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Abstract

In this survey we explain in detail how Radford’s ideas and results about Hopf algebras
with projection can be generalized to quantum groupoids in a strict symmetric monoidal
category with split idempotents.

Introduction

Let H be a Hopf algebra over a field K and let A be a K-algebra. A well-known result of
Radford [23] gives equivalent conditions for an object A⊗H equipped with smash product algebra
and coalgebra to be a Hopf algebra and characterizes such objects via bialgebra projections.
Majid in [16] interpreted this result in the modern context of Yetter-Drinfeld modules and stated
that there is a correspondence between Hopf algebras in this category, denoted by H

HYD, and
Hopf algebras B with morphisms of Hopf algebras f : H → B, g : B → H such that g ◦f = idH .
Later, Bespalov proved the same result for braided categories with split idempotents in [5]. The
key point in Radford-Majid-Bespalov’s theorem is to define an object BH , called the algebra of
coinvariants, as the equalizer of (B ⊗ g) ◦ δB and B ⊗ ηH . This object is a Hopf algebra in the
category H

HYD and there exists a Hopf algebra isomorphism between B and BH ./ H (the smash
(co)product of BH and H). It is important to point out that in the construction of BH ./ H
they use that BH is the image of the idempotent morphism qB

H = µB ◦ (B ⊗ (f ◦ λH ◦ g)) ◦ δB.
In [11], Bulacu and Nauwelaerts generalize Radford’s theorem about Hopf algebras with

projection to the quasi-Hopf algebra setting. Namely, if H and B are quasi-Hopf algebras with
bijective antipode and with morphisms of quasi-Hopf algebras f : H → B, g : B → H such that
g ◦ f = idH , then they define a subalgebra Bi (the generalization of BH to this setting) and
with some additional structures Bi becomes, a Hopf algebra in the category of left-left Yetter-
Drinfeld modules H

HYD defined by Majid in [17]. Moreover, as the main result in [11], Bulacu
and Nauwelaerts state that Bi×H is isomorphic to B as quasi-Hopf algebras where the algebra
structure of Bi × H is the smash product defined in [10] and the quasi-coalgebra structure is
the one introduced in [11].

The basic motivation of this survey is to explain in detail how the above ideas and results
can be generalized to quantum groupoids in a strict symmetric monoidal category with split
idempotents. Quantum groupoids or weak Hopf algebras have been introduced by Böhm, Nill
and Szlachányi [7] as a new generalization of Hopf algebras and groupoid algebras. Roughly
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speaking, a weak Hopf algebra H in a symmetric monoidal category is an object that has
both algebra and coalgebra structures with some relations between them and that possesses an
antipode λH which does not necessarily verify λH ∧ idH = idH ∧ λH = εH ⊗ ηH where εH , ηH

are the counity and unity morphisms respectively and ∧ denotes the usual convolution product.
The main differences with other Hopf algebraic constructions, such as quasi-Hopf algebras and
rational Hopf algebras, are the following: weak Hopf algebras are coassociative but the coproduct
is not required to preserve the unity ηH or, equivalently, the counity is not an algebra morphism.
Some motivations to study weak Hopf algebras come from their connection with the theory of
algebra extensions, the important applications in the study of dynamical twists of Hopf algebras
and their link with quantum field theories and operator algebras (see [20]).

The survey is organized as follows.
In Section 1 we give basis definitions and examples of quantum groupoids without finiteness

conditions. Also we introduce the category of left-left Yetter-Drinfeld modules defined by Böhm
for a quantum groupoid with invertible antipode. As in the case of Hopf algebras this category
is braided monoidal but in this case is not strict.

The exposition of the theory of crossed products associated to projections of quantum
groupoids in Section 2 follows [2] and is the good generalization of the classical theory developed
by Blattner, Cohen and Montgomery in [6]. The main theorem in this section generalizes a well
know result, due to Blattner, Cohen and Montgomery, which shows that if B

π→ H → 0 is an
exact sequence of Hopf algebras with coalgebra splitting then B ≈ A]σH, where A is the left
Hopf kernel of π and σ is a suitable cocycle (see Theorem (4.14) of [6]). In this section we
show that if g : B → H is a morphism of quantum groupoids and there exists a morphism of
coalgebras f : H → B such that g ◦ f = idH and f ◦ ηH = ηB, using the idempotent morphism
qB
H = µB ◦ (B ⊗ (λB ◦ f ◦ g)) ◦ δB : B → B it is possible to construct an equalizer diagram

and an algebra BH , i.e, the algebra of coinvariants or the Hopf kernel of g, and morphisms
ϕBH

: H ⊗ BH → BH (the weak measuring), σBH
: H ⊗ H → BH (the weak cocycle) such

that there exists an idempotent endomorphism of BH ⊗H which image, denoted by BH ×H, is
isomorphic with B as algebras being the algebra structure (crossed product algebra)

ηBH×H = rB ◦ (ηBH
⊗ ηH),

µBH×H = rB ◦ (µBH
⊗H) ◦ (µBH

⊗ σBH
⊗ µH) ◦ (BH ⊗ ϕBH

⊗ δH⊗H)◦
(BH ⊗H ⊗ cH,BH

⊗H) ◦ (BH ⊗ δH ⊗BH ⊗H) ◦ (sB ⊗ sB),

where sB is the inclusion of BH×H in BH⊗H and rB the projection of BH⊗H on BH×H. Of
course, when H, B are Hopf algebras we recover the result of Blattner, Cohen and Montgomery.
For this reason, we denote the algebra BH × H by BH]σBH

H. If moreover f is an algebra
morphism, the cocycle is trivial in a weak sense and then we obtain that µBH×H is the weak
version of the smash product used by Radford in the Hopf algebra setting. Also, we prove the
dual results using similar arguments but passing to the opposite category, for a morphism of
quantum groupoids h : H → B and an algebra morphism t : B → H such that t ◦ h = idH and
εH ◦ t = εB.

Finally, in Section 3, linking the information of section 2 with the results of [1], [2], [3] and
[4], we obtain our version of Radford’s Theorem for quantum groupoids with projection. In
this section we prove that the algebra of coinvariants BH associated to a quantum groupoid
projection (i.e. a pair of morphisms of quantum groupoids f : H → B, g : B → H such that
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g ◦ f = idH) can be obtained as an equalizer or, by duality, as a coequalizer (in this case the
classical theory developed in Section 2 and the dual one provide the same object BH with dual
algebraic structures, algebra-coalgebra, module-comodule, etc...). Therefore, it is possible to find
an algebra coalgebra structure for BH and morphisms ϕBH

= pB
H ◦µB ◦(f⊗ iBH) : H⊗BH → BH

and %BH
= (g ⊗ pB

H) ◦ δB ◦ iBH : BH → H ⊗ BH such that (BH , ϕBH
) is a left H-module and

(BH , %BH
) is a left H-comodule. We show that BH is a Hopf algebra in the category of left-

left Yetter-Drinfeld modules H
HYD and, using the the the weak smash product and the weak

smash coproduct of BH and H we give a good weak Hopf algebra interpretation of the theorems
proved by Radford [23] and Majid [16] in the Hopf algebra setting, obtaining an isomorphism
of quantum groupoids between BH ×H and B.

1 Quantum groupoids in monoidal categories

In this section we give definitions and discuss basic properties of quantum groupoids in
monoidal categories.

Let C be a category. We denote the class of objects of C by |C| and for each object X ∈ |C|,
the identity morphism by idX : X → X.

A monoidal category (C,⊗,K, a, l, r) is a category C which is equipped with a tensor product
⊗ : C × C → C, with an object K, called the unit of the monoidal category, with a natural
isomorphism a : ⊗(id × ⊗) → ⊗(⊗ × id), called the associativity constrain, and with natural
isomorphisms l : ⊗(K × id) → id, r : ⊗(id×K) → id, called left unit constraint and right unit
constraint respectively, such that the Pentagon Axiom

(aU,V,W ⊗ idX) ◦ aU,V⊗W,X ◦ (idU ⊗ aV,W,X) = aU⊗V,W,X ◦ aU,V,W⊗X

and the Triangle Axiom
idV ⊗ lW = (rV ⊗ idW ) ◦ aV,K,W

are satisfied.
The monoidal category is said to be strict if the associativity and the unit constraints a, l,

r are all identities of the category.
Let Ψ : C×C → C×C be the flip functor defined by Ψ(V, W ) = (W,V ) on any pair of objects

of C. A commutativity constrain is a natural isomorphism c : ⊗ → ⊗Ψ. If (C,⊗,K, a, l, r) is a
monoidal category, a braiding in C is a commutativity constraint satisfying the Hexagon Axiom

aW,U,V ◦ cU⊗V,W ◦ aU,V,W = (cU,W ⊗ idV ) ◦ aU,W,V ◦ (idU ⊗ cV,W ),

a−1
V,W,U ◦ cU,V⊗W ◦ a−1

U,V,W = (idV ⊗ cU,W ) ◦ a−1
V,U,W ◦ (cU,V ⊗ idW ).

A braided monoidal category is a monoidal category with a braiding c. These categories
generalizes the classical notion of symmetric monoidal category introduced earlier by category
theorists. A braided monoidal category is symmetric if the braiding satisfies cW,V ◦cV,W = idV⊗W

for all V, W ∈ |C|.
From now on we assume that C is strict symmetric and admits split idempotents, i.e., for

every morphism ∇Y : Y → Y such that ∇Y = ∇Y ◦∇Y there exist an object Z and morphisms
iY : Z → Y and pY : Y → Z such that ∇Y = iY ◦ pY and pY ◦ iY = idZ . There is not loss of
generality in assuming the strict character for C because it is well know that given a monoidal
category we can construct a strict monoidal category Cst which is tensor equivalent to C (see
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[15] for the details). For simplicity of notation, given objects M , N , P in C and a morphism
f : M → N , we write P ⊗ f for idP ⊗ f and f ⊗ P for f ⊗ idP .

Definition 1.1 An algebra in C is a triple A = (A, ηA, µA) where A is an object in C and
ηA : K → A (unit), µA : A ⊗ A → A (product) are morphisms in C such that µA ◦ (A ⊗ ηA) =
idA = µA ◦ (ηA ⊗ A), µA ◦ (A⊗ µA) = µA ◦ (µA ⊗ A). Given two algebras A = (A, ηA, µA) and
B = (B, ηB, µB), f : A → B is an algebra morphism if µB ◦ (f ⊗ f) = f ◦ µA, f ◦ ηA = ηB.
Also, if A, B are algebras in C, the object A⊗B is an algebra in C where ηA⊗B = ηA ⊗ ηB and
µA⊗B = (µA ⊗ µB) ◦ (A⊗ cB,A ⊗B).

A coalgebra in C is a triple D = (D, εD, δD) where D is an object in C and εD : D → K
(counit), δD : D → D ⊗ D (coproduct) are morphisms in C such that (εD ⊗ D) ◦ δD = idD =
(D⊗εD)◦δD, (δD⊗D)◦δD = (D⊗δD)◦δD. If D = (D, εD, δD) and E = (E, εE , δE) are coalgebras,
f : D → E is a coalgebra morphism if (f⊗f)◦δD = δE◦f , εE◦f = εD. When D, E are coalgebras
in C, D⊗E is a coalgebra in C where εD⊗E = εD ⊗ εE and δD⊗E = (D⊗ cD,E ⊗E) ◦ (δD ⊗ δE).

If A is an algebra, B is a coalgebra and α : B → A, β : B → A are morphisms, we define the
convolution product by α ∧ β = µA ◦ (α⊗ β) ◦ δB.

By quantum groupoids or weak Hopf algebras we understand the objects introduced in [7],
as a generalization of ordinary Hopf algebras. Here, for the convenience of the reader, we recall
the definition of these objects and some relevant results from [7] without proof, thus making our
exposition self-contained.

Definition 1.2 A quantum groupoid H is an object in C with an algebra structure (H, ηH , µH)
and a coalgebra structure (H, εH , δH) such that the following axioms hold:

(a1) δH ◦ µH = (µH ⊗ µH) ◦ δH⊗H ,

(a2) εH ◦ µH ◦ (µH ⊗H) = (εH ⊗ εH) ◦ (µH ⊗ µH) ◦ (H ⊗ δH ⊗H)

= (εH ⊗ εH) ◦ (µH ⊗ µH) ◦ (H ⊗ (cH,H ◦ δH)⊗H),

(a3) (δH ⊗H) ◦ δH ◦ ηH = (H ⊗ µH ⊗H) ◦ (δH ⊗ δH) ◦ (ηH ⊗ ηH)

= (H ⊗ (µH ◦ cH,H)⊗H) ◦ (δH ⊗ δH) ◦ (ηH ⊗ ηH).

(a4) There exists a morphism λH : H → H in C (called the antipode of H) verifiying:

(a4-1) idH ∧ λH = ((εH ◦ µH)⊗H) ◦ (H ⊗ cH,H) ◦ ((δH ◦ ηH)⊗H),

(a4-2) λH ∧ idH = (H ⊗ (εH ◦ µH)) ◦ (cH,H ⊗H) ◦ (H ⊗ (δH ◦ ηH)),

(a4-3) λH ∧ idH ∧ λH = λH .

Note that, in this definition, the conditions (a2), (a3) weaken the conditions of multiplica-
tivity of the counit, and comultiplicativity of the unit that we can find in the Hopf algebra
definition. On the other hand, axioms (a4-1), (a4-2) and (a4-3) weaken the properties of the
antipode in a Hopf algebra. Therefore, a quantum groupoid is a Hopf algebra if an only if the
morphism δH (comultiplication) is unit-preserving and if and only if the counit is a homomor-
phism of algebras.
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1.3 If H is a quantum groupoid in C, the antipode λH is unique, antimultiplicative, anticomul-
tiplicative and leaves the unit ηH and the counit εH invariant:

λH ◦ µH = µH ◦ (λH ⊗ λH) ◦ cH,H , δH ◦ λH = cH,H ◦ (λH ⊗ λH) ◦ δH ,

λH ◦ ηH = ηH , εH ◦ λH = εH .

If we define the morphisms ΠL
H (target morphism), ΠR

H (source morphism), ΠL
H and ΠR

H by

ΠL
H = ((εH ◦ µH)⊗H) ◦ (H ⊗ cH,H) ◦ ((δH ◦ ηH)⊗H),

ΠR
H = (H ⊗ (εH ◦ µH)) ◦ (cH,H ⊗H) ◦ (H ⊗ (δH ◦ ηH)),

ΠL
H = (H ⊗ (εH ◦ µH)) ◦ ((δH ◦ ηH)⊗H),

ΠR
H = ((εH ◦ µH)⊗H) ◦ (H ⊗ (δH ◦ ηH)).

it is straightforward to show that they are idempotent and ΠL
H , ΠR

H satisfy the equalities

ΠL
H = idH ∧ λH , ΠR

H = λH ∧ idH .

Moreover, we have that

ΠL
H ◦ΠL

H = ΠL
H , ΠL

H ◦ΠR
H = ΠR

H , ΠR
H ◦ΠL

H = ΠL
H , ΠR

H ◦ΠR
H = ΠR

H ,

ΠL
H ◦ΠL

H = ΠL
H , ΠL

H ◦ΠR
H = ΠR

H , ΠR
H ◦ΠL

H = ΠL
H , ΠR

H ◦ΠR
H = ΠR

H .

Also it is easy to show the formulas

ΠL
H = ΠR

H ◦ λH = λH ◦ΠL
H , ΠR

H = ΠL
H ◦ λH = λH ◦ΠR

H ,

ΠL
H ◦ λH = ΠL

H ◦ΠR
H = λH ◦ΠR

H , ΠR
H ◦ λH = ΠR

H ◦ΠL
H = λH ◦ΠL

H .

If λH is an isomorphism (for example, when H is finite), we have the equalities:

ΠL
H = µH ◦ (H ⊗ λ−1

H ) ◦ cH,H ◦ δH , ΠR
H = µH ◦ (λ−1

H ⊗H) ◦ cH,H ◦ δH .

If the antipode of H is an isomorphism, the opposite operator and the coopposite operator
produce quantum groupoids from quantum groupoids. In the first one the product µH is replaced
by the opposite product µHop = µH ◦ cH,H while in the second the coproduct δH is replaced by
δHcoop = cH,H ◦ δH . In both cases the antipode λH is replaced by λ−1

H .
A morphism between quantum groupoids H and B is a morphism f : H → B which is

both algebra and coalgebra morphism. If f : H → B is a weak Hopf algebra morphism, then
λB ◦ f = f ◦ λH (see Proposition 1.4 of [1]).

Examples 1.4 (i) As group algebras and their duals are the natural examples of Hopf alge-
bras, groupoid algebras and their duals provide examples of quantum groupoids. Recall that a
groupoid G is simply a category in which every morphism is an isomorphism. In this example,
we consider finite groupoids, i.e. groupoids with a finite number of objects. The set of objects of
G will be denoted by G0 and the set of morphisms by G1. The identity morphism on x ∈ G0 will
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also be denoted by idx and for a morphism σ : x → y in G1, we write s(σ) and t(σ), respectively
for the source and the target of σ.

Let G be a groupoid, and R a commutative ring. The groupoid algebra is the direct product

RG =
⊕

σ∈G1

Rσ

with the product of two morphisms being equal to their composition if the latter is defined and
0 in otherwise, i.e. στ = σ ◦ τ if s(σ) = t(τ) and στ = 0 if s(σ) 6= t(τ). The unit element
is 1RG =

∑
x∈G0

idx. The algebra RG is a cocommutative quantum groupoid, with coproduct
δRG, counit εRG and antipode λRG given by the formulas:

δRG(σ) = σ ⊗ σ, εRG(σ) = 1, λRG(σ) = σ−̇1.

For the quantum groupoid RG the morphisms target and source are respectively,

ΠL
RG(σ) = idt(σ), ΠR

RG(σ) = ids(σ)

and λRG ◦ λRG = idRG, i.e. the antipode is involutive.
If G1 is finite, then RG is free of a finite rank as a R-module, hence GR = (RG)∗ =

HomR(RG,R) is a commutative quantum groupoid with involutory antipode. As R-module

GR =
⊕

σ∈G1

Rfσ

with 〈fσ, τ〉 = δσ,τ . The algebra structure is given by the formulas fσfτ = δσ,τfσ and 1GR =∑
σ∈G1

fσ. The coalgebra structure is

δGR(fσ) =
∑
τρ=σ

fτ ⊗ fρ =
∑

ρ∈G1

fσρ−1 ⊗ fρ, εGR(fσ) = δσ,idt(σ)
.

The antipode is given by λGR(fσ) = fσ−1 .
(ii) It is known that any group action on a set gives rise to a groupoid (see [24]). In [20]

Nikshych and Vainerman extend this construction associating a quantum groupoid with any
action of a Hopf algebra on a separable algebra.

(iii) It was shown in [19] that any inclusion of type Π1 factors with finite index and depth
give rise to a quantum groupoid describing the symmetry of this inclusion. In [20] can be found
an example of this construction applied to the case of Temperley-Lieb algebras (see [13]).

(iv) In [22] Nill proved that Hayashi’s face algebras [14] are examples of quantum groupoids
whose counital subalgebras, i.e., the images of ΠL

H and ΠR
H , are commutative. Also, in [22] we can

find that Yamanouchi’s generalized Kac algebras (see [25]) are exactly C∗-quantum groupoids
with involutive antipode.

1.5 Let H be a quantum groupoid. We say that (M,ϕM ) is a left H-module if M is an
object in C and ϕM : H ⊗ M → M is a morphism in C satisfying ϕM ◦ (ηH ⊗ M) = idM ,
ϕM ◦ (H⊗ϕM ) = ϕM ◦ (µH⊗M). Given two left H-modules (M, ϕM ) and (N, ϕN ), f : M → N
is a morphism of left H-modules if ϕN ◦ (H ⊗ f) = f ◦ ϕM . We denote the category of right
H-modules by HC. In an analogous way we define the category of right H-modules and we
denote it by CH .
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If (M, ϕM ) and (N, ϕN ) are left H-modules we denote by ϕM⊗N the morphism ϕM⊗N :
H ⊗M ⊗N → M ⊗N defined by

ϕM⊗N = (ϕM ⊗ ϕN ) ◦ (H ⊗ cH,M ⊗N) ◦ (δH ⊗M ⊗N).

We say that (M,%M ) is a left H-comodule if M is an object in C and %M : M → H ⊗M
is a morphism in C satisfying (εH ⊗M) ◦ %M = idM , (H ⊗ %M ) ◦ %M = (δH ⊗M) ◦ %M . Given
two left H-comodules (M, %M ) and (N, %N ), f : M → N is a morphism of left H-comodules if
%N ◦ f = (H ⊗ f) ◦ %M . We denote the category of left H-comodules by HC. Analogously, CH

denotes the category of right H-comodules.
For two left H-comodules (M, %M ) and (N, %N ), we denote by %M⊗N the morphism %M⊗N :

M ⊗N → H ⊗M ⊗N defined by

%M⊗N = (µH ⊗M ⊗N) ◦ (H ⊗ cM,H ⊗N) ◦ (%M ⊗ %N ).

Let (M,ϕM ), (N,ϕN ) be left H-modules. Then the morphism

∇M⊗N = ϕM⊗N ◦ (ηH ⊗M ⊗N) : M ⊗N → M ⊗N

is idempotent. In this setting we denote by M×N the image of ∇M⊗N and by pM,N : M⊗N →
M × N , iM,N : M × N → M ⊗ N the morphisms such that iM,N ◦ pM,N = ∇M⊗N and
pM,N ◦ iM,N = idM×N . Using the definition of × we obtain that the object M × N is a
left H-module with action ϕM×N = pM,N ◦ ϕM⊗N ◦ (H ⊗ iM,N ) : H ⊗ (M × N) → M × N
(see [20]). Note that, if f : M → M ′ and g : N → N ′ are morphisms of left H-modules then
(f ⊗ g) ◦ ∇M⊗N = ∇M ′⊗N ′ ◦ (f ⊗ g).

In a similar way, if (M, %M ) and (N, %N ) are left H-comodules the morphism

∇′M⊗N = (εH ⊗M ⊗N) ◦ %M⊗M : M ⊗N → M ⊗N

is idempotent. We denote by M ¯ N the image of ∇′M⊗N and by p′M,N : M ⊗ N → M ¯ N ,
i′M,N : M ¯ N → M ⊗ N the morphisms such that i′M,N ◦ p′M,N = ∇′M⊗N and p′M,N ◦ i′M,N =
idM¯N . Using the definition of ¯ we obtain that the object M ¯N is a left H-comodule with
coaction %M¯N = (H ⊗ p′M,N ) ◦ %M⊗N ◦ i′M,N : M ¯ N → H ⊗ (M ¯ N). If f : M → M ′ and
g : N → N ′ are morphisms of left H-comodules then (f ⊗ g) ◦ ∇′M⊗N = ∇′M ′⊗N ′ ◦ (f ⊗ g).

Let (M, ϕM ), (N,ϕN ), (P, ϕP ) be left H-modules. Then the following equalities hold
(Lemma 1.7 of [3]):

ϕM⊗N ◦ (H ⊗∇M⊗N ) = ϕM⊗N ,

ϕM⊗N = ϕM⊗N ◦ ∇M⊗N ,

(iM,N ⊗ P ) ◦ ∇(M×N)⊗P ◦ (pM,N ⊗ P ) = (M ⊗ iN,P ) ◦ ∇M⊗(N×P ) ◦ (M ⊗ pN,P ),

(M⊗iN,P )◦∇M⊗(N×P )◦(M⊗pN,P ) = (∇M⊗N⊗P )◦(M⊗∇N⊗P ) = (M⊗∇N⊗P )◦(∇M⊗N⊗P ).

Furthermore, by a similar calculus, if (M, %M ), (N, %N ), (P, %P ) be left H-comodules we have

(H ⊗∇′M⊗N ) ◦ %M⊗N = %M⊗N ,

%M⊗N ◦ ∇′M⊗N = %M⊗N ,

(i′M,N ⊗ P ) ◦ ∇′(M¯N)⊗P ◦ (p′M,N ⊗ P ) = (M ⊗ i′N,P ) ◦ ∇′M⊗(N¯P ) ◦ (M ⊗ p′N,P ),

(M⊗i′N,P )◦∇′M⊗(N¯P )◦(M⊗p′N,P ) = (∇′M⊗N⊗P )◦(M⊗∇′N⊗P ) = (M⊗∇′N⊗P )◦(∇′M⊗N⊗P ).
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Yetter-Drinfeld modules over finite dimensional weak Hopf algebras over fields have been
introduced by Böhm in [9]. It is shown in [9] that the category of finite dimensional Yetter-
Drinfeld modules is monoidal and in [18] it is proved that this category is isomorphic to the
category of finite dimensional modules over the Drinfeld double. In [12], the results of [18] are
generalized, using duality results between entwining structures and smash product structures,
and more properties are given.

Definition 1.6 Let H be a weak Hopf algebra. We shall denote by H
HYD the category of

left-left Yetter-Drinfeld modules over H. That is, M = (M,ϕM , %M ) is an object in H
HYD if

(M,ϕM ) is a left H-module, (M,%M ) is a left H-comodule and

(b1) (µH ⊗M) ◦ (H ⊗ cM,H) ◦ ((%M ◦ ϕM )⊗H) ◦ (H ⊗ cH,M ) ◦ (δH ⊗M)

= (µH ⊗ ϕM ) ◦ (H ⊗ cH,H ⊗M) ◦ (δH ⊗ %M ).

(b2) (µH ⊗ ϕM ) ◦ (H ⊗ cH,H ⊗M) ◦ ((δH ◦ ηH)⊗ %M ) = %M .

Let M , N in H
HYD. The morphism f : M → N is a morphism of left-left Yetter-Drinfeld

modules if f ◦ ϕM = ϕN ◦ (H ⊗ f) and (H ⊗ f) ◦ %M = %N ◦ f .

Note that if (M, ϕM , %M ) is a left-left Yetter-Drinfeld module then (b2) is equivalent to

(b3) ((εH ◦ µH)⊗ ϕM ) ◦ (H ⊗ cH,H ⊗M) ◦ (δH ⊗ %M ) = ϕM .

and we have the identity ϕM ◦ (ΠL
H ⊗M) ◦ %M = idM .

The conditions (b1) and (b2) of the last definition can also be restated (see Proposition 2.2
of [12]) in the following way: suppose that (M, ϕM ) ∈ | HC| and (M,%M ) ∈ | HC|, then M is a
left-left Yetter-Drinfeld module if and only if

%M ◦ ϕM = (µH ⊗M) ◦ (H ⊗ cM,H)◦

(((µH ⊗ ϕM ) ◦ (H ⊗ cH,H ⊗M) ◦ (δH ⊗ %M ))⊗ λH) ◦ (H ⊗ cH,M ) ◦ (δH ⊗M).

Moreover, the following Proposition, proved in [4], guaranties the equality between the mor-
phisms ∇M⊗N and ∇′M⊗N defined in 1.5 for all M, N ∈ | H

HYD|.

Proposition 1.7 Let H be a weak Hopf algebra. Let (M, ϕM , %M ) and (N, ϕN , %N ) be left-left
Yetter-Drinfeld modules over H. Then we have the following assertions.

(i) ∇M⊗N = ((ϕM ◦ (ΠL
H ⊗M) ◦ cM,H)⊗N) ◦ (M ⊗ %N ).

(ii) ∇′M⊗N = (M ⊗ ϕN ) ◦ (((M ⊗ΠR
H) ◦ cH,M ◦ %M )⊗N).

(iii) ∇M⊗N = ∇′M⊗N .

(iv) ∇M⊗H = ((ϕM ◦ (ΠL
H ⊗M) ◦ cM,H)⊗H) ◦ (M ⊗ δH).

(v) ∇′M⊗H = (M ⊗ µH) ◦ (((M ⊗ΠR
H) ◦ cH,M ◦ %M )⊗H).

(vi) ∇M⊗H = ∇′M⊗H .
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1.8 It is a well know fact that, if the antipode of a weak Hopf algebra H is invertible, H
HYD

is a non-strict braided monoidal category. In the following lines we give a brief resume of the
braided monoidal structure that we can construct in the category H

HYD (see Proposition 2.7 of
[18] for modules over a field K or Theorem 2.6 of [12] for modules over a commutative ring).

For two left-left Yetter-Drinfeld modules (M,ϕM , %M ), (N,ϕN , %N ) the tensor product is
defined as object as the image of ∇M⊗N (see 1.5). As a consequence, by (iii) of Proposition 1.7,
M ×N = M ¯N and this object is a left-left Yetter-Drinfeld module with the following action
and coaction:

ϕM×N = pM,N ◦ ϕM⊗N ◦ (H ⊗ iM,N ), %M×N = (H ⊗ pM,N ) ◦ %M⊗N ◦ iM,N .

The base object is HL = Im(ΠL
H) or, equivalently, the equalizer of δH and ζ1

H = (H⊗ΠL
H)◦δH

(see (9)) or the equalizer of δH and ζ2
H = (H⊗ΠR

H)◦δH . The structure of left-left Yetter-Drinfeld
module for HL is the one derived of the following morphisms

ϕHL
= pL ◦ µH ◦ (H ⊗ iL), %HL

= (H ⊗ pL) ◦ δH ◦ iL.

where pL : H → HL and iL : HL → H are the morphism such that ΠL
H = iL ◦ pL and

pL ◦ iL = idHL
.

The unit constrains are:

lM = ϕM ◦ (iL ⊗M) ◦ iHL,M : HL ×M → M,

rM = ϕM ◦ cM,H ◦ (M ⊗ (ΠL
H ◦ iL)) ◦ iM,HL

: M ×HL → M.

These morphisms are isomorphisms with inverses:

l−1
M = pHL,M ◦ (pL ⊗ ϕM ) ◦ ((δH ◦ ηH)⊗M) : M → HL ×M,

r−1
M = pM,HL

◦ (ϕM ⊗ pL) ◦ (H ⊗ cH,M ) ◦ ((δH ◦ ηH)⊗M) : M → M ×HL.

If M , N , P are objects in the category H
HYD, the associativity constrains are defined by

aM,N,P = p(M×N),P ◦ (pM,N ⊗ P ) ◦ (M ⊗ iN,P ) ◦ iM,(N×P ) : M × (N × P ) → (M ×N)× P

where the inverse is the morphism

a−1
M,N,P = aM,N,P = pM,(N×P )◦(M⊗pN,P )◦(iM,N⊗P )◦i(M×N),P : (M×N)×P → M×(N×P ).

If γ : M → M ′ and φ : N → N ′ are morphisms in the category, then

γ × φ = pM ′×N ′ ◦ (γ ⊗ φ) ◦ iM,N : M ×N → M ′ ×N ′

is a morphism in H
HYD and (γ′ × φ′) ◦ (γ × φ) = (γ′ ◦ γ) × (φ′ ◦ φ), where γ′ : M ′ → M ′′ and

φ′ : N ′ → N ′′ are morphisms in H
HYD.

Finally, the braiding is

τM,N = pN,M ◦ tM,N ◦ iM,N : M ×N → N ×M

where tM,N = (ϕN ⊗M) ◦ (H ⊗ cM,N ) ◦ (%M ⊗N) : M ⊗N → N ⊗M . The morphism τM,N is
a natural isomorphism with inverse:

τ−1
M,N = pM,N ◦ t′M,N ◦ iN,M : N ×M → M ×N

where t′M,N = cN,M ◦ (ϕN ⊗M) ◦ (cN,H ⊗M) ◦ (N ⊗ λ−1
H ⊗M) ◦ (N ⊗ %M ).
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2 Projections, quantum groupoids and crossed products

In this section we give basic properties of quantum groupoids with projection. The material
presented here can be found in [1] and [2]. For example, in Theorem 2.2 we will show that if H,
B are quantum groupoids in C and g : B → H is a quantum groupoid morphism such that there
exist a coalgebra morphism f : H → B verifiying g ◦f = idH and f ◦ηH = ηB then, it is possible
to find an object BH , defined by an equalizer diagram an called the algebra of coinvariants,
morphisms ϕBH

: H ⊗ BH → BH , σBH
: H ⊗ H → BH and an isomorphism of algebras and

comodules bH : B → BH ×H being BH ×H a subobject of BH ⊗H with its algebra structure
twisted by the morphism σBH

. Of course, the multiplication in BH ×H is a generalization of
the crossed product and in the Hopf algebra case the Theorem 2.2 is the classical and well know
result obtained by Blattner, Cohen and Montgomery in [6].

The following Proposition is a generalization to the quantum groupoid setting of classic
result obtained by Radford in [23].

Proposition 2.1 Let H, B be quantum groupoids in C. Let g : B → H be a morphism of
quantum groupoids and f : H → B be a morphism of coalgebras such that g ◦ f = idH . Then
the following morphism is an idempotent in C:

qB
H = µB ◦ (B ⊗ (λB ◦ f ◦ g)) ◦ δB : B → B.

Proof. See Proposition 2.1 of [2].
As a consequence of this proposition, we obtain that there exist an epimorphism pB

H , a
monomorphism iBH and an object BH such that the diagram

-

HHHHj ½
½½>

B B

BH

qB
H

pB
H

iBH

commutes and pB
H ◦ iBH = idBH

. Moreover, we have that

- -
-BH B ⊗H

iBH
(B ⊗ g) ◦ δB

(B ⊗ (ΠL
H ◦ g)) ◦ δB

B

is an equalizer diagram.
Now, let ηBH

and µBH
be the factorizations, through the equalizer iBH , of the morphisms ηB

and µB ◦ (iBH ⊗ iBH). Then (BH , ηBH
= pB

H ◦ ηB, µBH
= pB

H ◦ µB ◦ (iBH ⊗ iBH)) is an algebra in C.
On the other hand, by Proposition 2.4 of [2] we have that there exists an unique morphism

ϕBH
: H⊗BH → BH such that iBH ◦ϕBH

= yB where yB : H⊗BH → B is the morphism defined
by yB = µB ◦ (B ⊗ (µB ◦ cB,B)) ◦ (f ⊗ (λB ◦ f)⊗B) ◦ (δH ⊗ iBH). The morphism ϕBH

satisfies:

ϕBH
= pB

H ◦ µB ◦ (f ⊗ iBH),

ϕBH
◦ (ηH ⊗BH) = idBH

,

ϕBH
◦ (H ⊗ ηBH

) = ϕBH
◦ (ΠL

H ⊗ ηBH
),
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µBH
◦ (ϕBH

⊗BH) ◦ (H ⊗ ηBH
⊗BH) = ϕBH

◦ (ΠL
H ⊗BH),

ϕBH
◦ (H ⊗ µBH

) = µBH
◦ (ϕBH

⊗ ϕBH
) ◦ (H ⊗ cH,BH

⊗BH) ◦ (δH ⊗BH ⊗BH),

µBH
◦ cBH ,BH

◦ ((ϕBH
◦ (H ⊗ ηBH

))⊗BH) = ϕBH
◦ (ΠL

H ⊗BH).

and, if f is an algebra morphism, (BH , ϕBH
) is a left H-module (Proposition 2.5 of [1]).

Moreover, in this setting, there exists an unique morphism σBH
: H ⊗ H → BH such that

iBH ◦ σBH
= σB where σB : H ⊗H → B is the morphism defined by:

σB = µB ◦ ((µB ◦ (f ⊗ f))⊗ (λB ◦ f ◦ µH)) ◦ δH⊗H .

Then, as a consequence, we have the equality σBH
= pB

H ◦ σB (Proposition 2.6, [2]).
Now let ωB : BH ⊗ H → B be the morphism defined by ωB = µB ◦ (iBH ⊗ f). If we define

ω′B : B → BH ⊗ H by ω′B = (pB
H ⊗ g) ◦ δB we have ωB ◦ ω′B = idB. Then, the morphism

ΩB = ω′B ◦ ωB : BH ⊗H → BH ⊗H is idempotent and there exists a diagram

-
Z

Z
Z

ZZ~ ¡
¡

¡¡µ

´
´

´
´́3 Z

Z
ZZ~

?

BH ⊗H BH ⊗H

B

BH ×H

ωB ω′B

rB sB

ΩB

bB

where sB ◦ rB = ΩB, rB ◦ sB = idBH×H , bB = rB ◦ ω′B.
It is easy to prove that the morphism bB is an isomorphism with inverse b−1

B = ωB ◦ sB.
Therefore, the object BH ×H is an algebra with unit and product defined by ηBH×H = bB ◦ ηB,
µBH×H = bB ◦ µB ◦ (b−1

B ⊗ b−1
B ) respectively. Also, BH × H is a right H-comodule where

ρBH×H = (bB ⊗H) ◦ (B ⊗ g) ◦ δB ◦ b−1
B . Of course, with these structures bB is an isomorphism

of algebras and right H-comodules being ρB = (B ⊗ g) ◦ δB.
On the other hand, we can define the following morphisms:

ηBH]σBH
H : K → BH×H, µBH]σBH

H : BH×H⊗BH×H → BH×H, ρBH]σBH
H : BH → BH×H⊗H

where

ηBH]σBH
H = rB ◦ (ηBH

⊗ ηH),

µBH]σBH
H = rB ◦ (µBH

⊗H) ◦ (µBH
⊗ σBH

⊗ µH) ◦ (BH ⊗ ϕBH
⊗ δH⊗H)◦

(BH ⊗H ⊗ cH,BH
⊗H) ◦ (BH ⊗ δH ⊗BH ⊗H) ◦ (sB ⊗ sB),

ρBH]σBH
H = (rB ⊗H) ◦ (BH ⊗ δH) ◦ sB.

Finally, if we denote by BH]σBH
H (the crossed product of BH and H) the triple

(BH ×H, ηBH]σBH
H , µBH]σBH

H)

we have the following theorem.
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Theorem 2.2 Let H, B be quantum groupoids in C. Let g : B → H be a morphism of quantum
groupoids and f : H → B be a morphism of coalgebras such that g ◦ f = idH and f ◦ ηH = ηB.
Then, BH]σBH

H is an algebra, (BH × H, ρBH]σBH
H) is a right H-comodule and bB : B →

BH]σBH
H is an isomorphism of algebras and right H-comodules.

Proof: The proof of this Theorem is a consequence of the following identities (see Theorem
2.8 of [2] for the complete details)

ηBH]σBH
H = ηBH×H , µBH]σBH

H = µBH×H , ρBH]σBH
H = ρBH×H .

Remark 2.3 We point out that if H and B are Hopf algebras, Theorem 2.2 is the result
obtained by Blattner, Cohen and Montgomery in [6]. Moreover, if f is an algebra morphism, we
have σBH

= εH ⊗ εH ⊗ ηBH
and then BH]σBH

H is the smash product of BH and H, denoted
by BH]H. Observe that the product of BH]H is

µBH]H = (µBH
⊗ µH) ◦ (BH ⊗ ((ϕBH

⊗H) ◦ (H ⊗ cH,BH
) ◦ (δH ⊗BH))⊗H)

Let H, B be quantum groupoids in C. Let g : B → H, f : H → B be morphisms of
quantum groupoids such that g ◦ f = idH . In this case σB = ΠB

L ◦ f ◦ µH and then, using
µB ◦ (ΠL

B ⊗B) ◦ δB = idB, we obtain

µBH]σBH
H = rB ◦ (µBH

⊗ µH) ◦ (BH ⊗ ((ϕBH
⊗H) ◦ (H ⊗ cH,BH

) ◦ (δH ⊗BH))⊗H) ◦ (sB ⊗ sB)

As a consequence, for analogy with the Hopf algebra case, when σB = ΠB
L ◦ f ◦ µH , we will

denote the triple BH]σBH
H by BH]H (the smash product of BH and H).

Therefore, if f and g are morphisms of quantum groupoids, we have the following particular
case of 2.2.

Corollary 2.4 Let H, B be quantum groupoids in C. Let g : B → H, f : H → B be morphisms
of quantum groupoids such that g ◦ f = idH . Then BH]H is an algebra, (BH ×H, ρBH]H) is a
right H-comodule and bB : B → BH]H is an isomorphism of algebras and right H-comodules.

In a similar way we can obtain a dual theory. The arguments are similar to the ones used
previously in this section, but passing to the opposite category. Let H, B be quantum groupoids
in C. Let h : H → B be a morphism of quantum groupoids and t : B → H be a morphism of
algebras such that t ◦ h = idH and εH ◦ t = εB. The morphism kB

H : B → B defined by

kB
H = µB ◦ (B ⊗ (h ◦ t ◦ λB)) ◦ δB

is idempotent in C and, as a consequence, we obtain that there exist an epimorphism lBH , a
monomorphism nB

H and an object BH such that the diagram

-

HHHHj ½
½½>

B B

BH

kB
H

lBH
nB

H
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commutes and lBH ◦ nB
H = idBH . Moreover, using the next coequalizer diagram in C

-
- -

µB ◦ (B ⊗ h)

µB ◦ (B ⊗ (h ◦ΠL
H))

lBH
B ⊗H B BH

it is possible to obtain a coalgebra structure for BH . This structure is given by

(BH , εBH = εB ◦ nB
H , δBH = (lBH ⊗ lBH) ◦ δB ◦ nB

H)).

Let yB : B → H ⊗BH be the morphism defined by:

yB = (µH ⊗ lBH) ◦ (t⊗ (t ◦ λB)⊗B) ◦ (B ⊗ (cB,B ◦ δB)) ◦ δB.

The morphism yB verifies that yB ◦µB ◦ (B⊗ h) = yB ◦µB ◦ (B⊗ (ΠL
B ◦ h)) and then, there

exists an unique morphism rBH : BH → H ⊗BH such that rBH ◦ lBH = yB.
Moreover the morphism %BH satisfies:

%BH = (t⊗ lBH) ◦ δB ◦ nB
H ,

(εH ⊗BH) ◦ %BH = idBH ,

(H ⊗ εBH ) ◦ %BH = (ΠL
H ⊗ εBH ) ◦ %BH ,

(H ⊗ εBH ⊗BH) ◦ (%BH ⊗BH) ◦ δBH
= (ΠL

H ⊗BH) ◦ %BH

(H ⊗ δBH ) ◦ %BH = (µH ⊗BH ⊗BH) ◦ (H ⊗ cBH ,H ⊗BH) ◦ (%BH ⊗ %BH ) ◦ δBH ,

(((H ⊗ εBH ) ◦ %BH )⊗BH) ◦ cBH ,BH ◦ δBH = (ΠL
H ⊗BH) ◦ %BH ,

and, if t is a morphism of quantum groupoids, (BH , %BH ) is a left H-comodule. Let γB : B →
H ⊗H be the morphism defined by

γB = µH⊗H ◦ (((t⊗ t) ◦ δB)⊗ (δH ◦ t ◦ λB)) ◦ δB.

The morphism γB verifies that γB ◦ µB ◦ (B⊗ h) = γB ◦ µB ◦ (B⊗ (ΠL
B ◦ h)) and then, there

exists an unique morphism γBH : BH → H ⊗H such that γBH ◦ lBH = γB.
It is not difficult to see that the morphism ΥB : BH ⊗H → BH ⊗H defined by

ΥB = $′
B ◦$B,

being $B = µB ◦ (nB
H ⊗ h) and $′

B = (lBH ⊗ t) ◦ δB, is idempotent and there exists a diagram

-
Z

Z
Z

ZZ~ ¡
¡

¡¡µ

´
´

´
´́3 Z

Z
ZZ~

?

BH ⊗H BH ⊗H

B

BH ¡ H

$B $′
B

uB vB

ΥB

dB
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where vB ◦ uB = ΥB, uB ◦ vB = idBH¡H , dB = uB ◦$′
B. Moreover, dB is an isomorphism with

inverse d−1
B = $B ◦ vB and the object BH ¡H is a coalgebra with counit and coproduct defined

by
εBH¡H = εB ◦ d−1

B , δBH¡H = (dB ⊗ dB) ◦ δB ◦ d−1
B

respectively.
Also, BH ¡ H is a right H-module where

ψBH¡H = dB ◦ µB ◦ (d−1
B ⊗ h).

With these structures dB is an isomorphism of coalgebras and right H-modules being ψB =
µB ◦ (B ⊗ h). Finally, we define the morphisms:

εBHÄγ
BH

H : BH ¡ H → K, δBHÄγ
BH

H : BH ¡ H → BH ¡ H ⊗BH ¡ H,

ψBHÄγ
BH

H : BH ¡ H ⊗H → BH ¡ H

where

εBHÄγ
BH

H = (εBH ⊗ εH) ◦ vB,

δBHÄγ
BH

H = (uB ⊗ uB) ◦ (BH ⊗ µH ⊗BH ⊗H) ◦ (BH ⊗H ⊗ cBH ,H ⊗H)◦

(BH ⊗ %BH ⊗ µH⊗H) ◦ (δBH ⊗ γBH ⊗ δH) ◦ (δBH ⊗H) ◦ vB,

ψBHÄγ
BH

H = uB ◦ (BH ⊗ µH) ◦ (vB ⊗H).

If we denote by BH Äγ
BH H (the crossed coproduct of BH and H) the triple

(BH ¡ H, εBHÄγ
BH

H , δBHÄγ
BH

H),

we have the following theorem:

Theorem 2.5 Let H, B be quantum groupoids in C. Let h : H → B be a morphism of quantum
groupoids and t : B → H be a morphism of algebras such that t◦h = idH and εH ◦ t = εB. Then,
BH Äγ

BH H is a coalgebra, (BH ¡H, ψBHÄγ
BH

H) is a right H-module and dB : B → BH Äγ
BH H

is an isomorphism of coalgebras and right H-modules.

Remark 2.6 In the Hopf algebra case (H and B Hopf algebras) Theorem 2.5 is the dual of the
result obtained by Blattner, Cohen and Montgomery. In this case, if t is an algebra-coalgebra
morphism, we have γBH = εBH ⊗ ηH ⊗ ηH and then BH Äγ

BH H is the smash coproduct of BH

and H, denoted by BH Ä H. In BH Ä H the coproduct is

δBHÄH = (BH ⊗ ((µH ⊗BH) ◦ (H ⊗ cBH ,H) ◦ (%BH ⊗H))⊗H) ◦ (δBH ⊗ δH).

If t is a morphism of quantum groupoids we have γB = δH ◦ΠL
H ◦ t and then the expression

of δBHÄγ
BH

H is:

δBHÄγ
BH

H = (uB ⊗uB) ◦ (BH ⊗ ((µH ⊗BH) ◦ (H ⊗ cBH ,H) ◦ (%BH ⊗H))⊗H) ◦ (δBH ⊗ δH) ◦ vB.

As a consequence, for analogy with the Hopf algebra case, when γB = δH ◦ ΠH
L ◦ t, we will

denote the triple BH Äγ
BH H by BH Ä H (the smash coproduct of BH and H).
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Therefore, if h and t are morphisms of quantum groupoids, we have:

Corollary 2.7 Let H, B be quantum groupoids in C. Let t : B → H, h : H → B be morphisms
of quantum groupoids such that t ◦h = idH . Then, BH ÄH is a coalgebra, (BH ¡H, ψBHÄH) is
a right H-module and dB : B → BH Ä H is an isomorphism of coalgebras and right H-modules.

3 Quantum groupoids, projections and Hopf algebras in H
HYD

In this section we give the connection between projection of quantum groupoids an Hopf
algebras in the category H

HYD. The results presented here can be found in [3].
Suppose that g : B → H and f : H → B are morphisms of weak Hopf algebras such that

g ◦ f = idH . Then qB
H = kB

H and therefore BH = BH , pB
H = lBH and iBH = nB

H . Thus

- -
-BH B B ⊗H

iBH
(B ⊗ g) ◦ δB

(B ⊗ (ΠL
H ◦ g)) ◦ δB

is an equalizer diagram and

-
- -

µB ◦ (B ⊗ f)

µB ◦ (B ⊗ (f ◦ΠL
H))

pH
BB ⊗H B BH

is a coequalizer diagram.
Then (BH , ηBH

= pB
H ◦ ηB, µBH

= pB
H ◦ µB ◦ (iBH ⊗ iBH)) is an algebra in C, (BH , εBH

=
εB ◦ iBH , δBH

= (pB
H ⊗ pB

H) ◦ δB ◦ iBH)) is a coalgebra in C, (BH , ϕBH
) is a left H-module and

(BH , %BH
) is a left H-comodule.

Also, ωB = $B, ω′B = $′
B and then BH × H = BH ¡ H. Moreover, the morphism ΩB =

ω′B ◦ωB admits a new formulation. Note that by the usual arguments in the quantum groupoid
calculus, we have

ΩB = (pB
H ⊗ µH) ◦ (µB ⊗H ⊗ g) ◦ (B ⊗ cH,B ⊗B) ◦ (((B ⊗ g) ◦ δB ◦ iBH)⊗ (δB ◦ f))

= (pB
H⊗µH)◦(µB⊗H⊗H)◦(B⊗cH,B⊗H)◦(((B⊗(ΠR

H◦g))◦δB◦iBH)⊗((f⊗H)◦δH)))

= (pB
H ⊗ εH ⊗H) ◦ (µB⊗H ⊗H) ◦ (((B ⊗ g) ◦ δB ◦ iBH)⊗ ((f ⊗ δH) ◦ δH)))

= (pB
H ⊗ (εH ◦ g)⊗H) ◦ (µB⊗B ⊗H) ◦ (δB ⊗ δB ⊗H) ◦ (iBH ⊗ ((f ⊗H) ◦ δH))

= ((pB
H ◦ µB)⊗H) ◦ (iBH ⊗ ((f ⊗H) ◦ δH))

= ((pB
H ◦ µB ◦ (B ⊗ qB

H))⊗H) ◦ (iBH ⊗ ((f ⊗H) ◦ δH))

= (pB
H ⊗H) ◦ ((µB ◦ (B ⊗ (ΠL

B ◦ f))⊗H) ◦ (iBH ⊗ δH)

= (pB
H ⊗H) ◦ ((µB ◦ cB,B ◦ ((ΠL

B ◦ f)⊗ iBH))⊗H) ◦ (cBH ,H ⊗H) ◦ (BH ⊗ δH)

= ((pB
H ◦ iBH ◦ ϕBH

◦ (ΠL
H ⊗BH))⊗H) ◦ (cBH ,H ⊗H) ◦ (BH ⊗ δH)

= (ϕBH
⊗H) ◦ (cBH ,H ⊗H) ◦ (BH ⊗ΠL

H ⊗H) ◦ (BH ⊗ δH)
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= (ϕBH
⊗ µH) ◦ (H ⊗ cH,BH

⊗H) ◦ ((δH ◦ ηH)⊗BH ⊗H).

= ∇BH⊗H .

Therefore, the object BH × H is the tensor product of BH and H in the representation
category of H, i.e. the category of left H-modules, studied in [8] and [21].

Proposition 3.1 Let g : B → H and f : H → B be morphisms of quantum groupoids such that
g ◦ f = idH . Then, if the antipode of H is an isomorphism, (BH , ϕBH

, %BH
) belongs to H

HYD.

Proof: In Proposition 2.8 of [1] we prove that (BH , ϕBH
, %BH

) satisfy

(µH ⊗BH) ◦ (H ⊗ cBH ,H) ◦ ((%BH
◦ ϕBH

)⊗H) ◦ (H ⊗ cH,BH
) ◦ (δH ⊗BH)

= (µH ⊗BH) ◦ (H ⊗ cBH ,H) ◦ (µH ⊗ϕBH
⊗H) ◦ (H ⊗ cH,H ⊗BH ⊗H) ◦ (δH ⊗ %BH

⊗ΠR
H)◦

(H ⊗ cH,BH
) ◦ (δH ⊗BH).

Moreover, the following identity

(µH ⊗BH) ◦ (H ⊗ cBH ,H) ◦ (µH ⊗ ϕBH
⊗H) ◦ (H ⊗ cH,H ⊗BH ⊗H) ◦ (δH ⊗ %BH

⊗ΠR
H)◦

(H ⊗ cH,BH
) ◦ (δH ⊗BH)

= (µH ⊗ ϕBH
) ◦ (H ⊗ cH,H ⊗ (ϕBH

◦ ((ΠL
H ◦ΠR

H)⊗BH) ◦ %BH
)) ◦ (δH ⊗ %BH

).

is true because BH is a left H-module and a left H-comodule. Then, using the identity

ϕBH
◦ ((ΠL

H ◦ΠR
H)⊗BH) ◦ %BH

= idBH

we prove (b1). The prove for (b2) is easy and we leave the details to the reader.

3.2 As a consequence of the previous proposition we obtain∇BH⊗BH
= ∇′BH⊗BH

and∇BH⊗H =
∇′BH⊗H = ΩB.

3.3 Let g : B → H and f : H → B be morphisms of quantum groupoids such that g ◦f = idH .
Put uBH

= pB
H ◦ f ◦ iL : HL → BH and eBH

= pL ◦ g ◦ iBH : BH → HL. This morphisms belong
to H

HYD and we have the same for mBH×BH
: BH ×BH → BH defined by

mBH×BH
= µBH

◦ iBH ,BH

and ∆BH
: BH → BH ×BH defined by ∆BH

= pBH ,BH
◦ δBH

.

Then, we have the following result.

Proposition 3.4 Let g : B → H and f : H → B be morphisms of quantum groupoids such that
g ◦ f = idH . Then, if the antipode of H is an isomorphism, we have the following:

(i) (BH , uBH
,mBH

) is an algebra in H
HYD.

(ii) (BH , eBH
, ∆BH

) is a coalgebra in H
HYD.
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Proof: See Proposition 2.6 in [3].

3.5 Let g : B → H and f : H → B be morphisms of weak Hopf algebras such that g ◦f = idH .
Let ΘB

H be the morphism ΘB
H = ((f ◦ g) ∧ λB) ◦ iBH : BH → B. Following Proposition 2.9 of [1]

we have that (B ⊗ g) ◦ δB ◦ΘB
H = (B ⊗ (ΠL

H ◦ g)) ◦ δB ◦ΘB
H and, as a consequence, there exists

an unique morphism λBH
: BH → BH such that iBH ◦ λBH

= ΘB
H . Therefore, λBH

= pB
H ◦ ΘB

H

and λBH
belongs to the category of left-left Yetter-Drinfeld modules.

The remainder of this section will be devoted to the proof of the main Theorem of this paper.

Theorem 3.6 Let g : B → H and f : H → B be morphisms of weak Hopf algebras satis-
fying the equality g ◦ f = idH and suppose that the antipode of H is an isomorphism. Let
uBH

, mBH
, eBH

, ∆BH
, λBH

be the morphisms defined in 3.3 and 3.5 respectively. Then
(BH , uBH

,mBH
, eBH

, ∆BH
, λBH

) is a Hopf algebra in the category of left-left Yetter-Drinfeld
modules.

Proof: By Proposition 3.4 we know that (BH , uBH
,mBH

) is an algebra and (BH , eBH
, ∆BH

)
is a coalgebra in H

HYD.
First we prove that mBH

is a coalgebra morphism. That is:

(c1) ∆BH
◦mBH

= (mBH
×mBH

) ◦ aBH ,BH ,BH×BH
◦ (BH × a−1

BH ,BH ,BH
)◦

(BH×(τBH ,BH
×BH))◦(BH×aBH ,BH ,BH

)◦a−1
BH ,BH ,BH×BH

◦(∆BH
×∆BH

),

(c2) eBH
◦mBH

= lHL
◦ (eBH

× eBH
).

Indeed:

(mBH
×mBH

) ◦ aBH ,BH ,BH×BH
◦ (BH × a−1

BH ,BH ,BH
) ◦ (BH × (τBH ,BH

×BH))◦

(BH × aBH ,BH ,BH
) ◦ a−1

BH ,BH ,BH×BH
◦ (∆BH

×∆BH
)

= pBH ,BH
◦ (µBH

⊗ µBH
) ◦ (BH ⊗ iBH ,BH

⊗BH) ◦ (∇BH⊗(BH×BH) ⊗BH)◦
(BH⊗∇(BH×BH)⊗BH

)◦(BH⊗(pBH ,BH
◦ tBH ,BH

◦ iBH ,BH
)⊗BH)◦(BH⊗∇(BH×BH)⊗BH

)

(∇BH⊗(BH×BH) ⊗BH) ◦ (BH ⊗ pBH ,BH
⊗BH) ◦ (δBH

⊗ δBH
) ◦ iBH ,BH

= pBH ,BH
◦ (µBH

⊗ µBH
) ◦ (BH ⊗ (∇BH⊗BH

◦ tBH ,BH
◦ ∇BH⊗BH

)⊗BH) ◦ (δBH
⊗ δBH

)◦
iBH ,BH

= pBH ,BH
◦ (µBH

⊗ µBH
) ◦ (BH ⊗ tBH ,BH

⊗BH) ◦ (δBH
⊗ δBH

) ◦ iBH ,BH

= pBH ,BH
◦ δBH

◦ µBH
◦ iBH ,BH

= ∆BH
◦mBH

.

In the last computations, the first and the second equalities follow from Lemma 1.7 of [3] and
by µBH

◦∇BH⊗BH
= µBH

, ∇BH⊗BH
◦δBH

= δBH
. In the third one we use the following result: if

M is a left-left Yetter-Drinfeld module then tM,M ◦∇M⊗M = tM,M , ∇M⊗M ◦ tM,M = tM,M . The
fourth equality follows from Proposition 2.9 of [1] and, finally, the fifth one follows by definition.

On the other hand,
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lHL
◦ (eBH

× eBH
)

= pL ◦ µH ◦ (iL ⊗ iL) ◦ ∇HL⊗HL
◦ (pL ⊗ pL) ◦ ((g ◦ iBH)⊗ (g ◦ iBH)) ◦ iBH ,BH

= pL ◦ µH ◦ ((ΠL
H ◦ g ◦ iBH)⊗ (ΠL

H ◦ g ◦ iBH)) ◦ iBH ,BH

= pL ◦ µH ◦ ((g ◦ qB
H ◦ iBH)⊗ (g ◦ qB

H ◦ iBH)) ◦ iBH ,BH

= pL ◦ µH ◦ ((g ◦ iBH)⊗ (g ◦ iBH)) ◦ iBH ,BH

= pL ◦ g ◦ iBH ◦ µBH
◦ iBH ,BH

= eBH
◦mBH

.

The first equality follows from definition, the second one from

pL ◦ µH ◦ (iL ⊗ iL) ◦ ∇HL⊗HL
◦ (pL ⊗ pL) = pL ◦ µH ◦ (ΠL

H ⊗ΠL
H)

and the third one from ΠL
H ◦ g = g ◦ qB

H . Finally, the fourth one follows from the idempotent
character of qB

H , the fifth one from the properties of g and the definition of µBH
and the sixth

one from definition.
To finish the proof we only need to show

mBH
◦ (λBH

×BH) ◦∆BH
= lBH

◦ (eBH
× uBH

) ◦ r−1
BH

= mBH
◦ (BH × λBH

) ◦∆BH
.

We begin by proving lBH
◦ (eBH

× uBH
) ◦ r−1

BH
= uBH

◦ eBH
. Indeed:

lBH
◦ (eBH

× uBH
) ◦ r−1

BH

= pB
H ◦µB ◦(f⊗B)◦(iL⊗iBH)◦∇HL⊗BH

◦(pL⊗pB
H)◦(g⊗f)◦(iBH⊗iL)◦∇BH⊗HL

◦(pB
H⊗pL)◦

((µB ◦ (f ⊗ iBH))⊗H) ◦ (H ⊗ cH,BH
) ◦ ((δH ◦ ηH)⊗BH)

= pB
H ◦ µB ◦ ((ΠL

B ∧ΠL
B)⊗ΠL

B) ◦ ((f ◦ g ◦ qB
H)⊗ (µB ◦ (ΠL

B ⊗ (f ◦ g ◦ΠL
B)))) ◦ (δB ⊗B)◦

δB ◦ iBH

= pB
H ◦ µB ◦ ((ΠL

B ◦ f ◦ g ◦ qB
H)⊗ (f ◦ΠL

H ◦ g ◦ΠL
B)) ◦ δB ◦ iBH

= pB
H ◦ f ◦ µH ◦ (ΠL

H ⊗ΠL
H) ◦ δH ◦ g ◦ iBH

= pB
H ◦ f ◦ΠL

H ◦ g ◦ iBH

= uBH
◦ eBH

.

The first equality follows from definition, the second one from

((µB ◦ (f ⊗ iBH))⊗H) ◦ (H ⊗ cH,BH
) ◦ ((δH ◦ ηH)⊗BH) = (B ⊗ (g ◦ΠL

B)) ◦ δB ◦ iBH ,

(iBH ⊗ iL) ◦ ∇BH⊗HL
◦ (pB

H ⊗ pL) = (qB
H ⊗ (ΠL

H ◦ g ◦ µB)) ◦ (B ⊗ΠL
B ⊗ f) ◦ (δB ⊗H)

and

(iL ⊗ iBH) ◦ ∇HL⊗BH
◦ (pL ⊗ pB

H) = (ΠL
H ◦ g)⊗ (qB

H ◦ µB)) ◦ (B ⊗ΠL
B ⊗B) ◦ ((δB ◦ f)⊗B).

In the third one we use ΠL
B ∧ΠL

B = ΠL
B. The fourth one follows from ΠL

H ◦ g = g ◦ qB
H and from

the idempotent character of ΠL
H . Finally, in the fifth one we apply (75) for ΠL

H ∧ΠL
H = ΠL

H .
On the other hand,
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mBH
◦ (λBH

×BH) ◦∆BH

= µBH
◦ ∇BH⊗BH

◦ (λBH
⊗BH) ◦ ∇BH⊗BH

◦ δBH

= µBH
◦ (λBH

⊗BH) ◦ δBH

= ((εBH
◦ µBH

)⊗BH) ◦ (BH ⊗ tBH ,BH
) ◦ ((δBH

◦ ηBH
)⊗BH)

= ((εB ◦ qB
H ◦ µB)⊗ pB

H) ◦ ((µB ◦ (qB
H ⊗ (f ◦ g)) ◦ δB)⊗ cB,B) ◦ ((δB ◦ qB

H ◦ ηB)⊗ iBH)

= pB
H ◦ΠL

B ◦ iBH

= pB
H ◦ f ◦ΠL

H ◦ g ◦ iBH

= uBH
◦ eBH

.

In these computations, the first equality follows from definition, the second one from µBH
◦

∇BH⊗BH
= µBH

and ∇BH⊗BH
◦ δBH

= δBH
, the third one from (4-1) of Proposition 2.9 of [1]

and the fourth one is a consequence of the coassociativity of δB. The fifth equality follows from
µB ◦ (qB

H ⊗ (f ◦ g)) ◦ δB = idB and qB
H ◦ ηB = ηB, εB ◦ qB

H = εB. In the sixth one we use
f ◦ΠL

H ◦ g = ΠL
B and the last one follows from definition.

Finally, using similar arguments and (4-2) of Proposition 2.9 of [1] we obtain:

mBH
◦ (BH × λBH

) ◦∆BH

= µBH
◦ ∇BH⊗BH

◦ (BH ⊗ λBH
) ◦ ∇BH⊗BH

◦ δBH

= µBH
◦ (λBH

⊗BH) ◦ δBH

= (BH ⊗ (εBH
◦ µBH

)) ◦ (tBH ,BH
⊗BH) ◦ (BH ⊗ (δBH

◦ ηBH
))

= pB
H ◦ µB ◦ ((f ◦ g)⊗ΠR

B) ◦ δB ◦ iBH

= pB
H ◦ µB ◦ ((f ◦ g)⊗ (f ◦ΠR

H ◦ g) ◦ δB ◦ iBH

= pB
H ◦ f ◦ (idH ∧ΠR

H) ◦ g ◦ iBH

= pB
H ◦ f ◦ g ◦ iBH

= pB
H ◦ f ◦ΠL

H ◦ g ◦ iBH

= uBH
◦ eBH

.

Finally, using the last theorem and Theorem 4.1 of [2] we obtain the complete version of
Radford’s Theorem linking weak Hopf algebras with projection and Hopf algebras in the category
of Yetter-Drinfeld modules over H.

Theorem 3.7 Let H, B be weak Hopf algebras in C. Let g : B → H and f : H → B be
morphisms of weak Hopf algebras such that g ◦ f = idH and suppose that the antipode of H is
an isomorphism. Then there exists a Hopf algebra BH living in the braided monoidal category
H
HYD such that B is isomorphic to BH×H as weak Hopf algebras, being the (co)algebra structure
in BH × H the smash (co)product, that is the (co)product defined in 2.3, 2.6. The expression
for the antipode of BH ×H is
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λBH×H := pBH ,H ◦ (ϕBH
⊗H)◦

(H ⊗ cH,BH
) ◦ ((δH ◦ λH ◦ µH)⊗ λBH

) ◦ (H ⊗ cBH ,H)◦
(%BH

⊗H) ◦ iBH ,H .
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