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Abstract We study the effects of constant harvesting
in a discrete population model that includes density-
independent survivorship of adults in a population with
overcompensating density dependence. The interaction
between the survival parameter and other parameters
of the model (harvesting rate, natural growth rate)
reveal new phenomena of survival and extinction. The
main differences with the dynamics of survival and
extinction reported for semelparous populations with
overcompensatory density dependence are that there
can be multiple windows of extinction and conditional
persistence as harvesting increases or the intrinsic
growth rate is increased, and that, in case of bistability,
the basin of attraction of the nontrivial attractor may
consist of an arbitrary number of disjoint connected
components.
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Introduction

Populations subject to harvesting or migration may
exhibit counterintuitive effects such as the hydra ef-
fect (Abrams 2009), or unusual extinction (Sinha and
Parthasarathy 1996). The first one refers to the fact
that harvesting may increase stock size, while the para-
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doxical effect of unusual extinction means that pop-
ulations can persist within a band of high depletion,
whereas extinction occurs for lower depletion rates.
This phenomenon is linked to one-dimensional discrete
models with constant harvesting, and it was uncovered
by Sinha and Parthasarathy (1996). Further study, as
well as very interesting references to dramatic examples
of abrupt changes in the stock of some populations, can
be found in Sinha and Das (1997), Vandermeer and
Yodzis (1999), and Schreiber (2001).

In the above quoted references, the unusual be-
havior under the influence of harvesting was studied
in well-known, discrete, single-species models for the
growth of semelparous populations with overcompen-
sating density dependence of the form

xn+1 = f (xn), (1)

where xn is the population size of a species in the
generation n and the continuous function f : [0, ∞) →
[0, ∞) reflects the nonlinear density growth. This sim-
ple model assumes that all individuals have equal influ-
ence on the size of the population in the following year,
and it is usually applied to semelparous organisms with
nonoverlapping generations (May 1974; Clark 1990).
Three famous choices of the recruitment function f
are the quadratic map f (x) = rx(1 − x), the Ricker
function f (x) = x exp(r(1 − x)), and the generalized
Beverlton–Holt map f (x) = rx/(1 + xγ ). The latest one
is also referred to as the Bellows map after his famous
paper (Bellows 1981), in which its flexibility and good
descriptive properties are emphasized.

As far as we know, the most thorough result on
the influence of a constant harvesting on the dynamics
of this kind of model is due to Schreiber (2001). He
considers a family of equations that essentially have the
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form xn+1 = max{ f (xn) − d, 0}, where d is a constant
meaning harvesting or migration, and the assumptions
on f are general enough to include the three examples
mentioned above.

Semelparous models assume that the adult popula-
tion xn dies during spawning and is replaced by the sub-
sequent cohort of recruits xn+1 = f (xn). In this paper,
we will focus on the influence of a constant harvesting
on the dynamics of an iteroparous population with
overcompensating density dependence. More precisely,
we will consider equation

xn+1 = αxn + (1 − α) f (xn), (2)

where α ∈ [0, 1]. We notice that the case α = 0 corre-
sponds to Eq. 1.

The main difference between Eqs. 1 and 2 is that,
in the latest one, a probability of surviving the re-
production season is assumed. The parameter α can
be interpreted as the fraction of energy invested into
adult survivorship rather than reproduction. This inter-
pretation assumes that density-dependent survivorship
only acts on juveniles; this is the case of the Ricker
model, which is based on the observation that certain
species of fish as salmon habitually cannibalize their
eggs and larvae. Actually, an interesting example of
an ecological model governed by Eq. 2 is the Ricker
difference equation as derived by Thieme (2003). Tak-
ing into account a density-dependent mortality rate of
juveniles due to cannibalism, and a density independent
mortality rate of adults, the following particular case of
Eq. 2 is derived (for more details, see Appendix A):

xn+1 = αxn + (1 − α)xner(1−xn). (3)

Here, xn represents the (normalized) size of the pop-
ulation in year n immediately before the reproductive
season, and α is an adult’s probability of surviving
1 year, including the reproductive season.

Equation 2 has a rich history in the modeling of eco-
logical systems with difference equations. For instance,
it was employed in fishery models with a generalized
logistic map f (x) = rx(1 − x)z (May 1980; Fisher 1984),
and to describe the growth of bobwhite quail popula-
tions with f being the Bellows map (Milton and Bélair
1990).

Our main aim in this paper is to study the effect of
constant harvesting on a population model governed by
Eq. 2. That is, we will consider equation

xn+1 = max {αxn + (1 − α) f (xn) − d, 0} , (4)

with d ≥ 0. As far as we know, the dynamics of Eq. 4
have not been investigated before, although a related
model was suggested by Clark (1976, p. 384) to de-

termine the optimal equilibrium escapement level in a
fishery model of Antarctic fin whales; a similar equation
was employed as well by Allen and Keay (2004) to
estimate annual change in the stock of Artic Bowhead
whales.

The paper is organized as follows: In the section
“The model without harvesting,” we state the main as-
sumptions and briefly describe some known properties
of Eq. 2. The section “The influence of harvesting”
is devoted to the analysis of the harvested model
Eq. 4. Some mathematical material is placed in three
appendices.

The model without harvesting

In this section, we briefly describe some qualitative
properties of the solutions of Eq. 2.

First, we introduce some general properties and no-
tation that will be used throughout the paper from now
on. Unless explicitly stated, f will be a C3 function
satisfying the following properties:

(A1) f has only two fixed points: x = 0 and x = K >

0, with f ′(0) > 1.
(A2) f has a unique critical point c < K in such a way

that f ′(x) > 0 for all x ∈ (0, c), f ′(x) < 0 for all
x > c.

(A3) (Sf )(x) < 0 for all x �= c, where

(Sf )(x) = f ′′′(x)

f ′(x)
− 3

2

(
f ′′(x)

f ′(x)

)2

is the Schwarzian derivative of f .
(A4) f ′′(x) < 0 for all x ∈ (0, c).

These assumptions are motivated by the paper of
Schreiber (2001) and the fact that many maps usually
employed in discrete population models fulfill them, in
particular, the logistic and the Ricker maps for all r > 0
and the Bellows map for r > 1 and γ ≥ 2.

For a given map f , and α ∈ [0, 1], we define the
function Fα(x) = αx + (1 − α) f (x). The map Fα has
exactly the same fixed points as f , that is, 0 and K.

One of the effects of increasing the parameter α

in Eq. 2 is the stabilization of the equilibrium K (see
Botsford 1992 for related discussions). The stabilizing
effect of the parameter α can be easily proved. Indeed,
assume that the discrete dynamical system generated
by the recurrence Eq. 1 with a unimodal map f has
an unstable positive fixed point K. This means that
f ′(K) < −1, and it is clear that F ′

α(K) ∈ (−1, 1) for
all α ∈ (α1, 1), where α1 = (−1 − f ′(K))/(1 − f ′(K)).

Thus, a sufficiently big value of α stabilizes the positive
equilibrium in the modified Eq. 2. Furthermore, it is
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not difficult to prove that, under conditions A1–A3, the
positive fixed point is actually a global attractor of all
positive solutions of Eq. 2 for α ≥ α1.

Sometimes, the shape of Fα does not change substan-
tially between the cases α = 0 and α > 0. For example,
the relation between the quadratic function f (x) =
rx(1 − x) and the map Fα(x) = αx + (1 − α) f (x) is
only a rescaling of the parameter r after a change of
variables. Indeed, the change y = βx with β = r(1 −
α)/(r(1 − α) + α) transforms equation

xn+1 = αxn + (1 − α)rxn(1 − xn) (5)

into yn+1 = Ryn(1 − yn), with R = r(1 − α) + α.
However, the situation for other unimodal functions

such as the Ricker and the Bellows models is very
different. In these cases, the modified map Fα can be
bimodal (also called hump-with-tail map), see Fig. 1.
This means that Fα has two critical points c1, c2, with
0 < c1 < c2, in such a way that Fα(c1) is a local maxi-
mum, and Fα(c2) is a local minimum. See Appendix B
for more details.

An important feature of the map Fα(x) in the bi-
modal case is that a floor beneath which the pop-
ulation cannot fall is created. Indeed, as noticed by
Milton and Bélair, after transients have died out, pop-
ulation densities fall in the forward invariant interval
[Fα(c2), Fα(c1)], where c1 and c2 are, respectively, the
critical points at which the local maximum and the
local minimum of Fα are achieved. This floor not only
helps to avoid complicated behavior, but also is very
important to prevent the risk of extinction.

c
1

c
2K

F α

Fig. 1 Bimodal map Fα(x) = αx + (1 − α) f (x), with α = 0.3,
f (x) = x exp(3(1 − x))

The influence of harvesting

In this section, we study Eq. 4, that is, the influence
of constant harvesting in the dynamics of a population
governed by Eq. 2.

For α ∈ [0, 1] and d ≥ 0, we denote

Fα,d(x) = max {αx + (1 − α) f (x) − d, 0} .

Assuming conditions A1–A2, it is clear that Fα(x) >

x for all x ∈ (0, K), and Fα(x) < x for all x ∈ (K, ∞). If
we further assume A4, then Fα,d can have at most three
fixed points 0 < K1 < K2 (this is an easy consequence
of Rolle’s theorem).

We adopt the terminology used by Schreiber to
denote the three generic categories of the dynamics
regarding extinction, namely:

– Extinction: The unique fixed point is x = 0, and it
attracts all solutions of Eq. 4.

– Essential extinction: Not all solutions of Eq. 4 con-
verge to zero, but a randomly chosen initial density
leads to extinction with probability one.

– Bistability: There are two attractors: A1 = {0}, and
A2. The basin of attraction of A2 is bounded away
from zero, and it contains the initial values of the
population for which it persists indefinitely.

Recall that, for a map g and an integer k ≥ 2, gk is
defined as the kth iteration of g, that is, g2(x) = g(g(x)),
g3(x) = g(g(g(x))), and so on. A point z is periodic with
prime period k for g if gk(z) = z, and gi(z) �= z for 1 ≤
i ≤ k − 1. In this case, the set {z, g(z), g2(z), . . . gk−1(z)}
is called a cycle of period k.

An important result for the unimodal case is that the
dynamics essentially depends on two facts: the number
of fixed points of F0,d and the sign of F2

0,d(c) − K1,

where c is the unique critical point of F0,d. The transi-
tion from bistability to extinction occurs via a saddle-
node bifurcation, after which the graph of F0,d lies
below the line y = x in the plane (x, y) for all x > 0.
Therefore, the unique positive fixed point of F0,d is
0. On the other hand, a catastrophe bifurcation that
takes place when F2

0,d(c) = K1 explains the transition
between bistability and essential extinction. This mech-
anism can be viewed as a combination of overshooting
the carrying capacity and the Allee effect (Gyllenberg
et al. 1996).

The situation is much more complex for Eq. 4 in
the bimodal case. Rather than giving an exhaustive
analytical study, our aim here is to present the main
differences with the unimodal case, with special atten-
tion to the new mechanisms for changing the modes
of survival and extinction. However, for the quadratic
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map, a thorough study is possible. This is the content of
the next subsection.

The quadratic map

Here, we discuss the quadratic case f (x) = rx(1 − x),
which satisfies A1–A4 for all r > 1. As mentioned in
the section “The model without harvesting,” the map
Fα = αx + (1 − α)rx(1 − x), α ∈ [0, 1), is still quadratic.
Using this fact, the influence of the harvesting parame-
ter d can be easily studied. We state the main results,
which, in the particular case α = 0, are in agreement
with those of Schreiber (2001).

First, we notice that the map Fα has a unique critical
point

c = α + (1 − α)r
2(1 − α)r

.

For r > 1 and α ∈ [0, 1), define

d1 = d1(α, r) = (1 − α)(r − 1)2

4r

d2 = d2(α, r) = −8 − 2r + r2 + (r − 1)2(α2 − 2α)

4r(1 − α)
.

If r ≤ 1 or d > d1, then the unique fixed point of Fα,d

is 0. Next, if r > 1 and 0 < d < d1, then there are two
positive fixed points K1 < K2. Moreover, F2

α,d(c) = K1

if and only if α < (r − 4)/(r − 1) and d = d2. Thus,
Theorem 1 in Schreiber (2001) allows us to prove the
following result:

Proposition 1 Consider Eq. 4 with f (x) = rx(1 − x),
α ∈ [0, 1), and d ≥ 0. The generic modes of sur-
vival/extinction are determined in the following way:

(a) Extinction: if r ≤ 1 or d > d1, then all orbits of
Eq. 4 are attracted to the origin.

(b) Bistability: if r > 1 and d2 < d < d1, then there is
an attracting interval bounded away from zero.
Thus, populations can persist arbitrarily for some

initial density values, while for others, the Allee
effect leads to extinction.

(c) Essential extinction: it occurs if r > 1 and 0 < d
< d2.

We recall that, for α = 0, essential extinction is
only possible if r > 4 and 0 < d < d2(0, r) = (−8 − 2r +
r2)/(4r). Since, for a fixed value of r > 4, the derivative
of d2(α, r) with respect to α is negative, and d2(α, r) = 0
for α = (r − 4)/(r − 1), there is a value α1(r, d) < (r −
4)/(r − 1) such that essential extinction is avoided if the
survivorship rate is greater than α1.

As an example, we consider the case r = 5. When
α = 0, there is essential extinction for d ∈ (0, 0.35),
bistability for d ∈ (0.35, 0.8), and extinction for d > 0.8.

Now, for d ∈ (0, 0.35), we can compute the value of

α1 = α1(d) = 1
8

(
8 − 5d −

√
36 + 25d2

)
,

such that there is bistability for Eq. 4 if α ∈ (α1, α2),
where α2 = α2(d) = (4 − 5d)/4 is the value of α where
the saddle-node bifurcation takes place. See Fig. 2a,
where the survival/extinction diagram in the plane of
parameters (α, d) is shown. In Fig. 2b, we plot the bi-
furcation diagram corresponding to d = 0.2. We choose
the critical point c as the initial condition, and plot the
iterates f n(c) for n between 250 and 300.

The catastrophe bifurcation leading from essential
extinction to bistability takes place at the value α =
(7 − √

37)/8 = 0.114655, while the saddle-node bifur-
cation driving the system to extinction takes place for
α = 0.75.

We can interpret this result as follows: for a
semelparous population with logistic growth, Schreiber
proved that the paradoxical phenomenon of unusual
extinction, as the harvesting pressure is increased, is
observed if the growth rate is large enough (r > 4). If
we fix a growth rate r > 4, the influence of harvesting
for a iteroparous population governed by Eq. 5 with
a small survivorship rate of adults α is qualitatively

Fig. 2 a Bifurcation diagram
in the plane of parameters
(α, d) for the map Fα,d(x) =
αx + (1 − α)5x(1 − x) − d;
b changes in the dynamics of
Fα,d using α as a bifurcation
parameter, for the particular
case d = 0.2
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similar to that of the semelparous population. How-
ever, if α is larger (α > (r − 4)/(r − 1)), then the un-
usual extinction phenomenon is not observed. On the
other hand, a new form of this paradox appears: for a
given depletion rate that leads the semelparous popu-
lation to essential extinction, if the probability of adults
survivorship increases, then the iteroparous popula-
tion can persist indefinitely provided that the initial
population size has an intermediate value. However,
an excessive survivorship rate leads the population to
extinction (see Fig. 2b).

The bimodal case: preliminary remarks

Before starting the study of the bimodal case, we com-
ment on some general considerations that will be useful
in our discussion.

The first one is that, under conditions A1–A4, the
transition between the modes of bistability and extinc-
tion always takes place in a saddle-node (or tangent)
bifurcation, which occurs when Fα,d has exactly two
fixed points: 0 and b , with F ′

α(b) = 1. Since

F ′
α(b) = 1 ⇐⇒ α + (1 − α) f ′(b) = 1 ⇐⇒ f ′(b) = 1,

f ′(0) > 1, f ′(c) = 0, and f ′ is monotone in (0, c), we
conclude that there is a unique b ∈ (0, c) such that
F ′

α(b) = 1, and b does not depend on α. The tangent
bifurcation takes place when Fα,d(b) = Fα(b) − d = b ,
that is, for

d = Fα(b) − b = αb + (1 − α) f (b) − b

= (1 − α)( f (b) − b).

Thus, the border between bistability and extinction
in the plane of parameters (α, d) is a line with slope
b − f (b) < 0. Moreover, for values of d sufficiently
close to the point of tangent bifurcation, there are three
fixed points 0 < K1 < K2, and a simple argument of
continuity allows to prove that K2 is attracting. For a
related result, see Gueron (1998, Theorem 1).

The above considerations show that, in the transition
from bistability to extinction, the persistent attractor A2

reduces to a fixed point. In contrast, the jump between
essential extinction and bistability always happens in a
chaotic regime, by means of a catastrophe bifurcation.
For the case α = 0, this was proved by Schreiber using
the theory of unimodal maps with negative Schwarzian
derivative. An alternative point of view, which will
be useful in our discussion, is to consider the relation
between this type of bifurcation and homoclinic orbits.
In Appendix C, we recall the definition of homoclinic
orbit and show that existence of this type of orbit is
closely related to the boundary collisions that explain

the sudden change from bistability to essential extinc-
tion. As far as we know, this kind of bifurcation was
first described by Grebogi et al. (1982), who called them
crises. An interesting remark is that the existence of a
homoclinic orbit makes it easier to determine numeri-
cally the bifurcation point where a crisis takes place.

The bimodal case: general considerations

Consider the map Fα(x) = αx + (1 − α) f (x), where f :
[0, ∞) → [0, ∞) satisfies A1–A4, and limx→∞ f (x) = 0.
This is the case for such functions as the Ricker and the
Bellows maps, among others. From now on, we assume
that Fα is bimodal, and denote c1, c2 as the points where
Fα reaches its local minimum and its local maximum,
respectively. In Appendix B, we explain under which
conditions Fα is bimodal.

The presence of two critical points, instead of one,
has important implications for the population model,
and, in particular, regarding the effects of harvest-
ing. The first one is that, as mentioned in the sec-
tion “The model without harvesting,” a population
floor is created. Formally, this means that the inter-
val [Fα(c2), Fα(c1)] is forward invariant and attracting.
As a consequence, for a fixed α > 0, there is a value
d∗ = d∗(α) such that essential extinction is not possible
for Eq. 4 if d ∈ (0, d∗). This is a difference with the
quadratic case: in Fig. 2a, we see that essential extinc-
tion for Fα,d(x) = αx + (1 − α)5x(1 − x) − d occurs for
arbitrarily small values of d if α ∈ (0, 0.25). Recall that,
for α = 0, bistability holds if F0,d has three fixed points
and F2

0,d(c) > K1 (as usual, we denote by K1 and K2

the positive fixed points of Fα,d, when they exist, with
K1 < K2).

In the bimodal case, this is not necessarily true,
because the second critical point enters into the game.
Indeed, the first interval of values of d for which
there is bistability may lead to essential extinction in
a crisis bifurcation when Fα,d(c2) = K1 if Fα,d(c1) ≥
c2. We notice that, in this case, the orbit of c1 is
a degenerate homoclinic orbit to the fixed point K1.
However, if Fα,d(c1) < c2 when Fα,d(c2) = K1, then
the interval [F2

α,d(c1), Fα,d(c1)] is forward invariant and
bounded away from zero, so there is still bistability until
F2

α,d(c1) = K1.
In Fig. 3, we show the map Fα,d(x) = max{αx + (1 −

α)x exp(r(1 − x)) − d, 0}, with r = 3, α = 0.38, and d =
0.72. In this case, Fα,d(c1) < c2 and Fα,d(c2) < K1. Al-
though the second critical point is driven to extinction
due to the Allee effect, there is an attracting cycle of
period 2 bounded away from zero, which attracts the
critical point c1.
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Fig. 3 Orbital diagram showing bistability in the model xn+1 =
Fα,d(xn), with Fα,d(x) = max{αx + (1 − α)x exp(r(1 − x)) − d, 0},
r = 3, α = 0.38, and d = 0.72

In the rest of the paper, we will present some nu-
merical results obtained for the Ricker model in order
to illustrate the effect of harvesting in Eq. 4 in the
bimodal case. Our aim is to describe the new modes
of survival/extinction, different from those observed in
the unimodal case, and to explain the mechanisms that
drive the model from one mode to another.

We begin with the case r = 3, where it is still possible
to reproduce a complete bifurcation diagram in the
plane of parameters (d, α). Then, we show that, as r in-
creases, the dynamics of survival and extinction become
more and more complex. An important difference is
that the relative positions of F2

α,d(c1) and Fα,d(c2), with
respect to the unstable fixed point K1 arising in the
saddle-node bifurcation, are not enough to determine
the modes of bistability; the reason is that successive
tangent bifurcations occur for the iterates of Fα,d, and
hence, it is necessary to take into account the unstable
k-cycles emerging in such bifurcations. As an example,
we show some results for the case r = 5.

First case of study: the Ricker map with r = 3

For small values of the growth rate r in the Ricker
model, the influence of the survival rate of adults α

and the constant harvesting d can be understood look-
ing at the bifurcation diagram in the plane of para-
meters (d, α). See Fig. 4, where Fα,d(x) = max{αx +
(1 − α) f (x) − d, 0} is considered with f (x) = x exp(3
(1 − x)).

We describe the curves plotted in this figure and
why they are enough to explain the dynamics of sur-
vival/extinction. All curves are obtained numerically.
As usual, 0 < K1 < K2 denote the fixed points of Fα,d,
and c1 < c2 its critical points.

0.0 0.4 1.0 1.5 2.0 2.5

0.0

0.2

0.4

0.6

0.8

1.0

d

α
Extinction

Essential
extinction

r=3

Bistability

Γ1

Γ2

Γ3

Γ4

Fig. 4 Bifurcation diagram in the plane of parameters (d, α) for
the map Fα,d(x) = max{αx + (1 − α)x exp(3(1 − x)) − d, 0}

– The dashed line �1 on the left of the diagram
represents the values (d, α) for which Fα,d(c1) = c2.
Thus, Fα,d(c1) < c2 for all values of (α, d) except in
the small region placed on the left of �1.

– The dotted line �2 is obtained by solving equation
Fα,d(c2) = K1 for d and α.

– The curve �3 corresponds to the solutions of equa-
tion F2

α,d(c1) = K1.
– Finally, the line �4 is the border between bistability

and extinction, obtained by the method explained
in the section “The bimodal case: preliminary
remarks.”

Since �1 is on the left of �2 and �3, the transitions
between bistability and essential extinction are com-
pletely governed by the solutions of equation F2

α,d(c1) =
K1. In the diagram, we can see that this equation has
two solutions for α below a critical value α∗ ≈ 0.26,
one solution for α = α∗, and no solution for α > α∗.
As a consequence, the unusual dynamics of extinction
observed for α = 0 holds for small values of α, but not
for sufficiently large rates of survivorship. Another con-
sequence of this diagram is that, for a fixed harvesting
d, for which essential extinction occurs in the unimodal
case α = 0, an increasing survival rate leads the system
from essential extinction to bistability.

For values of α > α∗, only two modes of extinction
are possible; one interesting effect of increasing har-
vesting for these values of α is a period halving forming
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Fig. 5 Bifurcation diagrams
for xn+1 = max{αxn + (1 −
α)xn exp(3(1 − xn)) − d, 0},
using d as a bifurcation
parameter with the values
a α = 0.2 and b α = 0.4

a closed loop-like structure called a primary bubble
(Ambika and Sujatha 2000). In Fig. 5, we show the
bifurcation diagrams using the parameter d for two
fixed values of α, showing the phenomena of unusual
extinction (α = 0.2), and bubbling (α = 0.4).

Some biological consequences can be derived from
this analysis. For the generalized Ricker model Eq. 3
with relatively small growth rate, a comment similar to
the logistic case holds, that is, the dynamics of extinc-
tion of the semelparous population and the iteroparous
one are qualitatively similar when the survivorship rate
of adults α is small. For larger values of α, two inter-
esting remarks are derived from Figs. 4 and 5: first,
the complicated dynamics exhibited by the semelparous
model becomes periodic; second, the risk of extinction
is prevented if the depletion rate is not too high, since
the levels of the population minimum are bounded
away from zero (see Fig. 5b). This is due to the fact
that the population floor mentioned in the section
“The model without harvesting” is big enough to ensure
persistence of intermediate population sizes.

Looking at the bifurcation diagram in Fig. 4, we can
affirm that determining sustainable levels of harvesting
is still possible for a population governed by Eq. 3 if
its growth rate r is small. For larger values of r, the
situation becomes very different, as shown in the next
subsection.

New modes of survival and extinction

The main reason why the diagram in Fig. 4 is rela-
tively simple is that, although Fα has three intervals of
monotonicity, the one between c2 and infinity does not
influence the dynamics of extinction because Fα,d(c1) <

c2 for all relevant values of α and d.
The situation changes completely as r is increased,

because the graph of Fα(x) = αx + (1 − α)x exp(r(1 −
x)) is more spiked in the interval (0, c2), and then
Fα,d(c1) is usually larger than c2. This fact is essential
in the emergence of new modes of survival/extinction.
In order to explain the mechanism of creation and de-
struction of these new modes of bistability, we consider
the map Fα,d, where we fix d = 0.4, and use r as the
bifurcation parameter.

The bifurcation diagram for the unimodal case α = 0
is shown in Fig. 6a. There is extinction while the graph
of F0,d is below the line y = x. A tangent bifurcation
takes place at r = r1 = 1.15352, leading to bistability.
The attractor bounded away from zero is first the stable
fixed point K1 created in the tangent bifurcation, and
then it becomes chaotic after a typical sequence of
period-doubling bifurcations. Essential extinction oc-
curs for r > r2 = 2.57207, where a catastrophe bifurca-
tion takes place. Larger values of r cannot reverse this
situation, because F2

0,d(c1) becomes zero for r > 2.6043.

Fig. 6 Bifurcation diagrams
for equation xn+1 =
max{αxn + (1 − α)xn exp(r
(1 − xn)) − 0.4, 0}, using r
as a bifurcation parameter
with the values a α = 0
and b α = 0.15
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To understand why a new survival mode appears as
r is increased in the case α = 0.15 (Fig. 6b), we plot a
magnification of the bifurcation diagram in Fig. 7. As r
reaches the value r = 4.0509, a tangent bifurcation for
the second iteration F2

α,d occurs, and a couple of cycles
of period two are born. One is attracting, and experi-
ences the period doubling cascade to chaos; the other
one is repelling, and it is represented in the two dashed
curves in Fig. 7. The mechanism of destruction of the
chaotic attractor is a crisis that happens when the basin
of attraction of the chaotic attractor resulting from the
period-doubling sequence collides with the unstable 2-
cycle originated in the tangent bifurcation. A similar
mechanism was described by Grebogi et al. (1982) for
the one-dimensional map F(x) = C − x2, where C is
used as bifurcation parameter. In this case, when the
collision occurs, a sudden expansion of the attractor
takes place. In our example, such an expansion origi-
nates essential extinction.

A detailed description of the bifurcation is given in
Appendix C. From that study, the bifurcation point
at which collision occurs is determined numerically by
the formula F3

α,d(c1) = F5
α,d(c1), and takes the value

r = 4.6488. In addition, it is shown that, for a value
of r in the regime of bistability (4.0509 < r < 4.6488),
the set of initial conditions for which the orbit persists
indefinitely is not connected. Another consequence of
the relation between crises bifurcations and homoclinic
points is that catastrophe bifurcations can only happen
when the system is in a chaotic regime.

In general, when r is further increased, new intervals
of bistability appear in successive tangent bifurcations
for the kth iteration of the map Fα,d. The set of ini-
tial conditions for which the orbit persists indefinitely

Fig. 7 Magnification of the bifurcation diagram for equation
xn+1 = max{0.15xn + (1 − 0.15)xn exp(r(1 − xn)) − 0.4, 0}, using
r as a bifurcation parameter

consists of k connected components, and the chaotic at-
tractor is driven to essential extinction in a crisis bifur-
cation determined by equation Fk+1

α,d (c1) = F2k+1
α,d (c1). In

particular, for the value of r at which the crisis occurs,
there is a degenerate homoclinic orbit from the critical
point c1 to the unstable k-cycle that arises in the tangent
bifurcation.

In our example, a tangent bifurcation for F3
α,d occurs

at r = 6.30241, and the crisis bifurcation leading again
to essential extinction takes place for r = 6.63927.

Second case of study: the Ricker map with r = 5

To illustrate how the new modes of bistability appear
when the harvesting rate is increased, we consider the
Ricker map f (x) = x exp(5(1 − x)) with a survivorship
rate α = 0.15. As usual, we denote Fα(x) = αx + (1 −
α) f (x), and Fα,d(x) = max{Fα(x) − d, 0}.

We will show that, as d is increased, there are several
regions of essential extinction alternating with regions
of bistability. This is a clear difference with the uni-
modal case (α = 0), where only an interval of essential
extinction is possible.

The critical points of Fα are c1 = 0.200649 and c2 =
1.7574, with Fα(c1) = 9.31173, Fα(c2) = 0.297464. The
interval [Fα(c2), Fα(c1)] is forward invariant and at-
tracting for the map Fα , and, as a consequence, there
is bistability for Fα,d if d is small enough.

The first crisis bifurcation leading to essential extinc-
tion takes place at d1 = 0.295081, where Fα,d1(c2) = K1.
Thus, the orbit of c2 is homoclinic to the first positive
fixed point K1 of Fα,d. A new mode of bistability is
born at d2 = 0.901469, where a second crisis bifurca-
tion occurs. The value of d2 is found solving equation
F3

α,d(c1) = F5
α,d(c1), that is, the orbit of c1 is homoclinic

to a 2-cycle of Fα,d.
A new transition from bistability to essential extinc-

tion takes place in a tangent bifurcation for F2
α,d at d3 =

1.05162. This point is calculated solving numerically the
system of equations (F2

α,d)
′(x) = 1, F2

α,d(x) = x.
The diagram showing the bifurcation points d1, d2,

and d3 is plotted in Fig. 8a.
For d > d3, there is a quite long interval of es-

sential extinction, but there is still another interval
of bistability prior to extinction. This interval is al-
ways present due to the arguments discussed in the
subsection “The bimodal case: preliminary remarks.”
The point d4 = 9.09319, marking the transition from
essential extinction to bistability, is found by solving
equation F2

α,d(c1) = F3
α,d(c1), that is, a new crisis bifur-

cation occurs when F2
α,d(c1) = K1. The tangent bifurca-

tion leading from bistability to extinction takes place at
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Fig. 8 Bifurcation diagrams
for xn+1 = max{0.15xn + (1 −
0.15)xn exp(5(1 − xn)) − d, 0},
using d as a bifurcation
parameter. The ranges of
values are a d ∈ [0, 1.1]
and b d ∈ [9.08, 9.12]

d5 = Fα(b) − b = 9.11322, where b = 0.196402 is the
unique solution of equation f ′(b) = 1. The diagram
showing the bifurcation points d4 and d5 is plotted in
Fig. 8b.

If we look more closely at Fig. 8a, we can observe
some “shadows” in the interval of essential extinction,
close to d1. Actually, the magnification of the bifurca-
tion diagram shown in Fig. 9 reveals that there is a small
range of parameters between 0.32 and 0.326 for which
there is bistability. We call this interval a “window” of
bistability. These windows are created and destroyed
by the mechanisms described in Appendix C. In this
case, numerically solving equation F6

α,d(c1) = F11
α,d(c1),

we get the value d = 0.320667 at which the orbit of c1

is homoclinic to a periodic orbit of Fα,d of period five.
The solution of the system (F5

α,d)
′(x) = 1, F5

α,d(x) = x
provides the value d = 0.325085 at which a tangent
bifurcation for F5

α,d occurs, leading the system again
from bistability to essential extinction.

This example shows the complexity that models gov-
erned by bimodal maps and subject to harvesting can

Fig. 9 Magnification of the bifurcation diagram in the in-
terval d ∈ [0.32, 0.326] for equation xn+1 = max{0.15xn + (1 −
0.15)xn exp(5(1 − xn)) − d, 0}. A period five window of bistability
is observed

exhibit. Moreover, we can conclude that two-parameter
bifurcation diagrams similar to those in Figs. 2a and 4
are, in general, very difficult to construct.

Discussion

For semelparous populations with nonoverlapping gen-
erations and overcompensating density dependence, a
typical model is a recurrence xn+1 = f (xn), where xn

is the size of the population at time n, and f is a
unimodal map. Assuming that these populations are
subject to constant harvesting in every period of time,
it was proved that continuous changes in the amount of
captures can lead the population to essential extinction
abruptly. This phenomenon was explained by means of
bifurcations of catastrophe type or crises, due to bound-
ary collisions (Vandermeer and Yodzis 1999; Schreiber
2001). Schreiber demonstrated that essential extinction
occurs when the maximum size of a growing population
exceeds a critical population density.

Apart from these abrupt changes, counterintuitive
effects have been described in the study of population
models subject to different strategies of harvesting.
Perhaps the most famous is the paradoxical enrichment
effect in the stock size of a population when mortal-
ity is increased. This phenomenon is called the hydra
effect, and a good reference is the recent survey of
Abrams (2009). It is linked to discrete models with
proportional harvesting, that is, when a percentage of
the population stock is removed each year (Seno 2008;
Liz 2009). As it is reported by Abrams, the possibility
of this paradoxical effect was first suggested by Ricker
in his famous paper (Ricker 1954). A similar effect was
found in the studies of control by simple limiters, that is,
the population stock is prevented from reaching values
over a fixed threshold (Hilker and Westerhoff 2006).

Even more surprising is the paradoxical effect
of unusual extinction, discovered by Sinha and
Parthasarathy and later confirmed by Schreiber. The
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interesting observation of Sinha and Parthasarathy is
that increasing harvesting not only can give place to
a sudden essential extinction, but also the population
may change unexpectedly from a regime of essential
extinction to one of bistability, in which the population
stock persists indefinitely for a large set of initial con-
ditions (the expression “large set” means here that it
contains a nontrivial real interval).

In this paper, we studied the effect of harvest-
ing in a population model characterized by the fact
that generations overlap because a certain fraction
of adults survive from time period to time period,
while juveniles experience overcompensating density
dependence. The consideration of a survival rate
has two important consequences in the model. On
the one hand, it helps to stabilize the system; on
the other hand, it makes the population less sus-
ceptible to extinction because a floor is created be-
low which the population cannot fall. For some
known functions, such as the Ricker and the Bellows
maps, this floor is due to a new critical point that
converts the unimodal profile of f into a hump-with-
tail (or bimodal) function Fα(x) = αx + (1 − α) f (x).
Other mechanisms to create population floors in
one-dimensional discrete ecological models are the
consideration of a constant amount of immigration
(McCallum 1992; Stone 1993; Sinha and Das 1997;
Stone and Hart 1999), or the application of a limiter
control from below (Hilker and Westerhoff 2005). For
more discussions, see, e.g., Ruxton and Rohani (1998).

However, the new critical point that aids popula-
tion persistence also induces more complexity in the
dynamics of the population growth. The main differ-
ences in the behavior of survival and extinction in
the iteroparous model, compared with the semelparous
one, are motivated by its bimodal shape. Actually,
adding a survivorship term to the quadratic map does
not originate a new critical point, and for this reason,
the behavior of this model is relatively simple.

We point out the fundamental differences found in
our study:

– In general, an arbitrary small value of the harvest-
ing parameter d can drive to extinction a population
without adult survivorship under a strong over-
compensating density dependence. In contrast, for
a bimodal model, the mentioned population floor
ensures persistence for a set of initial conditions
when d is small enough.

– While in a model of population growth governed by
a unimodal map, increasing the growth rate r leads
the system to essential extinction; in the bimodal
case, larger values of r may result in new modes

of bistability. The crises bifurcations responsible of
this complex behavior are more intricate, and they
cannot be explained only by the relative position
between the positive equilibria of the system and
the forward iterations of the critical points. More-
over, in these new modes of bistability, the popula-
tion stock can be placed in several disjoint chaotic
bands bounded away from zero, alternating from
one band to another in successive time periods.

– As a consequence, the unusual extinction
phenomenon—in which persistence is possible
even if there is essential extinction for lower
depletion rates—becomes more complex in the
bimodal case. Indeed, there may be several
intervals of bistability alternating with intervals of
essential extinction when the harvesting parameter
is increased.

Although these studies might be applicable to re-
source management policies in fisheries, we share
the words of caution common in all papers devoted
to studying the complex behavior in the population
growth due to harvesting. Even if theoretical research
suggests that sometimes increasing captures may help
either to avoid extinction or to increase the stock size
of the population, this fact should not be used to justify
greater harvesting. Rather, our study highlights the
difficulty in determining sustainable harvesting rates
for iteroparous populations experiencing overcompen-
sating density dependence.

To finish, our contribution can be seen as a first step
in the study of the influence of harvesting in the delayed
Clark’s model (Clark 1976)

xn+1 = αxn + (1 − α) f (xn−T),

where the integer T ≥ 1 represents a maturation delay.
For example, the age of sexual maturity is estimated at
T = 5 years for the Greenland–Spitzberger Bowhead
and other northern whale species (Conrad 1989; Allen
and Keay 2004).
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Appendix A

This appendix is devoted to give more details on the
derivation of Eq. 2 from ecological models for the
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Ricker and the logistic maps. An interesting derivation
of Eq. 2, with f being the Ricker map, is given in the
book of Thieme (2003). Taking into account the sur-
vivorship assumption, the resulting difference equation
is

yn+1 = yn
(
q + γ e−yn

)
, (6)

where q ∈ [0, 1] is an adult’s probability of surviving
1 year including the reproductive season, and γ is the
number of per capita offspring still alive after 1 year
if there is no cannibalism (we refer to Thieme (2003,
Section 9.2) for more details).

If q + γ > 1, then there is a unique positive equilib-
rium K of Eq. 6. Notice that this provides a dependence
relation among the parameters q, K, and γ , namely,

1 = q + γ e−K. (7)

This relation is sometimes referred to as the balance
equation (May 1980).

Replacing Eq. 7 into Eq. 6 leads to

yn+1 = yn
(
q + (1 − q)eK−yn

) = qyn + (1 − q)yneK−yn .

Setting yn = Kxn, r = K, q = α, the positive equilib-
rium is normalized to 1, and Eq. 6, reads

xn+1 = αxn + (1 − α)xner(1−xn).

Using similar arguments, May (1980) (see also Fisher
1984) derived equation

yn+1 = αyn + (1 − α)yn

(
1 + q

(
1 − yn

K

))z
, (8)

used by the International Whaling Commission (IWC)
(Beddington 1978; Beddington and May 1980) to
describe the dynamical behavior of baleen whale pop-
ulations. The meaning of the parameters in Eq. 8 is
the following: K is the positive equilibrium, q is the
maximum increase in fecundity of which population is
capable at low densities, and z measures the severity
with which the density-dependent response is mani-
fested. The case z = 1 corresponds to the logistic as-
sumption, in which the density-dependent increase in
fecundity is linear. After normalization, Eq. 8 with z =
1 is rewritten as

xn+1 = αxn + (1 − α)rxn(1 − xn),

with r = 1 + q, qyn = (1 + q)Kxn.

Appendix B

Assume that f satisfies A1–A4, and limx→∞ f (x) =
0. Since f ′(c) = 0, f ′(x) < 0 for all x > c, and
limx→∞ f (x) = 0, it follows that f has an inflexion point

at f (δ), for some δ > c. Moreover, this is the unique
inflexion point of f . Indeed, condition A3 ensures that
f has, at most, one inflexion point on each interval
not containing a critical point (this is a consequence
of Lemma 3 in Schreiber 2001). On the other hand,
condition A4 prevents the existence of inflexion points
on [0, c]. Therefore, it is clear that f ′(δ) = min{ f ′(x) :
x > 0}.

Consider Fα(x) = αx + (1 − α) f (x), with α ∈ (0, 1).
Since F ′

α(x) = 0 ⇐⇒ f ′(x) = −α/(1 − α), we distin-
guish two cases:

(a) Monotone case. If f ′(δ) ≥ −α/(1 − α), then

F ′
α(x)=α+(1−α) f ′(x)≥α+(1−α) f ′(δ)≥0, ∀ x>0.

Hence, Fα is nondecreasing on (0, ∞), and there-
fore, there are only two possible modes of sur-
vival/extinction for Eq. 4:

– Extinction: if 0 is the unique fixed point of
Fα,d, then limn→∞ Fn

α,d(x) = 0 for all x > 0.
– Bistability: if there are 0 < K1 ≤ K2 such

that Fα,d(K1) = K1, Fα,d(K2) = K2, then
limn→∞ Fn

α,d(x) = 0 for all x ∈ (0, K1) and
limn→∞ Fn

α,d(x) = K2 for all x > K1.

(b) Bimodal case. If f ′(δ) < −α/(1 − α), then equa-
tion F ′

α(x) = 0 has two solutions c1, c2, with
0 < c1 < δ < c2. Moreover, F ′

α(x) > 0 on (0, c1) ∪
(c2, ∞), and F ′

α(x) < 0 on (c1, c2). This means that
Fα(c1) is a local maximum, and Fα(c2) is a local
minimum.

For example, for the Ricker map f (x) = x exp(r(1 −
x)), the inflexion point is reached at δ = 2/r, and the
minimum of f ′ is f ′(δ) = − exp(r − 2). Thus, Fα(x) =
αx + (1 − α)x exp(r(1 − x)) is bimodal for all r > 2 +
ln(α/(1 − α)).

Appendix C

We recall (Block and Coppel 1992, Section III.3) that,
if g is a continuous map from a real interval I into itself,
a point y is homoclinic to a periodic point z of period
k ≥ 1 if f k·n(y) = z for some n > 0, and y belongs to the
unstable manifold of z. As proved in (Proposition 21,
p. 64, of the same book), a continuous map is chaotic if
and only if it has a homoclinic point.

It is clear that the condition for chaotic semi-stability
in Theorem 1 of Schreiber (2001) is equivalent to saying
that the critical point c is homoclinic to the least positive
fixed point of f . The orbit formed by the homoclinic
point, its preimages, and its (finite) forward orbit is
a homoclinic orbit. Moreover, if this orbit contains a
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critical point, it is called a degenerate homoclinic orbit
(Devaney 1989, Section 1.16). See Fig. 10, where a
degenerate homoclinic orbit is represented.

For α and d fixed, consider the map Fα,d(x) =
max{αx + (1 − α)x exp(r(1 − x)) − d, 0} used in the pa-
per as a paradigm of the influence of harvesting in a
population model governed by a bimodal map.

For α = 0, the catastrophe bifurcation (Fig. 6a) oc-
curs when the basin of attraction of the chaotic attractor
collides with the unstable fixed point arising in the
tangent bifurcation, that is, when F2

0,d(c1) = K1. At this
bifurcation point, the orbit of c1 is homoclinic to K1, as
shown in Fig. 10.

For α > 0, there are more modes of survival and
extinction. They are typically created, as r is increased,
in tangent bifurcations for an iterate Fk

α,d, k ≥ 1, and
destroyed when the basin of attraction of the chaotic
attractor created by a period doubling cascade from
the stable k-cycle collides with the unstable k-cycle
originated in the tangent bifurcation. When k = 1, this
simply means that F2

α,d(c1) = K1. For k > 1, there is a
degenerate homoclinic orbit to the unstable k-cycle. In
particular, this remark provides the formula Fk+1

α,d (c1) =
F2k+1

α,d (c1), which is useful to numerically determine the
bifurcation point.

To explain how the survival mode is destroyed
in a crisis bifurcation, let us look at the example
given in the section “New modes of survival and
extinction,” that is, Fα,d(x) = max{0.15x + (1 −
0.15)x exp(r(1 − x)) − 0.4, 0}. As indicated in the
section “New modes of survival and extinction,” a
transition from essential extinction to bistability takes
place as the parameter r is increased, via a tangent
bifurcation for the second iteration F2

α,d.

yz
Fig. 10 A degenerate homoclinic orbit to a fixed point z. For the
critical point y, g2(y) = z, and the preimages g−n(y) converge to
z as n → ∞

xb xdy1xc y3xa

Fig. 11 Graphic representation of the map F2
α,d = Fα,d ◦ Fα,d,

where Fα,d(x) = max{0.15x + (1 − 0.15)x exp(r(1 − x)) − 0.4, 0}
with r = 4.6

It is useful to use a graphic representation of F2
α,d. In

Fig. 11, this is made for the value r = 4.6, belonging to
the region of bistability. After the tangent bifurcation,
two 2-cycles arise. The unstable 2-cycle {xa, xb } gives
two fixed points of F2

α,d. Now, we can determine two
points xc, xd, such that

xc = min
{

x > xa : F2
α,d(x) = xa

} ;
xd = min

{
x > xb : F2

α,d(x) = xb
}
.

7
0

1

2

3

4

5

6

7

xa xb
c1

Fig. 12 Graphic of the map Fα,d(x) = max{0.15x + (1 −
0.15)x exp(r(1 − x)) − 0.4, 0} with r = 4.6488. There is a homo-
clinic orbit to the 2-cycle {xa, xb }
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Denote I1 = [xa, xc] and I2 = [xb , xd]. It is clear that
Fα,d(I1) = I2 and Fα,d(I2) = I1. Moreover, the set of
initial conditions for which the orbit persists indefi-
nitely is I1 ∪ I2. The crisis bifurcation occurs when y1 :=
Fα,d(c1) = xd, that is, when y3 := F3

α,d(c1) = xb . Notice
that this relation defines the homoclinic orbit from c1 to
the cycle of period two. Moreover, since F2

α,d(xb ) = xb ,
we get the formula F3

α,d(c1) = F5
α,d(c1), from which the

bifurcation value r = 4.6488 is determined numerically.
In Fig. 12, we represent the map Fα,d with r = 4.6488,
for which F3

α,d(c1) = xb , giving place to a degenerate
homoclinic orbit.
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