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How to control chaotic behaviour and population size with proportional feedback
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We study the control of chaos in one-dimensional discrete maps as they often occur in modelling
population dynamics. For managing the population, we seek to suppress any possible chaotic behavior,
leading the system to a stable equilibrium. In this Letter, we make a rigorous analysis of the proportional
feedback method under certain conditions fulfilled by a wide family of maps. We show that it is possible
to stabilize the chaotic dynamics towards a globally stable positive equilibrium, that can be chosen
among a broad range of possible values. In particular, the size of the population can be enhanced by
control in form of population reduction. This paradoxical phenomenon is known as the hydra effect, and
it has important implications in the design of strategies in such areas as fishing, pest management, and
conservation biology.

© 2009 Elsevier B.V. All rights reserved.
1. Introduction

Mechanisms of control of chaos have attracted much interest in
different areas such as mechanics, electronics, chemistry, and bi-
ology (see, e.g., [1,2] and references therein). The aim of most of
the proposed methods consists in stabilizing one of the unstable
periodic orbits embedded in a chaotic attractor either by adjust-
ing a parameter of the model or modifying the state variable. The
latter method is in general implemented by introducing an exter-
nal parameter that one can control to drive the chaotic system to
a stable situation. These techniques are easier to implement, es-
pecially if we try to apply them to biological systems, since the
intrinsic parameters as the growth rate are in general difficult to
modify, while external parameters such as migration or fishing are
more easily controllable.

We are interested in the stabilization of the system into a pos-
itive equilibrium. While in engineering it is desirable to use only
small control because large perturbations of the system may be
costly, this is not so important in biology, where the control prob-
lem can be seen as a strategy for sustainable development or
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control of plagues, and thus it can be necessary to apply larger
perturbations to lead the population size to stabilization into a de-
sirable size. For a further discussion and related references, see the
nice introduction in [3].

In this Letter, we focus our attention on the proportional feed-
back (PF) method, introduced by Güémez and Matías [4,5]. Based
on analysis, we identify control parameter values that allow to sta-
bilize chaos to unique stable equilibria. Furthermore, it is possible
to choose suitable values of the parameter control either to en-
rich or to reduce the size of the state variable. This aspect has
important implications in ecology. For example, the phenomenon
of a population increasing in response to an increase in its per-
capita mortality rate has to be taken into consideration to design
strategies in fisheries and pest management. This paradoxical phe-
nomenon is known as the hydra effect, see the recent survey of
Abrams [6]. Thus, on the one hand, we improve the knowledge
about the PF method, since, as far as we are aware, previous stud-
ies were often based on simulations, not indicating how the con-
trol parameter needs to be chosen. On the other hand, our result
illustrates the potentially paradoxical effect of control previously
observed for the limiter control method [7].

Since it is important to drive most of the trajectories to the
desirable attractor, another important aspect of our studies is the
size of the basin of attraction of the equilibrium. In this direction,
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the proof of our main result shows that the basin of attraction of
the controlled state is the whole interval, and, in consequence, the
control is more robust in the presence of noise.

Section 2 is devoted to prove our main result and show an ap-
plication to the Ricker model [8]. In Section 3, we discuss the main
conclusions, including comparison of the PF method with other re-
lated control methods such as the constant feedback method (CF) [9]
and the limiter control (LC) [10,11].

2. Main result

As it is well known, the development of the theory of chaos
was strongly stimulated by the doubling-period bifurcations route
found for one-dimensional discrete equations of the form xn+1 =
f (xn) in the pioneering work of May and others [12–14]. In the
usual models of population dynamics, f is a unimodal function
such as the quadratic map f (x) = rx(1 − x) and the exponential
(Ricker) map f (x) = x exp [r(1 − x)], where r means the intrinsic
growth rate of the population. Accordingly, most of the parametric
control techniques for suppressing chaos were inspired by models
in population dynamics governed by the above mentioned one-
dimensional maps. Moreover, the new parameter that helps to
stabilize the dynamics has a clear biological meaning.

We consider the proportional feedback method (PF). It consists
in multiplying the state variable by a constant factor γ > 0 every
p iterations, where p is an integer greater than zero. Here we only
consider the case p = 1. Thus, the map f becomes f (γ x) after
the control. The biological interpretation is that a percentage of
the population is removed (by migration, or harvesting) if γ < 1,
whereas a factor γ > 1 means a population supplement at each
generation.

The main result of this Letter states that, under some mild
assumptions on the function f (met by the most usual one-
dimensional maps used in mathematical modelling), it is possible
to stabilize a chaotic system generated by f into a globally attract-
ing equilibrium using the PF method. This is proved rigorously;
moreover, we show that any target between zero and the maxi-
mum value of f can be reached. This makes a big difference with
the CF and LC methods, as we discuss later. Our study is motivated
by the gap in the literature concerning analytic results proving that
stabilization is achievable when the control is applied, and how to
choose an appropriate value of the parameter control. Two excep-
tions are the papers of Gueron [15] and Wieland [16], regarding
the CF method. We prove a result in this direction using the PF
method, and show that it is more versatile than the CF and the
LC methods, especially if one is interested in using the control to
achieve a desired population size. In accordance with the paradox
of limiter control [7], it is shown that a reduction in the size of the
state variable may lead the system to shift its mean value. More-
over, all admissible values of the population size can be achieved.
We prove more: contrary to what happens with the limiter control
approach [7], the enrichment effect is observed for a wide class of
functions, including the exponential model.

Other important aspect of our result is that, whereas the equi-
librium in a model controlled by constant feedback is only locally
stable [15] (and thus the control is less robust against noise),
we prove that the application of proportional feedback leads the
system to a global attractor (that is, all solutions converge to it,
regardless of the initial condition). Another consequence of this
property, with important implications in ecology, is that the sys-
tem is less prone to extinction, avoiding the Allee effect [17] in-
duced by the introduction of negative constant feedback [18].

Now we formulate our main result. The hypotheses are moti-
vated by the applications to well known systems as the quadratic
and the exponential ones, but are met by many other functions.
Theorem 1. Denote by I = [0,b] a real interval (b = +∞ is allowed).
Let f : I → I be a C1 function with only two fixed points: x = 0 and
x = K > 0, with f ′(0) > 1 and f ′(K ) < −1. Assume that f has a unique
critical point c < K in such a way that f ′(x) > 0 for all x ∈ (0, c),
f ′(x) < 0 for all x > c, and f ′′(x) < 0 on (0, c). Then there exist
γ1, γ2 ∈ (0,1) such that, for any γ ∈ (γ1, γ2), the map gγ (x) = f (γ x)
has a unique positive equilibrium Kγ that is asymptotically stable. More-
over, when γ ranges from γ1 to γ2 , the equilibrium Kγ takes all values
between zero and f (c) = max{ f (x): x ∈ I}. If, in addition, f ∈ C3(I)
and f ′′′(x)/ f ′(x) < (3/2)( f ′′(x)/ f ′(x))2 for all x �= c, then the positive
equilibrium Kγ is globally attracting for all γ ∈ (γ1, γ2).

Some remarks are in order: first, we notice that the technical
assumption to ensure global stability is the so-called property of
negative Schwarzian derivative, which is a well-known tool in dis-
crete dynamical systems [19]. It is easy to check that the quadratic
and the exponential maps, among other usual functions, satisfy
this condition (see [20]). The other assumptions are also impor-
tant; for example, if the sign of f ′′ is not constant on (0, c), then
the conclusion of Theorem 1 does not hold in general, since the
controlled map can have more than one positive equilibrium, and
therefore global stability is not possible. In particular, Theorem 1
is not applicable to Allee type population models, in which initial
values of the population size below a critical threshold are driven
to extinction.

A second remark is that the key values in the statement of the
theorem are easy to determine (this is derived from the proof be-
low):

• γ1 = 1/ f ′(0).
• γ2 is determined by solving the system of equations f (γ2x) =

x, γ2 f ′(γ2x) = −1.
• The maximum value f (c) is attained for γ ∗ = c/ f (c). We no-

tice that, for this parameter value, the equilibrium of the con-
trolled system is superstable, that is, g′

γ ∗(Kγ ∗ ) = 0.
• Any population size S between 0 and f (c) can be reached by

PF control. Indeed, we only have to solve equation f (γ S) = S
for γ ∈ (γ1, γ2).

Before giving the proof, we present an example to illustrate
how the theorem works.

Since for the quadratic map everything is easily computable by
solving algebraic equations of order at most two, we consider the
exponential map f (x) = x exp[r(1 − x)]. Following our previous re-
marks, we determine γ1 and γ2. First, γ1 = 1/ f ′(0) = exp(−r); to
get γ2, we solve the system f (γ2x) = x, γ2 f ′(γ2x) = −1. This leads
to

γ2 exp
[
r(1 − γ2x)

] = 1, γ2 exp
[
r(1 − γ2x)

]
(1 − rγ2x) = −1.

By substitution of the first equation into the second one, we easily
get γ2x = 2/r. Therefore,

1 = γ2 exp
[
r(1 − γ2x)

] = γ2 exp
[
r(1 − 2/r)

] = γ2 exp(r − 2),

which gives γ2 = exp(2 − r). Thus, for γ ∈ (e−r, e2−r), the con-
trolled system xn+1 = γ xn exp[r(1 − γ xn)] has a globally attracting
positive fixed point. The critical value of f is c = 1/r. Hence, we
can choose any value between 0 and f (c) = exp(r − 1)/r, and find
the value of γ to stabilize the system into it. In particular, f (c) is
attained for γ ∗ = c/ f (c) = exp(1 − r). We give a numerical exam-
ple with r = 2.8, that is,

xn+1 = γ xn exp
[
2.8(1 − γ xn)

]
. (1)

The uncontrolled system (γ = 1) is chaotic. A global attractor is
achieved for γ ∈ (γ1, γ2) = (0.0608,0.4493). The maximum value
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Fig. 1. (Color online.) Time series for (a) the uncontrolled system (1) with γ = 1, and (b) the superstable equilibrium at the maximum value for γ = 0.1653.
Fig. 2. (Color online.) Bifurcation diagram for Eq. (1) with the bifurcation parameter
γ ∈ (0,1). See the text for an explanation of the horizontal and vertical lines.

f (c) = 2.16059 is attained for γ ∗ = 0.1653. In Fig. 1(a), we plot a
time series of the chaotic system, while the solution of the con-
trolled system with γ = γ ∗ is displayed in Fig. 1(b).

In Fig. 2, we plot the bifurcation diagram of Eq. (1) with the
parameter γ ranging between γ = 0 and γ = 1 (uncontrolled sys-
tem). The values of γ1, γ2 and γ ∗ are represented there. Notice
that the equilibrium is globally stable for γ ∈ (γ1, γ2). The enrich-
ment effect is easily observable here; for example, a reduction of
83% of the population modeled by (1) leads to stabilization of the
population around its maximum value.

If we want to reach a globally stable population size S between
0 and f (c), we solve numerically equation f (γ S) = S . For ex-
ample, for S = 1.5, there is a unique solution γ = 0.088 of this
equation in the interval (γ1, γ2). For S = 2, there are two possible
values: 0.1172 and 0.2582. These values are represented in Fig. 2
as the intersection between the horizontal dashed lines and the
part of the bifurcation diagram between γ1 and γ2.

Proof of Theorem 1. For each γ ∈ (0,1], let us define the function
gγ : I → I by gγ (x) = f (γ x). A positive fixed point Kγ of gγ is
defined by equation f (γ x) = x, which is equivalent to f (z) = z/γ ,
with z = γ x. The solution z = zγ has a clear geometric interpreta-
tion: it is the abscissa of the intersection between the graph of f
and the line y = (1/γ )x, whereas Kγ = zγ /γ is the ordinate (see
Fig. 3).

It is clear from the properties of f that there exists a unique
solution Kγ for each γ between γ1 = 1/ f ′(0) and γ = 1. Thus we
can define a continuous map P : (γ1,1] → (0, f (c)] by P (γ ) = Kγ

(recall that f (c) is the maximum of f ). Define γ ∗ = c/ f (c). The
equality f (γ ∗ f (c)) = f (c) implies that Kγ ∗ = P (γ ∗) = f (c). Since
f is increasing in (0, c) and decreasing in (c,b), it follows that
P is increasing in (γ1, γ

∗) and decreasing in (γ ∗,1). Moreover,
since limγ →γ1 P (γ ) = 0, P takes all values between 0 and f (c).
Next, Kγ is asymptotically stable while |g′

γ (Kγ )| < 1. Notice that
Fig. 3. For each γ between γ1 and 1, Kγ is found as the projection on the vertical
axis of the intersection point between the graph of f and the line y = (1/γ )x.

g′
γ (Kγ ) = γ f ′(γ Kγ ) = γ f ′(zγ ) and therefore g′

γ (Kγ ) is positive
for γ < γ ∗ and negative for γ > γ ∗ .

Since g′
γ ∗(Kγ ∗ ) = 0 and, by hypothesis, g′

1(K1) = f ′(K ) < −1,
there exists at least one value of γ ∈ (γ ∗,1) such that g′

γ (Kγ ) =
γ f ′(γ Kγ ) = −1. Denoting by γ2 the minimum of such values, it
follows that Kγ is asymptotically stable for all γ ∈ (γ1, γ2).

To complete the proof, it only remains to notice that, for γ ∈
(γ1, γ2), gγ has negative Schwarzian derivative because it is the
composition of f with a linear map (see [19]), and thus Singer’s
results [20] apply to conclude that Kγ is a global attractor. �
Remark. We notice that the one-parameter family of maps {gγ }
defined in the proof undergoes a period-doubling bifurcation at
γ = γ2, and a transcritical bifurcation at γ = γ1. For γ < γ1, x = 0
is the unique fixed point, and it is globally attracting. This can be
observed in Fig. 2 for Eq. (1).

3. Discussion

We proved that the proportional feedback control is an effective
tool both for suppressing chaos, and, not less important, to control
the population size. The possibility to choose a strategy of control
based on removing a constant percentage of the system variable
at each iteration to stabilize the population into any desired value
between zero and the maximum possible size has a great poten-
tial for applications. For example, it can be used to design policies
of fishing for sustainable development, control of plagues, and in
many other disciplines as genetics, economics or social sciences
[6,7]. Here, we proved analytically that this method works well in
one-dimensional discrete dynamical systems as the quadratic and
the exponential maps.

In order to emphasize the good properties of the PF method
stated in Theorem 1, we give a comparison with other related con-
trol methods considering the chaotic quadratic equation
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Fig. 4. (a) Bifurcation diagram for Eq. (4); (b) Bifurcation diagram for Eq. (5). The thick line indicates the average of population size.
xn+1 = 4xn(1 − xn), (2)

largely used as a model in population dynamics. Function f (x) =
4x(1 − x) maps the interval [0,1] into itself, and reaches its maxi-
mum value at x = 1/2, with f (1/2) = 1.

Since the most clear biological interpretation of the PF method
is a strategy of harvesting, we first compare this technique with
the constant feedback control scheme. For the quadratic map (2),
it writes

xn+1 = 4xn(1 − xn) − c, (3)

where c > 0 means that a constant harvesting or migration takes
place every period of time. This example was studied in [15]. Al-
though it is possible to stabilize the chaotic equation (2) into a
stable equilibrium for some positive values of c using the control
(3), this method has two clear disadvantages with respect to the
PF method, which in this case reads

xn+1 = 4γ xn(1 − γ xn), (4)

with γ ∈ [0,1].
First, applying Theorem 1, we easily prove that the positive

equilibrium Kγ of (4) is globally attracting for γ ∈ (0.25,0.75).
Moreover, Kγ takes all possible values between 0 and 1. In con-
trast, the range of attainable values of a stable positive equilib-
rium using (3) reduces to the interval J = (0.5,0.5625). More-
over, for c ∈ J , the region of attraction of the equilibrium Kc is
(see [15]) Ic = (xL(c), xR(c)), where xL(c) = [3 − (9 − 16c)1/2]/8,
xR(c) = [3 + (9 − 16c)1/2]/8. For example, for c = 0.55, the basin of
attraction is Ic = (0.3191,0.4309). Moreover, most of initial popu-
lation sizes out of Ic are driven to extinction by (3) due to the Allee
effect (see [18]). Thus, a strategy of captures based on PF control
prevents the risk of extinction observed for the CF method, and it
is more robust against noise. We also notice that the enrichment
effect is not observed for the CF control method.

Next we consider the limiter control method, for which the
paradoxical effect of enrichment was reported in [7] using the
quadratic map. This strategy of control is based in preventing the
population from exceeding a threshold level h. Thus, this scheme
applied to (2) reads

xn+1 = min
{

4xn(1 − xn),h
}
, (5)

where h ranges from h = 0 to h = 1 (uncontrolled system).
In Fig. 4, we plot the bifurcation diagrams both for (4) and (5).

To show the stabilizing effect as the control increases, we used
1 − γ and 1 − h, respectively, as the bifurcation parameters. The
thick line represents the mean of the asymptotic state variables.
Although the enrichment property is observed both for the PF and
the LC methods, the maximum mean value attained with the LC
technique is x = 0.75, while the maximum population size x = 1 is
reached with the PF control method.

In addition, we recall that, as reported in [7], unimodal maps
approaching zero for large state variables (like the Ricker map) do
not show the paradoxical effect of enrichment when limiter control
is applied. Thus, the PF method is more versatile, since it can also
be used to enhance the population size in models governed by this
class of maps.

The control methods discussed in this section assume that in
each generation a portion of the population is harvested. In Eqs. (3)
and (5), the harvesting takes place after the density dependent
mechanism of population dynamics; in contrast, in Eq. (4) harvest
is prior to the reproductive season.
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