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Abstract

In this survey we explain in detail how Radford’s ideas and results about Hopf algebras
with projection can be generalized to quantum groupoids in a strict symmetric monoidal
category with split idempotents.

Introduction

Let H be a Hopf algebra over a field K and let A be a K-algebra. A well-known result of
Radford [23] gives equivalent conditions for an object A® H equipped with smash product algebra
and coalgebra to be a Hopf algebra and characterizes such objects via bialgebra projections.
Majid in [16] interpreted this result in the modern context of Yetter-Drinfeld modules and stated
that there is a correspondence between Hopf algebras in this category, denoted by gyD, and
Hopf algebras B with morphisms of Hopf algebras f : H — B, g : B — H such that go f = idy.
Later, Bespalov proved the same result for braided categories with split idempotents in [5]. The
key point in Radford-Majid-Bespalov’s theorem is to define an object By, called the algebra of
coinvariants, as the equalizer of (B ® g) o 0p and B ® ng. This object is a Hopf algebra in the
category gyD and there exists a Hopf algebra isomorphism between B and By <1 H (the smash
(co)product of By and H). It is important to point out that in the construction of By > H
they use that By is the image of the idempotent morphism qg =pupo(B®(folgog))odp.

In [11], Bulacu and Nauwelaerts generalize Radford’s theorem about Hopf algebras with
projection to the quasi-Hopf algebra setting. Namely, if H and B are quasi-Hopf algebras with
bijective antipode and with morphisms of quasi-Hopf algebras f : H — B, g : B — H such that
go f = idy, then they define a subalgebra B’ (the generalization of By to this setting) and
with some additional structures B* becomes, a Hopf algebra in the category of left-left Yetter-
Drinfeld modules £YD defined by Majid in [17]. Moreover, as the main result in [11], Bulacu
and Nauwelaerts state that B* x H is isomorphic to B as quasi-Hopf algebras where the algebra
structure of B? x H is the smash product defined in [10] and the quasi-coalgebra structure is
the one introduced in [11].

The basic motivation of this survey is to explain in detail how the above ideas and results
can be generalized to quantum groupoids in a strict symmetric monoidal category with split
idempotents. Quantum groupoids or weak Hopf algebras have been introduced by Béhm, Nill
and Szlachényi [7] as a new generalization of Hopf algebras and groupoid algebras. Roughly



speaking, a weak Hopf algebra H in a symmetric monoidal category is an object that has
both algebra and coalgebra structures with some relations between them and that possesses an
antipode Ay which does not necessarily verify Ag A idyg = idg AN Ay = eg ® ng where g, ng
are the counity and unity morphisms respectively and A denotes the usual convolution product.
The main differences with other Hopf algebraic constructions, such as quasi-Hopf algebras and
rational Hopf algebras, are the following: weak Hopf algebras are coassociative but the coproduct
is not required to preserve the unity ng or, equivalently, the counity is not an algebra morphism.
Some motivations to study weak Hopf algebras come from their connection with the theory of
algebra extensions, the important applications in the study of dynamical twists of Hopf algebras
and their link with quantum field theories and operator algebras (see [20]).

The survey is organized as follows.

In Section 1 we give basis definitions and examples of quantum groupoids without finiteness
conditions. Also we introduce the category of left-left Yetter-Drinfeld modules defined by Bohm
for a quantum groupoid with invertible antipode. As in the case of Hopf algebras this category
is braided monoidal but in this case is not strict.

The exposition of the theory of crossed products associated to projections of quantum
groupoids in Section 2 follows [2] and is the good generalization of the classical theory developed
by Blattner, Cohen and Montgomery in [6]. The main theorem in this section generalizes a well
know result, due to Blattner, Cohen and Montgomery, which shows that if B = H — 0 is an
exact sequence of Hopf algebras with coalgebra splitting then B ~ Af,H, where A is the left
Hopf kernel of 7 and o is a suitable cocycle (see Theorem (4.14) of [6]). In this section we
show that if g : B — H is a morphism of quantum groupoids and there exists a morphism of
coalgebras f : H — B such that go f = idy and f ong = np, using the idempotent morphism
qg =pupo(B® (Apofog))odp: B — B itis possible to construct an equalizer diagram
and an algebra By, i.e, the algebra of coinvariants or the Hopf kernel of g, and morphisms
vpy : H® By — Bp (the weak measuring), op,, : H ® H — By (the weak cocycle) such
that there exists an idempotent endomorphism of By ® H which image, denoted by By x H, is
isomorphic with B as algebras being the algebra structure (crossed product algebra)

NByxH =TB° (NBy @NH),
BByxH =TB° (UBy @ H) o (up, ® 0py @ pu) o (By ® 9By @ dHgH)o
(Ba @ H® cupy ® H)o (B ®6p © By @ H) o (sp ® sp),

where sp is the inclusion of By x H in By ® H and rp the projection of By ® H on By x H. Of
course, when H, B are Hopf algebras we recover the result of Blattner, Cohen and Montgomery.
For this reason, we denote the algebra By x H by BHﬂUBHH . If moreover f is an algebra
morphism, the cocycle is trivial in a weak sense and then we obtain that pp, «m is the weak
version of the smash product used by Radford in the Hopf algebra setting. Also, we prove the
dual results using similar arguments but passing to the opposite category, for a morphism of
quantum groupoids h : H — B and an algebra morphism ¢ : B — H such that ¢t o h = idg and
egot=c¢cp.

Finally, in Section 3, linking the information of section 2 with the results of [1], [2], [3] and
[4], we obtain our version of Radford’s Theorem for quantum groupoids with projection. In
this section we prove that the algebra of coinvariants By associated to a quantum groupoid
projection (i.e. a pair of morphisms of quantum groupoids f : H — B, g : B — H such that



go f = idy) can be obtained as an equalizer or, by duality, as a coequalizer (in this case the
classical theory developed in Section 2 and the dual one provide the same object By with dual
algebraic structures, algebra-coalgebra, module-comodule, etc...). Therefore, it is possible to find
an algebra coalgebra structure for By and morphisms ¢, = pg oupo (f®i§) :H® B — By
and op, = (g ®pg) odpo ifl : By — H ® By such that (By,¢p,, ) is a left H-module and
(B, 0B,,) is a left H-comodule. We show that By is a Hopf algebra in the category of left-
left Yetter-Drinfeld modules g)ﬂD and, using the the the weak smash product and the weak
smash coproduct of By and H we give a good weak Hopf algebra interpretation of the theorems
proved by Radford [23] and Majid [16] in the Hopf algebra setting, obtaining an isomorphism
of quantum groupoids between By x H and B.

1 Quantum groupoids in monoidal categories

In this section we give definitions and discuss basic properties of quantum groupoids in
monoidal categories.

Let C be a category. We denote the class of objects of C by |C| and for each object X € |C|,
the identity morphism by idx : X — X.

A monoidal category (C,®, K, a,l,r) is a category C which is equipped with a tensor product
® : C x C — C, with an object K, called the unit of the monoidal category, with a natural
isomorphism a : ®(id X ®) — R(® x id), called the associativity constrain, and with natural
isomorphisms [ : ®(K X id) — id, r : @(id x K) — id, called left unit constraint and right unit
constraint respectively, such that the Pentagon Axiom

(apyvw ®idx) o ayvew.x o (idy ® av,w,.x) = AUeV,w.X © AU VWX

and the Triangle Axiom
idy @ ly = (ry ®idw) o ay, KW

are satisfied.

The monoidal category is said to be strict if the associativity and the unit constraints a, [,
r are all identities of the category.

Let ¥ : C xC — C x C be the flip functor defined by W(V, W) = (W, V') on any pair of objects
of C. A commutativity constrain is a natural isomorphism ¢ : ® — V. If (C,®, K,a,l,r) is a
monoidal category, a braiding in C is a commutativity constraint satisfying the Hexagon Axiom

awu,v ° cugv.w © auy.w = (cuw ® idy) o ayw,v o (idy ® cyw),

-1 -1 ; —1 .
Ay w,y ©CUVRW ©ay vy = (idy @ cuw) o ay o © (CU,V ® idwy).

A braided monoidal category is a monoidal category with a braiding ¢. These categories
generalizes the classical notion of symmetric monoidal category introduced earlier by category
theorists. A braided monoidal category is symmetric if the braiding satisfies cyy v ocy,w = idvew
for all V,W € [C|.

From now on we assume that C is strict symmetric and admits split idempotents, i.e., for
every morphism Vy : Y — Y such that Vy = Vy o Vy there exist an object Z and morphisms
iy : Z — Y and py : Y — Z such that Vy = iy o py and py o iy = idz. There is not loss of
generality in assuming the strict character for C because it is well know that given a monoidal
category we can construct a strict monoidal category C5' which is tensor equivalent to C (see



[15] for the details). For simplicity of notation, given objects M, N, P in C and a morphism
f:M — N, we write P® f for idp ® f and f ® P for f ® idp.

Definition 1.1 An algebra in C is a triple A = (A,n4,ua) where A is an object in C and
na: K — A (unit), pg : A® A — A (product) are morphisms in C such that pyg o (A®@mna) =
idg = pao(Ma®A), pao(A@pua) =pao (ua® A). Given two algebras A = (A, na, pa) and
B = (B,nB,uB), f : A — B is an algebra morphism if ugo (f ® f) = fopua, fona = np.
Also, if A, B are algebras in C, the object A ® B is an algebra in C where nagp = 14 @ ng and
pasB = (A @ pp)o (A®cpa® B).

A coalgebra in C is a triple D = (D,ep,dp) where D is an object in C and ep : D — K
(counit), ép : D — D ® D (coproduct) are morphisms in C such that (ep ® D) odp = idp =
(D®ep)odp, (0p@D)odp = (DRdp)odp. If D = (D,ep,dp) and E = (E,ep,dp) are coalgebras,
f: D — FEis acoalgebra morphism if (f® f)odp = dgof,epof = ep. When D, E are coalgebras
in C, D® E is a coalgebra in C where epgrp =ep ®ep and dpgr = (D®cpp @ FE)o (dp ® ).

If A is an algebra, B is a coalgebra and a: B — A, 3 : B — A are morphisms, we define the
convolution product by a A = pg0 (a® ) odp.

By quantum groupoids or weak Hopf algebras we understand the objects introduced in [7],
as a generalization of ordinary Hopf algebras. Here, for the convenience of the reader, we recall
the definition of these objects and some relevant results from [7] without proof, thus making our
exposition self-contained.

Definition 1.2 A quantum groupoid H is an object in C with an algebra structure (H, ng, pg)
and a coalgebra structure (H,ep, dp) such that the following axioms hold:

(al) o opm = (pg @ ) © dueH,
(a2) egopmo(pu ® H) = (g ®en) o (pp @ p) o (H Q6 @ H)
= (g ®@ep)o (py @ pu)o (H® (cumodn)® H),
(@3) (bg@H)odgonyg=(Hug @H)o (g ®0m) o (ng @ nm)
= (H ® (ug ocum) ® H) o (65 ®6m) o (i @ nir).
(a4) There exists a morphism Ay : H — H in C (called the antipode of H) verifiying:

)
(a4-1) idg ANg = ((egopr) @ H)o (H®cyu)o ((0gony) @ H),

(a4-2) Ag Nidg = (H® (egopm)) o (cuup @ H) o (H ® (6g onm)),

(a4—3) Ag Nitdg ANAg = Ag.

Note that, in this definition, the conditions (a2), (a3) weaken the conditions of multiplica-
tivity of the counit, and comultiplicativity of the unit that we can find in the Hopf algebra
definition. On the other hand, axioms (a4-1), (a4-2) and (a4-3) weaken the properties of the
antipode in a Hopf algebra. Therefore, a quantum groupoid is a Hopf algebra if an only if the
morphism ¢y (comultiplication) is unit-preserving and if and only if the counit is a homomor-
phism of algebras.



1.3 If H is a quantum groupoid in C, the antipode A is unique, antimultiplicative, anticomul-
tiplicative and leaves the unit ny and the counit £y invariant:

Amopg =pagoAg®@Ag)ocum, Omolg=cumo(Ag®Ag)odm,
AHONH =NH, EHOAH =EH.
If we define the morphisms IT% (target morphism), IT% (source morphism), ﬁf{ and ﬁfl by
f = ((en o pr) @ H) o (H @ cppr) o ((6m 0 nar) © H),
I} = (H® (em o pmr)) o (em @ H) o (H @ (3 o)),
=L
Iy = (H @ (em o pm)) o ((0m onu) ® H),
=R
Iy = ((eg opn) ® H)o (H® (6u onm)).
it is straightforward to show that they are idempotent and H%, Hg satisfy the equalities
Ik = id R = i
o =1tidg N g, Iy = Mg ANidg.
Moreover, we have that
L oTly =11k, 1L Ty =T, NEolly =1y, oI, =1k,
Oy ollh =Ty, Thyolf =1k Tholk =1k, TOFonk =1y,
Also it is easy to show the formulas
I} :ﬁflo)\H :)\Hoﬁé, e :ﬁILLIoAH :)\Hoﬁg,
oAy =g ollf = Ay ollfy, I oAy = 11f oIy = Ay o 1.
If Ay is an isomorphism (for example, when H is finite), we have the equalities:
Ty = pm o (H® A ) o o 6m, gy = ppr o (At ® H) o e pr o 1.

If the antipode of H is an isomorphism, the opposite operator and the coopposite operator
produce quantum groupoids from quantum groupoids. In the first one the product py is replaced
by the opposite product pigor = pp o ¢, while in the second the coproduct 0 is replaced by
Oprcoor = ¢, © 0. In both cases the antipode Ay is replaced by )\;{1.

A morphism between quantum groupoids H and B is a morphism f : H — B which is
both algebra and coalgebra morphism. If f : H — B is a weak Hopf algebra morphism, then
Ao f = foAm (see Proposition 1.4 of [1]).

Examples 1.4 (i) As group algebras and their duals are the natural examples of Hopf alge-
bras, groupoid algebras and their duals provide examples of quantum groupoids. Recall that a
groupoid G is simply a category in which every morphism is an isomorphism. In this example,
we consider finite groupoids, i.e. groupoids with a finite number of objects. The set of objects of
G will be denoted by Gy and the set of morphisms by G1. The identity morphism on z € G will



also be denoted by id, and for a morphism o : z — y in G, we write s(o) and ¢(o), respectively
for the source and the target of o.
Let G be a groupoid, and R a commutative ring. The groupoid algebra is the direct product

RG= P Ro

oeGy

with the product of two morphisms being equal to their composition if the latter is defined and
0 in otherwise, i.e. o7 = oo 7 if s(o) = ¢(7) and o7 = 0 if s(0) # (7). The unit element
is 1pg = erGo id;. The algebra RG is a cocommutative quantum groupoid, with coproduct
dRrG, counit ege and antipode Agg given by the formulas:

Spa(0) =0®0, erg(o)=1, Apg(o)=0""

For the quantum groupoid RG the morphisms target and source are respectively,

(o) = idyy), NEq(o) = idye)

and Arg © Arg = idRg, i.e. the antipode is involutive.
If G, is finite, then RG is free of a finite rank as a R-module, hence GR = (RG)* =
Homp(RG, R) is a commutative quantum groupoid with involutory antipode. As R-module

GR= P Rf,

oeGy

with (fs,7) = 0s. The algebra structure is given by the formulas f,f; = d,+fs and lggr =
Zaecl fo- The coalgebra structure is

Sar(fo) = Y [r®fo=D fop1® fo, ear(fo) = Ooidy,,-

Tp=0 peGy

The antipode is given by A\gr(fs) = f,-1.

(ii) It is known that any group action on a set gives rise to a groupoid (see [24]). In [20]
Nikshych and Vainerman extend this construction associating a quantum groupoid with any
action of a Hopf algebra on a separable algebra.

(iii) It was shown in [19] that any inclusion of type II; factors with finite index and depth
give rise to a quantum groupoid describing the symmetry of this inclusion. In [20] can be found
an example of this construction applied to the case of Temperley-Lieb algebras (see [13]).

(iv) In [22] Nill proved that Hayashi’s face algebras [14] are examples of quantum groupoids
whose counital subalgebras, i.e., the images of H% and Hg, are commutative. Also, in [22] we can
find that Yamanouchi’s generalized Kac algebras (see [25]) are exactly C*-quantum groupoids
with involutive antipode.

1.5 Let H be a quantum groupoid. We say that (M, pys) is a left H-module if M is an
object in C and ¢y : H ® M — M is a morphism in C satisfying ¢as o (ng @ M) = idyy,
omo(H®pn) = pumo(ug®M). Given two left H-modules (M, py) and (N, ¢on), f: M — N
is a morphism of left H-modules if pn o (H ® f) = f o ppr. We denote the category of right
H-modules by pC. In an analogous way we define the category of right H-modules and we
denote it by Cp.



If (M,¢n) and (N, @pn) are left H-modules we denote by ¢argn the morphism gy :
HOM®N — M ® N defined by

omeN = (e @ on) o (H® ey @ N)o (0y ® M @ N).

We say that (M, opr) is a left H-comodule if M is an object in C and op7 : M — H @ M
is a morphism in C satisfying (e ® M) o opr = idpr, (H @ opr) © o = (0 @ M) o gpr. Given
two left H-comodules (M, opr) and (N, on), f: M — N is a morphism of left H-comodules if
onof=(H® f)ooy. We denote the category of left H-comodules by /C. Analogously, C
denotes the category of right H-comodules.

For two left H-comodules (M, gpr) and (N, on), we denote by oprgn the morphism oprgn :
M®N — H®M® N defined by

omen = (pg © M @ N)o (H® cyu © N) o (om @ on).-
Let (M, @), (N, on) be left H-modules. Then the morphism
Vien = pmeno (g @M @N): M@N — M @ N

is idempotent. In this setting we denote by M x N the image of Vyrgn and by pyy v : M QN —
M x N, iyn : M x N — M ® N the morphisms such that iy;n o pyy = Vimgn and
pM,N © iy,N = tdyxn. Using the definition of X we obtain that the object M x N is a
left H-module with action paxn = pu,n 0 ougn © (H @ iyn) : H® (M x N) — M x N
(see [20]). Note that, if f : M — M’ and g : N — N’ are morphisms of left H-modules then
(f®g)oVuen = Vregn o (f®g).

In a similar way, if (M, opr) and (N, o) are left H-comodules the morphism

/]\/[®N:(5H®M®N)OQM®M:M®N—>M®N

is idempotent. We denote by M © N the image of V', v and by pj, v : M @ N — M © N,
‘N MON — M ® N the morphisms such that iy, o iy v = Vi ey and piy y o iy, y =
tdpon- Using the definition of ® we obtain that the object M © N is a left H-comodule with
coaction gyeon = (H @ Py y) o omen iy y MON - H® (MON). If f: M — M and
g : N — N’ are morphisms of left H-comodules then (f®@9)oVien = Viren © (f®9).

Let (M,¢n), (N,¢on), (P,pp) be left H-modules. Then the following equalities hold
(Lemma 1.7 of [3]):

omeN © (H® VygNn) = ¢MeN,
PMeN = PMaN © VMeN,
(i N ® P)oViyxnygp o (Pun ® P) = (M ®inp)oViygnxp) © (M @ pn.p),
(M®inp)oVygnxp)o(M@pN.p) = (Vugn®@P)o(M@VNgp) = (M®VNgp)o(Vuen @ P).
Furthermore, by a similar calculus, if (M, opr), (N, on), (P, op) be left H-comodules we have

(H ® Viygn) © OMaN = OMaN
omaN © Viign = 0MaN,
(i N ®P)o VI(MQN)®P o (Pun®P)=(M®iyp)o VIM®(N®P) o (M ®py.p),
(M®i§V,P)OV/M®(N@P)O(M®P/N,P) = (Viuen®@P)o(M&@Viygp) = (MRViygp)o(Vijgn@P).



Yetter-Drinfeld modules over finite dimensional weak Hopf algebras over fields have been
introduced by Béhm in [9]. It is shown in [9] that the category of finite dimensional Yetter-
Drinfeld modules is monoidal and in [18] it is proved that this category is isomorphic to the
category of finite dimensional modules over the Drinfeld double. In [12], the results of [18] are
generalized, using duality results between entwining structures and smash product structures,
and more properties are given.

Definition 1.6 Let H be a weak Hopf algebra. We shall denote by gyD the category of
left-left Yetter-Drinfeld modules over H. That is, M = (M, ¢nr, on) is an object in HYD if
(M, par) is a left H-module, (M, ppr) is a left H-comodule and

(b1)  (pm @M)o(H®@cpm)o ((omopm)®@H)o(H®cyn)o (6m @ M)
= (ug @pm)o (H®cyug @ M)o (dg ® om).
(b2) (g ® M) o (H® ey @ M) o ((0p onm) ® om) = om-

Let M, N in g)}D. The morphism f : M — N is a morphism of left-left Yetter-Drinfeld
modules if fopy =pno(H® f)and (H® f)oonm =onof.

Note that if (M, s, oar) is a left-left Yetter-Drinfeld module then (b2) is equivalent to
(b3)  ((emopn)®om)o (H®cyn @ M)o (6n ® onm) = pum-

and we have the identity a0 (Hﬁ, ® M) o opr = idpy.

The conditions (b1l) and (b2) of the last definition can also be restated (see Proposition 2.2
of [12]) in the following way: suppose that (M, ¢as) € | gC| and (M, opr) € | #C|, then M is a
left-left Yetter-Drinfeld module if and only if

ovoom = (pag @ M) o (H ® cpm)o

((par @ em)o(H®cag @ M) o (dg @ om)) @ Ag) o (H @ cun)o (0g @ M).

Moreover, the following Proposition, proved in [4], guaranties the equality between the mor-
phisms Vgn and Vo v defined in 1.5 for all M, N € | £YD|.

Proposition 1.7 Let H be a weak Hopf algebra. Let (M, oar, onr) and (N, on, on) be left-left
Yetter-Drinfeld modules over H. Then we have the following assertions.

(i) Vasen = ((par o ([ ® M) o cari) © N) o (M ® on).
(ii) Vigen = (M @ on) o (M @TI) o e o oar) @ N).
(iii) Vien = Vigy-

(iv) Vaen = ((pa o (T © M) o cari) @ H) o (M ® 8y,

() Vigen = (M@ prr) o (M @TIy) 0 capar o on) ® H).

(vi) Vion = Vien-



1.8 It is a well know fact that, if the antipode of a weak Hopf algebra H is invertible, gyD
is a non-strict braided monoidal category. In the following lines we give a brief resume of the
braided monoidal structure that we can construct in the category g)}D (see Proposition 2.7 of
[18] for modules over a field K or Theorem 2.6 of [12] for modules over a commutative ring).

For two left-left Yetter-Drinfeld modules (M, @, oar), (IV,©n, on) the tensor product is
defined as object as the image of Vi gn (see 1.5). As a consequence, by (iii) of Proposition 1.7,
M x N =M ® N and this object is a left-left Yetter-Drinfeld module with the following action
and coaction:

OMxN =PM,N ©PMen © (H iy N), omxv = (H ®@puN)© oMmen ©iMN-

The base object is Hy, = Im(Hf{) or, equivalently, the equalizer of dy and (1, = (H®H1LLI)05H

(see (9)) or the equalizer of 65 and (% = (H ®ﬁ§) odp. The structure of left-left Yetter-Drinfeld
module for Hy, is the one derived of the following morphisms

o, =propupo(H®ir), ou, =(H®pr)odyoir.

where p;, : H — Hp and i, : H; — H are the morphism such that H% = 47, o pr, and
pr ot =idg, .
The unit constrains are:

I =omo(ir®@M)oig, m:Hp x M — M,
=L . .
rv = ¢mocmpo (M@ (Ilgoir))oinm, : M x Hy, — M.
These morphisms are isomorphisms with inverses:
o =pam o (pL @) o (g onm) @ M) : M — Hy, x M,

TJT41 =pma, © (v @pr)o (H®canm)o (dpong) @ M): M — M x Hy,.
If M, N, P are objects in the category gyD, the associativity constrains are defined by

am,N,P = P(mxnN),p ° (PuN @ P)o (M ®inp)oiynxp)y: M X (N XxP)— (MxN)xP
where the inverse is the morphism
QEN’p = apmN,p = Py, (NxP) o (M®pN p)o(inNDP)oinxnyp: (MXN)xP — Mx(NXxP).
If y: M — M and ¢ : N — N’ are morphisms in the category, then
YX ¢=pprxno(Y®P)oiyn:MxN— M x N

is a morphism in YD and (7 x ¢') o (y x ¢) = (7' o) x (¢' 0 $), where v/ : M' — M" and
¢' - N’ — N are morphisms in ZYD.
Finally, the braiding is

TM,N =PNMOtmNnoiyN: M XN —NxM

where tyr v = (N @ M) o (H®cyn)o (oM @ N): M @ N — N ® M. The morphism 77 n is
a natural isomorphism with inverse:

—1 / . .
TMVN:pM,NOtMyNOZNaM'NXM_)MXN

where t}, =cvmo(py@M)o(eng@M)o(N@AG @ M)o (N ® o).



2 Projections, quantum groupoids and crossed products

In this section we give basic properties of quantum groupoids with projection. The material
presented here can be found in [1] and [2]. For example, in Theorem 2.2 we will show that if H,
B are quantum groupoids in C and g : B — H is a quantum groupoid morphism such that there
exist a coalgebra morphism f : H — B verifiying go f = tdy and fong = np then, it is possible
to find an object By, defined by an equalizer diagram an called the algebra of coinvariants,
morphisms ¢p, : H ® By — By, op, : H® H — By and an isomorphism of algebras and
comodules by : B — By x H being By x H a subobject of By ® H with its algebra structure
twisted by the morphism op, . Of course, the multiplication in By x H is a generalization of
the crossed product and in the Hopf algebra case the Theorem 2.2 is the classical and well know
result obtained by Blattner, Cohen and Montgomery in [6].

The following Proposition is a generalization to the quantum groupoid setting of classic
result obtained by Radford in [23].

Proposition 2.1 Let H, B be quantum groupoids in C. Let g : B — H be a morphism of
quantum groupoids and f : H — B be a morphism of coalgebras such that go f = idy. Then
the following morphism is an idempotent in C:

8 =ppo(B®(\pofog))odp: B — B.

Proof. See Proposition 2.1 of [2].
As a consequence of this proposition, we obtain that there exist an epimorphism pfl, a
monomorphism ifl and an object By such that the diagram

ai
B B
pg\g /zg
By
commutes and pg o ifl = idp,. Moreover, we have that
iB (B®g)odp
By B , B H

(B® (Il 0 g)) 0 0p

is an equalizer diagram.
Now, let np,, and g, be the factorizations, through the equalizer ig, of the morphisms np
and pup o (zg ® zg) Then (By,nB, = pg ONB, UBy = pg oupo (zg ® zg)) is an algebra in C.
On the other hand, by Proposition 2.4 of [2] we have that there exists an unique morphism
¢By : H® By — By such that igoapBH = yp where yp : H® By — B is the morphism defined
by yg = pupo (B® (pgocpp))o(f®(Ago f)® B)o (§g ®i5). The morphism ¢p,, satisfies:

0By =Dh o ks o (f ®if),
0By © (M ® By) = idpg,,,

vpy o (H®npy,) = ¢, o (5 @ns,),

10



1By © (9B, ® By) o (H ®np, ® By) = ¢p, o (If; ® By),
By © (H @ ppy) = pBy © (PBy @ ¢By) o (H ®cypy ® By)o (g ® By ® By),

—L
1By © By By © ((¢By o (H ®npy)) @ By) = ¢py o (g @ By).

and, if f is an algebra morphism, (By, ¢B,,) is a left H-module (Proposition 2.5 of [1]).
Moreover, in this setting, there exists an unique morphism op, : H ® H — By such that

iB oop, = op where op : H® H — B is the morphism defined by:
H H

op=ppo((upo(f@f))@Apofouy))odusn-

Then, as a consequence, we have the equality op, = pfl oop (Proposition 2.6, [2]).

Now let wp : By ® H — B be the morphism defined by wp = upg o (zfl ® f). If we define
Wi+ B — By ® H by wp = (pg ® g) o dp we have wp o wlz = idp. Then, the morphism
Qp =whowp: By ® H— By ® H is idempotent and there exists a diagram

BHXH

where sporp =Qp, rposg =tidp,xH, bp =rpowy.

It is easy to prove that the morphism bp is an isomorphism with inverse bgl = wp o SB.
Therefore, the object By x H is an algebra with unit and product defined by ng, xx = bpong,
UByxH = bp o pupo (b;l ® bgl) respectively. Also, By x H is a right H-comodule where
pByxi = (bp @ H)o(B®g)odpo bgl. Of course, with these structures bg is an isomorphism
of algebras and right H-comodules being pp = (B ® g) 0 0p.

On the other hand, we can define the following morphisms:

nBHﬁGBHH : K — BgxH, 'uBHﬁUBHH :ByxH®ByxH — BygxH, pBHﬁUBHH : By — BgxH®H
where

NBytey, H =B ° (NBy @ NH),

Bty H =80 (kBy @ H) o (1py ® 0y ® i) o (By © ppy © dnen)o

(Bu®H®cppy, ® H)o(By ®éyg ® By ® H) o (sp® sp),
PButey, H = (re® H)o (By ®0dg)osp.
Finally, if we denote by B HjigBHH (the crossed product of By and H) the triple
(B x H, nBHﬁgBHHHUBHﬁUBHH)

we have the following theorem.

11



Theorem 2.2 Let H, B be quantum groupoids in C. Let g : B — H be a morphism of quantum

groupoids and f: H — B be a morphism of coalgebras such that go f = idyg and f ong = np.

Then, BHj:tUBHH is an algebra, (By x H, PButo,s i) is a right H-comodule and bp : B —
H

BHjngHH 1s an isomorphism of algebras and right H -comodules.

Proof: The proof of this Theorem is a consequence of the following identities (see Theorem
2.8 of [2] for the complete details)

nBHﬂgBHH - nBHXHa ,U‘BHﬁgBHH = /-'LBHXHa pBHﬂgBHH - pBHXH'

Remark 2.3 We point out that if H and B are Hopf algebras, Theorem 2.2 is the result
obtained by Blattner, Cohen and Montgomery in [6]. Moreover, if f is an algebra morphism, we

have op,, = ey ® ey ® np,, and then BHjngHH is the smash product of By and H, denoted
by BgfH. Observe that the product of BgfiH is

pBytH = (1By @ purr) o (Bu @ ((ppy @ H) o (H @ cy,py) o (0n @ By)) ® H)

Let H, B be quantum groupoids in C. Let g : B — H, f : H — B be morphisms of
quantum groupoids such that g o f = idy. In this case op = H]Lg o f oy and then, using
UB © (Hé ® B)odp = idp, we obtain

PByty, H = TBO(1By @ i) o (Br @ ((ppy @ H) o (H @ cppy) 0 (0n @ Bu)) @ H) o (sp @ sp)

As a consequence, for analogy with the Hopf algebra case, when op = H]f o fouy, we will
denote the triple BHﬁUBHH by BpfH (the smash product of By and H).

Therefore, if f and g are morphisms of quantum groupoids, we have the following particular
case of 2.2.

Corollary 2.4 Let H, B be quantum groupoids in C. Let g: B — H, f: H — B be morphisms
of quantum groupoids such that g o f = idg. Then ByiH is an algebra, (By %< H,pp,sH) is a
right H-comodule and bg : B — ByttH is an isomorphism of algebras and right H-comodules.

In a similar way we can obtain a dual theory. The arguments are similar to the ones used
previously in this section, but passing to the opposite category. Let H, B be quantum groupoids
in C. Let h : H — B be a morphism of quantum groupoids and ¢t : B — H be a morphism of
algebras such that t o h = idy and e ot = eg. The morphism kfl : B — B defined by

kB = pupo(B® (hotolg))odp

is idempotent in C and, as a consequence, we obtain that there exist an epimorphism 2, a
monomorphism ng and an object BH such that the diagram

ki




commutes and lfl ) ng = idgr. Moreover, using the next coequalizer diagram in C
KB © (B ® h) 1B
BeH B 4

np o (B® (hollh))

it is possible to obtain a coalgebra structure for B¥. This structure is given by

BH

(B epn =eponB dgn = (1B ®18)odpond)).
Let y® : B — H ® B be the morphism defined by:
yB = (MH ®lf1) o (t® (to AB) ®B) o (B® (CB,B 053)) 0dp.

The morphism y? verifies that y® o up o (B®h) = yP o up o (B® (11 o h)) and then, there
exists an unique morphism rgu : BY — H @ BH such that rgu o lg =B,
Moreover the morphism gpr satisfies:

opn = (t®1f7) 0 6 on,
(e © BY) 0 opu = idpn,
(H @ epn) o opn = (Ifg @ egn) o opn,
(H®epn ® B") o (opn ® B") 06p, = (jy @ BY) 0 g
(H®dpn)oopn = (uw ® BY @ BY) o (H®cpn g ® B") o (opn ® opn) 0 dpn,
(H ®epn) o opn) ® By o cpn gr o dpn = (M @ B o o,

and, if ¢ is a morphism of quantum groupoids, (B, ogn) is a left H-comodule. Let v : B —
H ® H be the morphism defined by

YB = UH@H © (((t ®t) o (53) (024 (5H oto )\B)) 0dpR.
The morphism g verifies that vy o up o (B®h) =ygoupgo (B® (II% o h)) and then, there
exists an unique morphism vgr : B — H ® H such that ygu o lg = B.
It is not difficult to see that the morphism Yp : BY ® H — BY ® H defined by

/
TB :YDBOWB,

being wp = up o (nB ® h) and @z = (I8 ®t) o 65, is idempotent and there exists a diagram
B
AR
Tp
PN
up vp

BEOH

BH o H B g9 H
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where vg oup = Tp, up ovp = idgupmy, dp = up o why. Moreover, dp is an isomorphism with
inverse dgl = wpovp and the object BY [ H is a coalgebra with counit and coproduct defined
by

EBHEH = €B© d;l, dprimy = (dp®dp)odpo d]—gl

respectively.
Also, B [0 H is a right H-module where

Ypnpy = dp o pp o (dg' @ h).

With these structures dp is an isomorphism of coalgebras and right H-modules being ¥p =
pup o (B ® h). Finally, we define the morphisms:

EBH@WBHH:BHDHHK, OpHG, . H BioH -BiOH®BYOH,
VpHe, 1 BiOH®H - BYOH
where
Eplio,  H= (epr ®em)ovp,
Opic, = (up@up)o(B"®usr@B"@H)o(B"®H®cpny @ H)o
(B ® opn @ pren) o (6pn @ ygrn ® dg) o (dgn @ H) o vp,

VpHe, , H = UB° (B" @ pp) o (vp @ H).

If we denote by B Oygn H (the crossed coproduct of BY and H) the triple

(BH D H7 EBH@WBHH’ 6BH@WBHH)’
we have the following theorem:

Theorem 2.5 Let H, B be quantum groupoids in C. Let h : H — B be a morphism of quantum
groupoids andt : B — H be a morphism of algebras such that toh = idy and egot = ecp. Then,
B Oyyn H s a coalgebra, (BHOH, TZJBHQ’YBHH) is a right H-module and dg : B — BH Oy pn H
s an isomorphism of coalgebras and right H-modules.

Remark 2.6 In the Hopf algebra case (H and B Hopf algebras) Theorem 2.5 is the dual of the
result obtained by Blattner, Cohen and Montgomery. In this case, if ¢ is an algebra-coalgebra
morphism, we have ygn = egn @ N ® ny and then B Oy,u H is the smash coproduct of BH
and H, denoted by B” © H. In B” © H the coproduct is

Spon = (BY @ (ng ® B") o (H @ cpn yy) o (0pn ® H)) @ H) o (§pn ® 5p).

If t is a morphism of quantum groupoids we have yg = g o H% ot and then the expression

Of 6BH®’Y HH iSI
B
5BH®WBHH = (up®up)o(B" @ (ug @ B") o (H @ cpn ) o (opn @ H)) @ H) o (5gn @ 6p7) o vp.

As a consequence, for analogy with the Hopf algebra case, when yp = dp o Hf ot, we will
denote the triple BY Orpu H by B © H (the smash coproduct of B and H).
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Therefore, if h and ¢ are morphisms of quantum groupoids, we have:

Corollary 2.7 Let H, B be quantum groupoids in C. Lett: B — H, h: H — B be morphisms
of quantum groupoids such that toh = idy. Then, B © H is a coalgebra, (BH O H,Ygroy) is
a right H-module and dg : B — B © H is an isomorphism of coalgebras and right H-modules.

3 Quantum groupoids, projections and Hopf algebras in gyD

In this section we give the connection between projection of quantum groupoids an Hopf
algebras in the category YD. The results presented here can be found in [3].

Suppose that g : B — H and f : H — B are morphisms of weak Hopf algebras such that
go f =idy. Then qfl = kfl and therefore By = BH, pg = lfl and iH = nH Thus

Z'B (B®g)05B
B " BoH
(B® (I 0 g))odp

By

is an equalizer diagram and

ppo(B® f) P
B®H B B

pp o (B® (follf))

By

is a coequalizer diagram.

Then (Bg,np, = pg °NB, By = pg o up o (zg ® zg)) is an algebra in C, (By,ep, =
ep 0B, 6p, = (pB ®@pB)odpoibl)) is a coalgebra in C, (Bu,pp,) is a left H-module and
(Bm, 0B,) is a left H-comodule.

Also, wp = wp, Wy = wh and then By x H = B [ H. Moreover, the morphism Qp =
W owp admits a new formulation. Note that by the usual arguments in the quantum groupoid
calculus, we have

Qp=pE@un)o(up®H®g)o (BRcyp®B)o((B&g)odgoil)® (dpof))
= (ph@pn)o(pp@H@ H)o(B&cy p@ H)o((Bo (Mg 0g))odp0if)@ ((fo H)odn)))
= (pf @ en @ H)o (upen © H) o (B® g) o5 0iff) © ((f ©dn) 0 n)))
= (pf ® (e og)® H) o (upep ® H) o (65 ® 0p @ H) o (i @ ((f © H) 0 o))
= (P} o up) ® H) o (if} @ ((f © H) 0 6p1))
= ((Wf oppo (B af) @ H)o (i © ((f © H) o 6n))
= (ph®H)o((upo(Be (o f))® H)o (if) ® dn)
= (ph @ H)o((upocppo((lyo f) i) ® H) o (cpyn ® H) o (B @ dn)
= ((pf; 0 i 0 ppy © (T @ B)) © H) o (cpy . © H) o (By © 6p)

—r
= (pBy ® H) o (cpy,g @ H) o (By @1l ® H)o (B ® dy)
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= (pBy @pp)o (H®cyp, ® H)o ((0p onu) ® By @ H).
— VBH®H.

Therefore, the object By x H is the tensor product of By and H in the representation
category of H, i.e. the category of left H-modules, studied in [8] and [21].

Proposition 3.1 Letg: B — H and f : H — B be morphisms of quantum groupoids such that
go f =1idy. Then, if the antipode of H is an isomorphism, (Bu,¢B,, 0B, ) belongs to gyD.

Proof: In Proposition 2.8 of [1] we prove that (Bg, ¢B,,, 0B, ) satisfy
(k@ Bu) o (H ® cyi) o (0B © ¢By) ® H) o (H @ cu,By;) © (00 ® Bh)
= (ug @ Br) o (H®cpy i) o (pn @ ppy @ H)o(H®cyy ® By @ H) o (0 © op, @1 )o

(H®chBy)o (0n @ Br).

Moreover, the following identity
(ki ® By) o (H @ cpy ) o (hi ® oy @ H) o (H® ey ® By @ H) o (65 ® op,y @ 11 )o
(H ®cu,By)o (0n @ Bp)
=L =R

= (na @ ¢By) o (H@cn @ (ppy © (g olly) @ Br) o opy)) o (0 ® 0By)-

is true because By is a left H-module and a left H-comodule. Then, using the identity
=L =R .
¥By © ((HH o HH) ® BH) © 0By = ZdBH

we prove (bl). The prove for (b2) is easy and we leave the details to the reader.

3.2 As a consequence of the previous proposition we obtain Vg, gp, = V’BH oBy A Ve en =
/ _
Vi, on = 5.

3.3 Let g: B— H and f: H — B be morphisms of quantum groupoids such that go f = idp.
Put up, :pfl ofoir:Hr — By andep, =progo ig : By — Hj,. This morphisms belong
to gyD and we have the same for mp, B, : By X By — By defined by

mBHXBH = ,LLBH o ZBH,BH
and ABH : BH — BH X BH defined by ABH = PBy.Bu OéBH.
Then, we have the following result.

Proposition 3.4 Letg: B — H and f: H — B be morphisms of quantum groupoids such that
go f =idg. Then, if the antipode of H is an isomorphism, we have the following:

(i) (B, up,,mpy) is an algebra in HYD.

(i) (Bm,epy,Ap,,) is a coalgebra in ZYD.
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Proof: See Proposition 2.6 in [3].

3.5 Let g: B— H and f: H — B be morphisms of weak Hopf algebras such that go f = idp.
Let ©F be the morphism ©F = ((f o g) A Ap) 0iZ : By — B. Following Proposition 2.9 of [1]
we have that (B ® g) 0o dp 008 = (B® (Il 0 g)) 0 65 0 ©F and, as a consequence, there exists
an unique morphism Ag,, : By — Bpy such that ig 0By = @fl. Therefore, Ap,, = pg o @fl
and Ap, belongs to the category of left-left Yetter-Drinfeld modules.

The remainder of this section will be devoted to the proof of the main Theorem of this paper.

Theorem 3.6 Let g : B — H and f : H — B be morphisms of weak Hopf algebras satis-
fying the equality g o f = idyg and suppose that the antipode of H is an isomorphism. Let
UBy, MBy, €By, OBy, ABy be the morphisms defined in 3.3 and 3.5 respectively. Then

(BH,uBy s MBy s €By, ABy, ABy) is a Hopf algebra in the category of left-left Yetter-Drinfeld
modules.

Proof: By Proposition 3.4 we know that (Bp, up,,mp, ) is an algebra and (By, e, , Ay,)
is a coalgebra in g)ﬂD.

First we prove that mp,, is a coalgebra morphism. That is:

(c1) Apy omp, = (mpy X Mpy) © 4By, By ByxBy © (B X ag, . p.)o
(Bm x (TBH7BH X By))o (B X aBHyBHaBH) OGEL,BH,BHXBH ° (ABH X ABH)7

(c2) ep, omp, =lm, o(ep, X epy).
Indeed:

(mBy X MBy) © ARy By.ByxBy © (BH X agilyBHyBH> o (Bu % (TBy By %X BH))o
(B %X By, .By.By) © aJ_Bllq,BH,BHxBH o (Ap, X Apy,)

= PBy.By © (LB ® 1By ) © (Bu ® iy By © Bu) o (Ve,a(ByxBy) @ Br)o
(Ba®V (ByxBm)oBy)© (B ® (DB, By 0tBy,By ©1By,By) @ Br) o (BH OV (B, xBy)oBy )
(VByeByxBy) ©@ Bu) o (By ® ppy,By @ Br) o (0B, ® 0By ) © By By

= PBy.By © (UBy @ 1By ) © (Br @ (VByeBy ©tBy.By © VByeBy) ® Br) o (0py; ® 6By, )0
UBy,By

= PBy By © (1B @ tiBy) © (Ba @ By By @ Br) o (0B, ®0By) ©iBy By

= PBy.By © OBy © LBy © 1By By

= Ap, omp,.

In the last computations, the first and the second equalities follow from Lemma 1.7 of [3] and
by uB, °oVBLyeBy = UBy> VByoBy ©0By = 0By - In the third one we use the following result: if
M is a left-left Yetter-Drinfeld module then ¢y 0 oV yeonm = tym, Vvegm oty = tarv. The
fourth equality follows from Proposition 2.9 of [1] and, finally, the fifth one follows by definition.

On the other hand,
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lHL 0 (eBH X eBH)

=propugo (ir®ir)oVu,em, o (prL®pr)o ((go 15) ®(go Zg)) © 1By By

(
=propmo((Mogoif) ® (lIfogoig))oipy by
=propmo((gogyoif) ®(goqsoif))oiny By
=propmo((goif) @ (goif))oiny by

= PL OGO O By OBy By
=eR, OMmpy-.
The first equality follows from definition, the second one from
propmo (ir®ir)oVu,en, o (pr ®pr) = pr o pm o (I @ 11f)

and the third one from 1% o g = g o ¢B. Finally, the fourth one follows from the idempotent
character of qf], the fifth one from the properties of g and the definition of pp, and the sixth
one from definition.

To finish the proof we only need to show

mpy © (A, X Bi) o Ay =lpy o (epy X upy) orgl = mpy o (B X Apy) o Ap,,.
We begin by proving g, o (e, X upy)© 7“];; = upy, ©epy. Indeed:
Ipy o (epy X upy,)o rgil
= pironso(f®B)o(iL®if)o Vi op, o (PLOP) (9@ f)o(if®iL)oV s, ©(pf; ®pL)o
(po(f@if) @ H)o(H @cupy)o ((0n onu) @ By)
— pB o g o (I ATLE) @ T15) o (f o g0 qf) & (s o (Il © (f o g o 11K)))) 0 (35 ® B)o
Spoil
=pfopupo((llgofogoqn) @ (follgogolly))odpoif
=pBofougo(lly®@ll)odyogoil
=pBofollhogoill
= up, oe€epy,-
The first equality follows from definition, the second one from
(13 o (f ®i5)) @ H) 0 (H & ci,y) o (6 0 1) © Byr) = (B @ (g0 T15)) 0.8 0 i%,
(ify @ir) o Vgew, © (f @pr) = (g © (M ogoup)) o (BRIE @ f)o (6p @ H)
and
(i @i57) © Vi,epy © (o ® pir) = (7 0 9) ® (q77 © p)) © (B &I ® B) o (9 © f) ® B).

In the third one we use Hé AL = Hé. The fourth one follows from H{zI ocg=go qg and from
the idempotent character of IT%. Finally, in the fifth one we apply (75) for 1% A ITE = TTE,.
On the other hand,
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mp, © (A, X Bg)oAp,
= 1By © VByoBy © (ABy ©® Ba) ©VByeBy © 0By
= up, © (ABy; @ Br)odpy,
= ((eBy o 1By) ® Bu) o (Bu ® tpy,By) © ((6By ©NBy) ® Bu)
= ((epogqp oun) @pp) o ((po(qp @ (fog)) o dp) @ cpp)o ((5p g onp) @ if)
=pB oIl oil
=pBofollhogoill
= UB, O €By-

In these computations, the first equality follows from definition, the second one from pp,, o
VeyeBy = kB, and Ve ey © 05, = 0B, the third one from (4-1) of Proposition 2.9 of [1]
and the fourth one is a consequence of the coassociativity of . The fifth equality follows from

B _ B _ B _ :
ppo (qg ® (fog))odp = idp and q5; o g = np, €p © q;; = €p. In the sixth one we use
fo HILLI og = Hé and the last one follows from definition.

Finally, using similar arguments and (4-2) of Proposition 2.9 of [1] we obtain:

mpy © (Bg X Apy) o Apy
= 1By © VByeBy © (BH ® Apy) © VByeBy © 0By
= iy © (Ap, @ B)odp,
= (Bu ® (¢By o By)) © (tBy.By ® Br) o (By ® (0B, 0 nBy))
=ppoppo((fog)@lF)odpoif
=piroppo((fog) @ (follfjog)odpoif
=pPofo(idg NTIE)ogoil
=pPofogoil
=pBofollliogoil
= UBy O €By-

Finally, using the last theorem and Theorem 4.1 of [2] we obtain the complete version of
Radford’s Theorem linking weak Hopf algebras with projection and Hopf algebras in the category
of Yetter-Drinfeld modules over H.

Theorem 3.7 Let H, B be weak Hopf algebras in C. Let g : B — H and f : H — B be
morphisms of weak Hopf algebras such that g o f = idy and suppose that the antipode of H is
an isomorphism. Then there exists a Hopf algebra By living in the braided monoidal category
gyD such that B is isomorphic to By x H as weak Hopf algebras, being the (co)algebra structure
in By x H the smash (co)product, that is the (co)product defined in 2.3, 2.6. The expression
for the antipode of By x H is
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AByxH = DBy ,H © (SOBH ® H)o
(H®cH,By) o ((0g o Amopn)®Apy) o (H ® cpy m)o

(QBH & H) o Z.BH,H-
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