through the equalizer i_A and h^{-1} satisfies

$$\rho_A \circ f^{-1} = (f^{-1} \otimes \lambda_H) \circ c_{H,H} \circ \delta_H.$$

(ii) The equality

$$\Psi \circ (H \otimes h^{-1}) \circ \delta_H = \zeta_A \circ h^{-1}$$

holds.

Corollary

Let *H* be a weak Hopf algebra and let (A, ρ_A) be a right *H*-comodule algebra. If $A_H \hookrightarrow A$ is an *H*-cleft extension then it is a weak *H*-cleft extension.

Proposition

Let *H* be a weak Hopf algebra with invertible antipode. If $A_H \hookrightarrow A$ is an *H*-cleft extension with cleaving morphism *f*, then $h = \mu_A \circ (f \otimes (f^{-1} \circ \eta_H)))$ is a total integral. Moreover, if *H* is cocommutative *h* is convolution invertible.

Proposition

Let *H* be a weak Hopf algebra with invertible antipode. If $A_H \hookrightarrow A$ is an *H*-cleft extension with cleaving morphism *f*, then $h = \mu_A \circ (f \otimes (f^{-1} \circ \eta_H)))$ is a total integral. Moreover, if *H* is cocommutative *h* is convolution invertible.

Remark

As a consequence of the previous proposition, in the cocommutative setting we can assume that the cleaving morphism is a total integral.

Let H be a weak Hopf algebra. We will say that A is a weak left H-module algebra if there exists a morphism $\varphi_A : H \otimes A \to A$ satisfying:

(1)
$$\varphi_A \circ (\eta_H \otimes A) = id_A.$$

(2) $\varphi_A \circ (H \otimes \mu_A) = \mu_A \circ (\varphi_A \otimes \varphi_A) \circ (H \otimes c_{H,A} \otimes A) \circ (\delta_H \otimes A \otimes A).$
(3) $\varphi_A \circ (\mu_H \otimes n_A) = \varphi_A \circ (H \otimes (\varphi_A \circ (H \otimes n_A))))$

and any of the following equivalent conditions hold:

(4)
$$\varphi_{A} \circ (\Pi_{H}^{L} \otimes A) = \mu_{A} \circ ((\varphi_{A} \circ (H \otimes \eta_{A}) \otimes A)).$$

(5) $\varphi_{A} \circ (\overline{\Pi}_{H}^{L} \otimes A) = \mu_{A} \circ c_{A,A} \circ ((\varphi_{A} \circ (H \otimes \eta_{A}) \otimes A)).$
(6) $\varphi_{A} \circ (\Pi_{H}^{L} \otimes \eta_{A}) = \varphi_{A} \circ (H \otimes \eta_{A}).$
(7) $\varphi_{A} \circ (\overline{\Pi}_{H}^{L} \otimes \eta_{A}) = \varphi_{A} \circ (H \otimes \eta_{A}).$
(8) $\varphi_{A} \circ (H \otimes (\varphi_{A} \circ (H \otimes \eta_{A})))) = ((\varphi_{A} \circ (H \otimes \eta_{A})) \otimes (\varepsilon_{H} \circ \mu_{H})) \circ (\delta_{H} \otimes H).$
(9) $\varphi_{A} \circ (H \otimes (\varphi_{A} \circ (H \otimes \eta_{A})))) = ((\varepsilon_{H} \circ \mu_{H}) \otimes (\varphi_{A} \circ (H \otimes \eta_{A}))) \circ (H \otimes c_{H,H}) \circ (\delta_{H} \otimes H).$
If we replace (3) by
3-1) $\varphi_{A} \circ (\mu_{H} \otimes A) = \varphi_{A} \circ (H \otimes \varphi_{A})$

we will say that (A, φ_A) is a left *H*-module algebra.

Let *H* be a cocommutative weak Hopf algebra. If $A_H \hookrightarrow A$ is an *H*-cleft extension with cleaving morphism *f*, the pair (A_H, φ_{A_H}) is a weak left *H*-module algebra, being φ_{A_H} the factorization of the morphism

$$\varphi_{A} = \mu_{A} \circ (A \otimes (\mu_{A} \circ c_{A,A})) \circ (((f \otimes f^{-1}) \circ \delta_{H}) \otimes i_{A})$$

through the equalizer i_A .

Crossed systems for weak Hopf algebras

2 Crossed systems for weak Hopf algebras

3 Crossed systems and cohomology

Definition

Let H be a cocommutative weak Hopf algebra and (A,φ_A) be a weak left H-module algebra.

By $Reg_{\varphi_A}(H_L, A)$ we denote the set of morphisms $g: H_L \to A$ such that there exists a morphism $g^{-1}: H_L \to A$ satisfying

$$g \wedge g^{-1} = g^{-1} \wedge g = u_0, \ g \wedge g^{-1} \wedge g = g, \ g^{-1} \wedge g \wedge g^{-1} = g^{-1}$$

where $u_0 = u_1 \circ i_L$ where $u_1 = \varphi_A \circ (H \otimes \eta_A)$. By $\operatorname{Reg}_{\varphi_A}(H, A)$, as the set of morphisms $h : H \to A$ such that there exists a morphism $h^{-1} : H \to A$ satisfying the following equalities: (1) $h \wedge h^{-1} = h^{-1} \wedge h = u_1$,

 $(2) h \wedge h^{-1} \wedge h = h,$

(3)
$$h^{-1} \wedge h \wedge h^{-1} = h^{-1}$$
,

Note that

$$u_1 = u_0 \circ p_L.$$

For n > 1, we denote by H^n the *n*-fold tensor power $H \otimes \cdots \otimes H$. $Reg_{\varphi_A}(H^n, A)$ is the set of morphisms $\sigma : H^n \to A$ such that there exists a morphism $\sigma^{-1} : H^n \to A$ satisfying:

(1) $\sigma \wedge \sigma^{-1} = \sigma^{-1} \wedge \sigma = u_n$ (2) $\sigma \wedge \sigma^{-1} \wedge \sigma = \sigma$. (3) $\sigma^{-1} \wedge \sigma \wedge \sigma^{-1} = \sigma^{-1}$. where $u_n = \varphi_A \circ (H \otimes u_{n-1})$. For n > 1, we denote by H^n the *n*-fold tensor power $H \otimes \cdots \otimes H$. $Reg_{\varphi_A}(H^n, A)$ is the set of morphisms $\sigma : H^n \to A$ such that there exists a morphism $\sigma^{-1} : H^n \to A$ satisfying:

(1) $\sigma \wedge \sigma^{-1} = \sigma^{-1} \wedge \sigma = u_n$ (2) $\sigma \wedge \sigma^{-1} \wedge \sigma = \sigma$. (3) $\sigma^{-1} \wedge \sigma \wedge \sigma^{-1} = \sigma^{-1}$. where $u_n = \varphi_A \circ (H \otimes u_{n-1})$.

If we denote by H^0 the object H_L , $u_n \in Reg_{\varphi_A}(H^n, A)$ and $Reg_{\varphi_A}(H^n, A)$ is a group with neutral element u_n for all $n \ge 0$. Also, if A is commutative, we have that $Reg_{\varphi_A}(H^n, A)$ is an abelian group for all $n \ge 0$.

Definition

Let H be a cocommutative weak Hopf algebra, (A, φ_A) a weak left H-module algebra and $\sigma \in Reg_{\varphi_A}(H^2, A)$. We say that

 (φ_A, σ)

is a crossed system for H over A if the following conditions hold:

(1) Twisted condition

 $\mu_{A} \circ (A \otimes \varphi_{A}) \circ (\sigma \otimes \mu_{H} \otimes A) \circ (\delta_{H \otimes H} \otimes A)$

 $= \mu_A \circ ((\varphi_A \circ (H \otimes \varphi_A)) \otimes A) \circ (H \otimes H \otimes c_{A,A}) \circ (H \otimes H \otimes \sigma \otimes A) \circ (\delta_{H \otimes H} \otimes A).$ (2) Two cocycle condition

 $(\varphi_{A} \circ (H \otimes \sigma)) \land (\sigma \circ (H \otimes \mu_{H})) = (\sigma \circ (H \otimes (\mu_{H} \circ (H \otimes \Pi_{H}^{L})))) \land (\sigma \circ (\mu_{H} \otimes H)).$

(3) Normal condition

$$\sigma \circ (H \otimes \eta_H) = \sigma \circ (\eta_H \otimes H) = u_1.$$

Two crossed systems for H over A, (φ_A, σ) and (ϕ_A, τ) are said to be equivalent, denoted by

$$(\varphi_A, \sigma) \approx (\phi_A, \tau),$$

if

$$\varphi_A \circ (H \otimes \eta_A) = \phi_A \circ (H \otimes \eta_A)$$

and there exists h in $Reg_{\varphi_A}(H, A) \cap Reg_{\phi_A}(H, A)$ with $h \circ \eta_H = \eta_A$ and such that

$$\varphi_{\mathsf{A}} = \mu_{\mathsf{A}} \circ (\mu_{\mathsf{A}} \otimes \mathsf{A}) \circ (\mathsf{h} \otimes \phi_{\mathsf{A}} \otimes \mathsf{h}^{-1}) \circ (\delta_{\mathsf{H}} \otimes \mathsf{c}_{\mathsf{H},\mathsf{A}}) \circ (\delta_{\mathsf{H}} \otimes \mathsf{A}),$$

 $\sigma = \mu_A \circ (\mu_A \otimes h^{-1}) \circ (\mu_A \otimes \tau \otimes \mu_H) \circ (h \otimes \phi_A \otimes \delta_{H \otimes H}) \circ (\delta_H \otimes h \otimes H \otimes H) \circ \delta_{H \otimes H}.$

Two crossed systems for H over A, (φ_A, σ) and (ϕ_A, τ) are said to be equivalent, denoted by

$$(\varphi_A, \sigma) \approx (\phi_A, \tau),$$

if

$$\varphi_A \circ (H \otimes \eta_A) = \phi_A \circ (H \otimes \eta_A)$$

and there exists h in $Reg_{\varphi_A}(H, A) \cap Reg_{\phi_A}(H, A)$ with $h \circ \eta_H = \eta_A$ and such that

$$\varphi_{\mathsf{A}} = \mu_{\mathsf{A}} \circ (\mu_{\mathsf{A}} \otimes \mathsf{A}) \circ (\mathsf{h} \otimes \phi_{\mathsf{A}} \otimes \mathsf{h}^{-1}) \circ (\delta_{\mathsf{H}} \otimes \mathsf{c}_{\mathsf{H},\mathsf{A}}) \circ (\delta_{\mathsf{H}} \otimes \mathsf{A}),$$

 $\sigma = \mu_A \circ (\mu_A \otimes h^{-1}) \circ (\mu_A \otimes \tau \otimes \mu_H) \circ (h \otimes \phi_A \otimes \delta_{H \otimes H}) \circ (\delta_H \otimes h \otimes H \otimes H) \circ \delta_{H \otimes H}.$

Proposition

Let H be a cocommutative weak Hopf algebra. Then \approx is an equivalence relation.

Let H be a cocommutative weak Hopf algebra, (A, φ_A) a weak left H-module algebra and $\sigma \in Reg_{\varphi_A}(H^2, A)$ satisfying the twisted condition. The following assertions are equivalent:

(i) (A, φ_A) is a left *H*-module algebra.

(ii) The morphism σ factors through the center of A.

Let H be a cocommutative weak Hopf algebra, (A, φ_A) a weak left H-module algebra and $\sigma \in Reg_{\varphi_A}(H^2, A)$ satisfying the twisted condition. The following assertions are equivalent:

(i) (A, φ_A) is a left *H*-module algebra.

(ii) The morphism σ factors through the center of A.

Corollary

Let H be a cocommutative weak Hopf algebra and (A, φ_A) a weak left H-module algebra. The following assertions are equivalent:

(i) (A, φ_A) is a left *H*-module algebra.

(ii) (φ_A, u_2) is a crossed system for H over A.

Let H be a weak Hopf algebra, (A, φ_A) a weak left H-module algebra and $\sigma : H^2 \to A$ a morphism. We define the morphisms

$$\psi_{H}^{A}: H \otimes A \to A \otimes H, \quad \sigma_{H}^{A}: H \otimes H \to A \otimes H,$$

by

$$\psi_{H}^{A} = (\varphi_{A} \otimes H) \circ (H \otimes c_{H,A}) \circ (\delta_{H} \otimes A) : H \otimes A \to A \otimes H$$

and

$$\sigma_{H}^{A} = (\sigma \otimes \mu_{H}) \circ (H \otimes c_{H,H} \otimes H) \circ (\delta_{H} \otimes \delta_{H}) : H \otimes H \to A \otimes H$$

The morphism $\nabla_{A\otimes H} : A \otimes H \to A \otimes H$ defined by

$$\nabla_{A\otimes H} = (\mu_A \otimes H) \circ (A \otimes \psi_H^A) \circ (A \otimes H \otimes \eta_A)$$

is idempotent.

With $A \times H$, $i_{A \otimes H} : A \times H \to A \otimes H$ and $p_{A \otimes H} : A \otimes H \to A \times H$ we denote the object, the injection and the projection associated to the factorization of $\nabla_{A \otimes H}$.

If σ satisfies the twisted and the cocycle conditions the object $A\times H$ admits an associative product defined by

$$\mu_{A \times_{\sigma} H} = p_{A \otimes H} \circ \mu_{A \otimes_{\sigma} H} \circ (i_{A \otimes H} \otimes i_{A \otimes H})$$

where

$$\mu_{A\otimes_{\sigma}H}=(\mu_A\otimes H)\circ(\mu_A\otimes\sigma_H^A)\circ(A\otimes\psi_H^A\otimes H).$$

Moreover, if the normal condition holds $A \times H$ is an algebra with unit

$$\eta_{A\times_{\sigma}H}=p_{A\otimes H}\circ(\eta_{A}\otimes\eta_{H}).$$

If σ satisfies the twisted and the cocycle conditions the object $A\times H$ admits an associative product defined by

$$\mu_{A \times_{\sigma} H} = p_{A \otimes H} \circ \mu_{A \otimes_{\sigma} H} \circ (i_{A \otimes H} \otimes i_{A \otimes H})$$

where

$$\mu_{A\otimes_{\sigma}H}=(\mu_{A}\otimes H)\circ(\mu_{A}\otimes\sigma_{H}^{A})\circ(A\otimes\psi_{H}^{A}\otimes H).$$

Moreover, if the normal condition holds $A \times H$ is an algebra with unit

$$\eta_{A\times_{\sigma}H}=p_{A\otimes H}\circ(\eta_{A}\otimes\eta_{H}).$$

In what follows we denote this algebra by

 $A\times_{\sigma} H$

Let H be a cocommutative weak Hopf algebra and (φ_A, σ) a crossed system for H over A. Then, the algebra $A \times_{\sigma} H$ is a right H-comodule algebra for the coaction

 $\rho_{A\times_{\sigma}H}=(p_{A\otimes H}\otimes H)\circ(A\otimes\delta_{H})\circ i_{A\otimes H}.$

Moreover, $(A \times_{\sigma} H)_H = A$.

Let H be a cocommutative weak Hopf algebra and (φ_A, σ) a crossed system for H over A. Then, the algebra $A \times_{\sigma} H$ is a right H-comodule algebra for the coaction

$$\rho_{A\times_{\sigma}H} = (p_{A\otimes H}\otimes H) \circ (A\otimes \delta_{H}) \circ i_{A\otimes H}.$$

Moreover, $(A \times_{\sigma} H)_H = A$.

Proposition

Let H be a cocommutative weak Hopf algebra and (φ_A, σ) a crossed system for H over A. Then $A \hookrightarrow A \times_{\sigma} H$ is an H-cleft extension.

Let H be a cocommutative weak Hopf algebra and (φ_A, σ) a crossed system for H over A. Then, the algebra $A \times_{\sigma} H$ is a right H-comodule algebra for the coaction

$$\rho_{A\times_{\sigma}H} = (p_{A\otimes H}\otimes H) \circ (A\otimes \delta_{H}) \circ i_{A\otimes H}.$$

Moreover, $(A \times_{\sigma} H)_H = A$.

Proposition

Let H be a cocommutative weak Hopf algebra and (φ_A, σ) a crossed system for H over A. Then $A \hookrightarrow A \times_{\sigma} H$ is an H-cleft extension.

Proposition

Let H be a cocommutative weak Hopf algebra and let A be an algebra. If (φ_A, α) and (ϕ_A, β) are two equivalent crossed systems, so are the associated H-cleft extensions $A \hookrightarrow A \times_{\alpha} H$ and $A \hookrightarrow A \times_{\beta} H$.

Let H be a cocommutative weak Hopf algebra. If $A_H \hookrightarrow A$ is an H-cleft extension with cleaving morphism f, the morphism

$$\sigma_A = (\mu_A \circ (f \otimes f)) \land (f^{-1} \circ \mu_H) : H^2 \to A,$$

factors through the equalizer i_A . Moreover, σ_{A_H} , the factorization of σ_A , is a morphism in $\operatorname{Reg}_{\varphi_{A_H}}(H^2, A_H)$ satisfying the normal condition with $\sigma_{A_H}^{-1}$ the factorization through the equalizer i_A of the morphism

$$\sigma_A^{-1} = (f \circ \mu_H) \land (\mu_A \circ c_{A,A} \circ (f^{-1} \otimes f^{-1})).$$

Let H be a cocommutative weak Hopf algebra. If $A_H \hookrightarrow A$ is an H-cleft extension with cleaving morphism f, the morphism

$$\sigma_A = (\mu_A \circ (f \otimes f)) \land (f^{-1} \circ \mu_H) : H^2 \to A,$$

factors through the equalizer i_A . Moreover, σ_{A_H} , the factorization of σ_A , is a morphism in $\operatorname{Reg}_{\varphi_{A_H}}(H^2, A_H)$ satisfying the normal condition with $\sigma_{A_H}^{-1}$ the factorization through the equalizer i_A of the morphism

$$\sigma_A^{-1} = (f \circ \mu_H) \land (\mu_A \circ c_{A,A} \circ (f^{-1} \otimes f^{-1})).$$

Proposition

Let H be a cocommutative weak Hopf algebra and let $A_H \hookrightarrow A$ be an H-cleft extension with cleaving morphism f. Then, the pair $(\varphi_{A_H}, \sigma_{A_H})$ is a crossed system for H over A_H . Moreover, the H-cleft extensions $A_H \hookrightarrow A$ and $A_H \hookrightarrow A_H \times_{\sigma_{A_H}} H$ are equivalent.

Let *H* be a cocommutative weak Hopf algebra and let (φ_A, σ) be a crossed system for *H* over *A*. Let $A \hookrightarrow A \times_{\sigma} H$ be the associated *H*-cleft extension. Then, if (ϕ_A, τ) is the crossed system associated to the *H*-cleft extension $A \hookrightarrow A \times_{\sigma} H$, we have that $(\phi_A, \tau) = (\varphi_A, \sigma)$.

Let *H* be a cocommutative weak Hopf algebra and let (φ_A, σ) be a crossed system for *H* over *A*. Let $A \hookrightarrow A \times_{\sigma} H$ be the associated *H*-cleft extension. Then, if (ϕ_A, τ) is the crossed system associated to the *H*-cleft extension $A \hookrightarrow A \times_{\sigma} H$, we have that $(\phi_A, \tau) = (\varphi_A, \sigma)$.

Proposition

Let H be a cocommutative weak Hopf algebra and let $A_H \hookrightarrow A$ be an H-cleft extension with cleaving morphism f. Assume that $g : H \to A$ is other cleaving morphism with associated crossed system (ϕ_{A_H}, τ_{A_H}) . Then the crossed systems $(\varphi_{A_H}, \sigma_{A_H})$ and (ϕ_{A_H}, τ_{A_H}) are equivalent.

Let *H* be a cocommutative weak Hopf algebra and let (φ_A, σ) be a crossed system for *H* over *A*. Let $A \hookrightarrow A \times_{\sigma} H$ be the associated *H*-cleft extension. Then, if (ϕ_A, τ) is the crossed system associated to the *H*-cleft extension $A \hookrightarrow A \times_{\sigma} H$, we have that $(\phi_A, \tau) = (\varphi_A, \sigma)$.

Proposition

Let H be a cocommutative weak Hopf algebra and let $A_H \hookrightarrow A$ be an H-cleft extension with cleaving morphism f. Assume that $g : H \to A$ is other cleaving morphism with associated crossed system (ϕ_{A_H}, τ_{A_H}) . Then the crossed systems $(\varphi_{A_H}, \sigma_{A_H})$ and (ϕ_{A_H}, τ_{A_H}) are equivalent.

Corollary

Let H be a cocommutative weak Hopf algebra and let $A_H \hookrightarrow A$, $A_H \hookrightarrow B$ two equivalent H-cleft extensions with cleaving morphisms f and g respectively. Then the corresponding crossed systems $(\varphi_{A_H}, \sigma_{A_H})$ and (ϕ_{A_H}, τ_{A_H}) are equivalent.

Theorem

Let H be a cocommutative weak Hopf algebra. Two H-cleft extensions $A_H \hookrightarrow A$, $A_H \hookrightarrow B$ are equivalent if and only if so are their respective associated crossed systems.

Theorem

Let H be a cocommutative weak Hopf algebra. Two H-cleft extensions $A_H \hookrightarrow A$, $A_H \hookrightarrow B$ are equivalent if and only if so are their respective associated crossed systems.

Theorem

Let H be a cocommutative weak Hopf algebra and (A, ρ_A) a right H-comodule algebra. There exists a bijective correspondence between the equivalence classes of H-cleft extensions $A_H \hookrightarrow B$ and the equivalence classes of crossed systems for H over A_H .

Theorem

Let H be a cocommutative weak Hopf algebra. Two H-cleft extensions $A_H \hookrightarrow A$, $A_H \hookrightarrow B$ are equivalent if and only if so are their respective associated crossed systems.

Theorem

Let H be a cocommutative weak Hopf algebra and (A, ρ_A) a right H-comodule algebra. There exists a bijective correspondence between the equivalence classes of H-cleft extensions $A_H \hookrightarrow B$ and the equivalence classes of crossed systems for H over A_H .

$$F: CS(H, A_H) \rightarrow Cleft(A_H), \quad G: Cleft(A_H) \rightarrow CS(H, A_H)$$

$$F([(\varphi_{A_H}, \sigma_{A_H})]) = [A_H \hookrightarrow A_H \times_{\sigma_{A_H}} H]$$

$$G([A_H \hookrightarrow B]) = [(\phi_{A_H}, \tau_{A_H})].$$

Crossed systems and cohomology

2 Crossed systems for weak Hopf algebras

3 Crossed systems and cohomology

 Alonso Álvarez J.N., Fernández Vilaboa J.M., González Rodríguez R. Cohomology of algebras over weak Hopf algebras (2012). arXiv:1206.3850

 Alonso Álvarez J.N., Fernández Vilaboa J.M., González Rodríguez R. Cohomology of algebras over weak Hopf algebras (2012). arXiv:1206.3850

Let *H* be a cocommutative weak Hopf algebra. If (A, φ_A) is a left *H*-module algebra, the groups $Reg_{\varphi_A}(H^n, A)$, $n \ge 0$ are the objects of a semicosimplicial complex of groups with coface operators defined by

$$\partial_{0,i}: \operatorname{Reg}_{\varphi_A}(H_L, A) \to \operatorname{Reg}_{\varphi_A}(H, A), i \in \{0, 1\}$$

 $\partial_{0,0}(g) = \varphi_A \circ (H \otimes (g \circ p_L \circ \Pi_H^R)) \circ \delta_H, \ \partial_{0,1}(g) = g \circ p_L.$

 Alonso Álvarez J.N., Fernández Vilaboa J.M., González Rodríguez R. Cohomology of algebras over weak Hopf algebras (2012). arXiv:1206.3850

Let *H* be a cocommutative weak Hopf algebra. If (A, φ_A) is a left *H*-module algebra, the groups $Reg_{\varphi_A}(H^n, A)$, $n \ge 0$ are the objects of a semicosimplicial complex of groups with coface operators defined by

$$\partial_{0,i}: \operatorname{Reg}_{\varphi_A}(H_L, A) \to \operatorname{Reg}_{\varphi_A}(H, A), i \in \{0, 1\}$$

$$\partial_{0,0}(g) = \varphi_A \circ (H \otimes (g \circ p_L \circ \Pi_H^R)) \circ \delta_H, \ \partial_{0,1}(g) = g \circ p_L.$$

$$\partial_{1,i}: \operatorname{Reg}_{\varphi_A}(H,A) \to \operatorname{Reg}_{\varphi_A}(H^2,A), i \in \{0,1,2\}$$

 $\partial_{1,0}(h) = \varphi_A \circ (H \otimes h), \quad \partial_{1,1}(h) = h \circ \mu_H, \quad \partial_{1,2}(h) = h \circ \mu_H \circ (H \otimes \Pi_H^L).$

$$\partial_{k-1,i} : \operatorname{Reg}_{\varphi_{A}}(H^{k-1}, A) \to \operatorname{Reg}_{\varphi_{A}}(H^{k}, A), \quad k > 2, \quad i \in \{0, 1, \cdots, k\}$$
$$\partial_{k-1,i}(\sigma) = \begin{cases} \partial_{k-1,0}(\sigma) = \varphi_{A} \circ (H \otimes \sigma), \\ \partial_{k-1,i}(\sigma) = \sigma \circ (H^{i-1} \otimes \mu_{H} \otimes H^{k-i-1}), \quad i \in \{1, \cdots, k-1\} \\ \partial_{k-1,k}(\sigma) = \sigma \circ (H^{k-2} \otimes (\mu_{H} \circ (H \otimes \Pi_{H}^{L}))), \end{cases}$$

For this complex the codegeneracy operators are defined by

 $s_{1,0} : \operatorname{Reg}_{\varphi_A}(H, A) \to \operatorname{Reg}_{\varphi_A}(H_L, A),$ $s_{1,0}(h) = h \circ i_l,$

For this complex the codegeneracy operators are defined by

$$s_{1,0}: \operatorname{Reg}_{arphi_A}(H,A) o \operatorname{Reg}_{arphi_A}(H_L,A),$$
 $s_{1,0}(h) = h \circ i_L,$

$$\begin{split} s_{2,i} &: \operatorname{Reg}_{\varphi_A}(H^2, A) \to \operatorname{Reg}_{\varphi_A}(H, A), \ i \in \{0, 1\}\\ s_{2,0}(\sigma) &= \sigma \circ (\eta_H \otimes H), \quad s_{2,1}(\sigma) = \sigma \circ (H \otimes \eta_H), \end{split}$$

$$s_{k+1,i} : \operatorname{Reg}_{\varphi_A}(H^{k+1}, A) \to \operatorname{Reg}_{\varphi_A}(H^k, A), \quad k \ge 2, \quad i \in \{0, 1, \cdots, k\}$$
$$s_{k+1,i}(\sigma) = \begin{cases} s_{k+1,0}(\sigma) = \sigma \circ (\eta_H \otimes H^k), \\ s_{k+1,i}(\sigma) = \sigma \circ (H^i \otimes \eta_H \otimes H^{k-i}), \quad i \in \{1, \cdots, k-1\} \\ s_{k+1,k}(\sigma) = \sigma \circ (H^k \otimes \eta_H). \end{cases}$$

Let

$$D_{\varphi_A}^k = \partial_{k,\mathbf{0}} \wedge \partial_{k,\mathbf{1}}^{-\mathbf{1}} \wedge \dots \wedge \partial_{k,k+\mathbf{1}}^{(-\mathbf{1})^{k+\mathbf{1}}}$$

be the coboundary morphisms of the cochain complex

$$\begin{aligned} & \operatorname{Reg}_{\varphi_{A}}(H_{L}, A) \stackrel{D^{\mathbf{0}}_{\varphi_{A}}}{\longrightarrow} \operatorname{Reg}_{\varphi_{A}}(H, A) \stackrel{D^{\mathbf{1}}_{\varphi_{A}}}{\longrightarrow} \operatorname{Reg}_{\varphi_{A}}(H^{2}, A) \stackrel{D^{\mathbf{2}}_{\varphi_{A}}}{\longrightarrow} \cdots \\ & \cdots \stackrel{D^{k-1}_{\varphi_{A}}}{\longrightarrow} \operatorname{Reg}_{\varphi_{A}}(H^{k}, A) \stackrel{D^{k}_{\varphi_{A}}}{\longrightarrow} \operatorname{Reg}_{\varphi_{A}}(H^{k+1}, A) \stackrel{D^{k+1}_{\varphi_{A}}}{\longrightarrow} \cdots \end{aligned}$$

associated to the cosimplicial complex $Reg_{\varphi_A}(H^{\bullet}, A)$.

Then, when (A, φ_A) is a commutative left *H*-module algebra, $(Reg_{\varphi_A}(H^{\bullet}, A), D_{\varphi_A}^{\bullet})$ gives the Sweedler cohomology of *H* in (A, φ_A) . Therefore, the kth group, will be defined by

$$\frac{Ker(D_{\varphi_A}^k)}{Im(D_{\varphi_A}^{k-1})}$$

for $k \geq 1$ and $Ker(D^0_{\varphi_A})$ for k = 0. We will denote it by $H^k_{\varphi_A}(H, A)$.

Proposition

Let *H* be a cocommutative weak Hopf algebra and let $A_H \hookrightarrow A$ be an *H*-cleft extension. We denote by $(\varphi_{A_H}, \sigma_{A_H})$ the corresponding crossed system defined by the convolution invertible total integral $f : H \to A$. Then $(Z(A_H), \varphi_{Z(A_H)})$ is a left *H*-module algebra, where $\varphi_{Z(A_H)}$ is the factorization through the morphism $i_{Z(A_H)}$ of the morphism $\varphi_{A_H} \circ (H \otimes i_{Z(A_H)})$.

Theorem.

Let *H* be a cocommutative weak Hopf algebra and let $A_H \hookrightarrow A$ be an *H*-cleft extension. We denote by $(\varphi_{A_H}, \sigma_{A_H})$ the corresponding crossed system defined by the cleaving morphism $f : H \to A$. Then there is a bijective correspondence between the second cohomology group $H^2_{\varphi_{Z(A_H)}}(H, Z(A_H))$ and the equivalence classes of crossed systems for *H* over A_H having φ_{A_H} as weak *H*-module algebra structure.

Theorem.

Let H be a cocommutative weak Hopf algebra and let $A_H \hookrightarrow A$ be an H-cleft extension. We denote by $(\varphi_{A_H}, \sigma_{A_H})$ the corresponding crossed system defined by the cleaving morphism $f : H \to A$. Then there is a bijective correspondence between the second cohomology group $H^2_{\varphi_{Z(A_H)}}(H, Z(A_H))$ and the equivalence classes of crossed systems for H over A_H having φ_{A_H} as weak H-module algebra structure.

References:

 Alonso Álvarez, J.N., Fernández Vilaboa, J.M. y González Rodríguez, R.: Integrals and crossed products over weak Hopf algebras (2012). arXiv:1207.5363