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Abstract We review some dynamical effects induced by constant effort harvesting
in single-species discrete-time population models. We choose three different forms
for the density-dependent recruitment function, which include the overcompensatory
Ricker map for semelparous species; a modified Ricker model allowing for adult
survivorship; and a model with both strong Allee effect and overcompensation which
results from incorporating mate limitation in the Ricker model. We show that these
simple models exhibit some interesting (and sometimes unexpected) phenomena
such as the hydra effect; bubbling; sudden collapses; and essential extinction. We
underline the importance of two often underestimated issues that turn out to be
crucial for management: census timing and intervention time.

1 Introduction

We consider discrete-time single-species models governed by a first-order difference
equation

xn+1 = F(xn), n = 0, 1, 2, . . . , (1)
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where xn denotes the population size at the n–th generation, and F is the so-called
stock–recruitment (production) function. These models are well-suited for semel-
parous populations [7, Chap. 4], but they also fit well to populations where a fraction
of adults survive the reproduction season [3, Sect. 7.5]. We will focus our attention
on the unimodal Ricker map [12]

F(x) = xer(1−x), r > 0, (2)

and two modifications of it. The first one assumes a survivorship rate α, α ∈ (0, 1),
of adults and reads

F(x) = αx + (1 − α)xer(1−x). (3)

We refer to this function as the Ricker–Clark map; see, e.g., [3, 9, 19].
The second modification of the Ricker model that we will consider exhibits a

strong Allee effect, that is, there is a critical population size (Allee threshold) below
which the population cannot survive [4]. It has been used by Schreiber [14] to model
mate limitation, and we will refer to it as the Ricker–Schreiber map. Its production
function is

F(x) = βx

1 + βx
x er(1−x), β > 0. (4)

Our aim is to show how a strategy of constant effort harvesting changes the
dynamics of the difference Eq. (1) when the production map F is given by (2), (3)
or (4).

2 The Ricker Model and the Hydra Effect

In this section we consider the Ricker function (2), which is a prototype for over-
compensatory production. See Fig. 1 for a graphic representation when r = 3.

A strategy of constant effort harvesting assumes that a percentage γ x of the
population is removed at every period. Thus, harvesting a population following the
Ricker map after recruitment gives

xn+1 = (1 − γ )xn er(1−xn), n = 0, 1, 2, . . . , (5)

where γ ∈ (0, 1). The bifurcation diagram of (5) for varying γ (Fig. 2) shows the
well-known effects of increasing harvesting:

• Reducing complexity: if the unharvested population is unstable, a sufficiently large
harvesting effort leads the system to a globally stable positive equilibrium through
a series of period-halving bifurcations (see, e.g., [8]).

• Overharvesting leads to extinction after a transcritical bifurcation at γ = 1 − e−r .
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Fig. 1 Graphic representation of the Ricker stock–recruitment curve F(x) = xe3(1−x). This curve
is overcompensatory; this means that after a critical value of the population size, recruitment de-
creases with increasing population size. The intersection with the line y = x (dashed line) is the
positive equilibrium x = 1 (obtained from the carrying capacity after normalization)
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Fig. 2 Bifurcation diagram for Eq. (5) with r = 3 and γ ∈ (0, 1). For each value of γ (with step
0.001), we produce 300 iterations of (5) with a random initial condition x0 ∈ [0, 2.5], and plot the
last 20 iterates to let the transients die out. The bold line corresponds to the average population size

2.1 Census Timing and the Hydra Effect

The hydra effect is a term recently coined by P. A. Abrams and co-authors to define a
seemingly paradoxical increase in the size of a population in response to an increase
in its per-capita mortality [1]. One of the simplest models where this effect can be
observed is a modified version of Eq. (5), namely,

xn+1 = (1 − γ )xn er(1−(1−γ )xn), n = 0, 1, 2, . . . (6)

This equation has been studied in [8, 11, 15]; see also [1] for other recruitment
functions. In particular, Ref. [11] proves that the average population size for any
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Fig. 3 Bifurcation diagram
for Eq. (6) with r = 3 and
γ ∈ (0, 1). The bold line
corresponds to the average
population size
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initial condition x0 > 0 is an increasing function of the harvesting effort γ for all
γ ∈ (

0, 1 − e1−r
)
. The average population size is defined by the formula

φ(x0, γ ) = lim
n→∞

1

n

n−1∑

i=0

xi (γ ).

The bifurcation diagram for r = 3 is shown in Fig. 3. The bold line corresponds to
the average population size.

What is the relationship between models (5) and (6)? From an ecological point
of view, both are models with only two processes: reproduction and harvesting.
The only difference between them is the moment at which the population size is
measured. Indeed, if we denote by F(x) = xer(1−x) the recruitment function and by
h(x) = (1−γ )x the harvesting action, Eq. (5) corresponds to census after harvesting.
That is, it can be written in the form

xn+1 = h(F(xn)), n = 0, 1, 2, . . . (7)

On the other hand, Eq. (6) corresponds to census after reproduction. That is, it can
be written in the form

xn+1 = F(h(xn)), n = 0, 1, 2, . . . (8)

Following another analogy [3, see Sect. 7.1], Eq. (7) measures the dynamics of the
parent stock, whereas (8) measures the dynamics of the recruits.

From a mathematical point of view, Eqs. (7) and (8) are dynamically equivalent
[11]; this means that they share the same properties of stability, periodicity and
chaos. However, what we observe in Figs. 2 and 3 does not appear to be the same. In
particular, while (7) does not exhibit the hydra effect, (8) does do. This fact stresses
the necessity of taking into account census timing when a mathematical model is used
for management purposes; using Clark’s terms [3, see Sect. 7.1], the same harvesting
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Fig. 4 Geometric
representation of the positive
equilibria of models (5)
and (6). The equilibrium
Kγ of the former decreases
as γ is increased, while the
equilibrium Kγ of the latter
increases with γ until the
critical value γc, for which the
line y = x/(1 − γ ) intersects
the curve y = F(x) at its
maximum value (c, F(c))
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model can exhibit a hydra effect when we census recruits, but it does not if we census
the parent stock. Of course, the hydra effect is still present in the recruits but “hidden”
since we do not measure it. For more discussion on this topic, see [5] and references
therein.

We notice that the hydra effect in discrete single-species models can only occur
if the density dependence is overcompensatory [1, 15]. Actually, it is easy to explain
using the geometric interpretation of the positive equilibrium. Recall that for the
Ricker model, the average population size matches the equilibrium even when the
population oscillates. It is easy to check that the equilibrium Kγ of (5) is the projection
on the x–axis of the intersection of the curve y = F(x) with the line y = x/(1 −γ ),
and the positive equilibrium of (6) is Kγ = F(Kγ ), which is the projection of
the same intersection point on the y–axis. This simple observation explains why
increasing harvesting produces a hydra effect in model (6) but not in (5). See Fig. 4.

2.2 Variable Harvest Timing and Its Impact on Population
Dynamics

As emphasized in [6], the timing of harvesting may profoundly influence the impact
on the population. The main reason is that if population growth is compensatory, then
if individuals are removed at early stages in the season, the remaining individuals
reproduce better. Seno [15] proposed one of the simplest models that considers
harvesting at a specific point of time within the season. It assumes that individuals
accumulate energy for reproduction in the course of the season and takes into account
density-dependent effects in the population dynamics for the parts of the season
before and after harvesting. For the Ricker map, the model is
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Fig. 5 Time series for Eq. (9) with γ = 0.7, r = 4 and different harvesting times: a chaotic
solution for θ = 1 (harvesting at the end of the reproductive season); b asymptotically stable
positive equilibrium for θ = 0.7

xn+1 = (1 − γ )xn

(
θer(1−xn) + (1 − θ)er(1−(1−γ )xn)

)
, n = 0, 1, 2, . . . (9)

where θ ∈ [0, 1] is the moment of time in the season (assuming its length is 1) when
harvest intervention takes place. The main conclusion of Seno’s paper is that the
hydra effect in (9) occurs for low values of θ , that is to say, the earlier we harvest,
the more the average population size is increased.

It is easily seen that the right-hand side of (9) is a convex combination of the
right-hand sides of Eqs. (5) and (6); cf. [2]. In other words, it can be written as

xn+1 = θh(F(xn)) + (1 − θ)F(h(xn)), n = 0, 1, 2, . . . ,

where h and F have the same meaning as in (7). Using this fact, it is easy to prove
that the intervention time θ does not change the critical value of the harvesting
effort γ driving the population to extinction, and that the average population size is
a decreasing function of θ .

Since we have seen that the cases θ = 0 and θ = 1 are dynamically equivalent,
an interesting problem is how intervention time affects the qualitative behaviour of
the model with harvesting. This problem has been addressed in [2], and a major
conclusion is that harvesting at intermediate values of the reproductive season may
reduce complexity. To illustrate this fact, Fig. 5 shows the time series of a solution of
Eq. (9) with θ = 1 (which reduces to (5)) and θ = 0.7. While the former is chaotic,
the latter has a globally attracting positive equilibrium.

3 The Ricker–Clark Model and the Bubbling Effect

As we have seen in the previous section, one of the characteristics of the Ricker model
with harvesting (5) is that an increasing harvesting effort stabilizes the positive equi-
librium. Actually, the opposite effect is not posible: harvesting cannot destabilize
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Fig. 6 Graphic representation
of the Ricker–Clark
stock–recruitment curve
F(x) = 0.55x+0.45xe3(1−x).
In this case there are
two critical points (a lo-
cal maximum and a local
minimum). The only positive
equilibrium is the carrying
capacity (normalized to 1), as
in the Ricker map
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a stable positive equilibrium [11]. However, it has recently become apparent that
harvesting/fishing can magnify fluctuations in exploited populations, and some hy-
potheses have been proposed (see, e.g., [16] and references therein).

One of the simplest mechanisms giving rise to destabilization with increasing
harvesting effort in deterministic models of discrete-time single-species populations
is to allow a certain percentage of the adult population to survive the season. This
yields the Ricker–Clark production function (3). Contrary to the usual Ricker map,
function (3) is usually bimodal, and this fact leads to richer dynamics. See Fig. 6 for
a graphic representation when r = 4 and α = 0.55.

The influence of harvesting in a population governed by Eq. (1) with the Ricker–
Clark function (3) has been recently studied in [9] for constant quota harvesting and
in [11] for constant effort harvesting. In both cases, it was shown that for certain
parameter ranges (of the adult survivorship α and production rate r ) increasing har-
vesting can destabilize the positive equilibrium and, more generally, harvesting can
magnify fluctuations of population abundance, even inducing chaotic oscillations
[11, Sect. 3.2].

Consider the Ricker–Clark map with constant effort harvesting

xn+1 = (1 − γ )
(
αxn + (1 − α)xn er(1−xn)

)
, n = 0, 1, 2, . . . (10)

The destabilization that occurs for increased harvesting can be explained by a
bubbling effect, which essentially consists of a period-doubling bifurcation followed
by a period-halving bifurcation; these bifurcations produce a bubble in the bifurcation
diagram. See Fig. 7.

In Fig. 8 we visualize the bubbling effect as well as population extinction due to
overharvesting by presenting time series predicted by the model for selected harvest-
ing efforts.

In Ref. [11, Theorem 2], the exact parameter ranges are given for which a bubble
occurs in Eq. (10). What is necessary is a combination of high production rates
(r > 3) and intermediate survivorship rates. Similar conclusions are obtained for
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Fig. 7 Bifurcation diagram showing a bubbling effect for Eq. (10) with α = 0.55, r = 4 and
γ ∈ (0, 1). Inside the bubble, the equilibrium is unstable (dashed curve), and there is an attracting
periodic orbit of period two
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Fig. 8 Time series for Eq. (10) with α = 0.55, r = 4 and different harvesting rates: a asymptotically
stable equilibrium for the unharvested population (γ = 0); b sustained oscillations for a capture
rate of 30 %; c the equilibrium is again stable when the harvesting rate is 70 %; d overharvesting
(γ = 0.96) drives the population extinct

a stage-structured model with two age classes (juveniles and adults) if only adult
harvesting is allowed [10, 20]. Bubbling can also occur if juveniles and adults are
harvested with the same rate, but not if juveniles are the only harvesting target (for
more details, see [10]). Note that forms of bubbling have also been observed in
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population models with constant feedback control (here, constant immigration), but
only when varying the production rate rather than the harvesting parameter [18].

If we consider intervention time using Seno’s model as we did in Sect. 2, we
arrive at a similar conclusion: intermediate harvesting times can be stabilizing;
actually, a suitable value of the timing parameter θ can avoid the bubbling effect
(see [2] for more details).

4 The Ricker–Schreiber Model: Sudden Collapses and Essential
Extinction

A common feature of the models studied in the previous sections is that overharvest-
ing (leading to population extinction) takes place after a transcritical bifurcation, i.e.
when the harvesting effort has passed a critical value γ ∗. Actually, for values of γ

slightly smaller than γ ∗, the positive equilibrium is globally asymptotically stable
and decays continuously to zero. In some sense, this means that extinction can be
prevented if harvesting pressure is increased only gradually (although the decay to
zero can be very fast, especially if we census after reproduction, see Fig. 3).

But there are populations for which the transition from a stable positive equi-
librium to extinction is discontinuous, producing a so-called sudden collapse. This
phenomenon is typical of a strategy of constant quota harvesting [9, 13], but it can
also happen for constant effort harvesting if the population model exhibits a strong
Allee effect.

The last model we consider in this paper is also based on the Ricker map, but it
includes a factor for positive density dependence that induces a strong Allee effect.
It is the Ricker–Schreiber model

xn+1 = βxn

1 + βxn
xn er(1−xn), n = 0, 1, 2, . . . , (11)

which was already introduced in Eq. (4). Parameter β represents the carrying capacity
of the population in the absence of mate limitation multiplied by an individual’s
efficiency to find a mate [14, Sect. 2.1]. See Fig. 9 for a graphic representation when
r = 3.5 and β = 0.5.

There are three generic possibilities for the dynamics of model (10): extinction;
bistability between extinction and survival; and essential extinction [13]. The latter
means that extinction occurs for a randomly chosen initial condition with probability
one. For fixed values of β and r , different harvesting efforts result in the three generic
possibilities. For example, we consider the model with constant effort harvesting

xn+1 = (1 − γ )
4xn

1 + 4xn
xn e4(1−xn), n = 0, 1, 2, . . . (12)
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Fig. 9 Graphic representa-
tion of the Ricker–Schreiber
stock–recruitment curve
F(x) = (0.5x2/(1 +
0.5x))e3.5(1−x). The Allee
threshold is the smaller pos-
itive equilibrium; population
sizes below it cannot survive
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Fig. 10 Bifurcation diagram
of the Ricker–Schreiber model
(12), using the harvesting
effort γ as the bifurcation
parameter. The three generic
possibilities are observed;
in case of bistability, the
nontrivial attractor is complex
for low harvesting rates and
becomes an attracting positive
equilibrium after a series of
period-halving bifurcations
for larger harvesting effort
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For γ = 0, there is essential extinction (c.f. [14, p. 205]). When constant effort
harvesting is applied (see the bifurcation diagram in Fig. 10), a boundary colli-
sion switches the dynamics from essential extinction to bistability at a value of
γ1 = 0.09384. A tangent bifurcation leads to extinction at γ2 = 0.91104, which
corresponds to a sudden collapse due to overharvesting. Between γ1 and γ2, the
dynamics of the nontrivial attractor ranges from chaos to asymptotic stability of the
larger positive equilibrium.

We call the reader’s attention to an unusual behaviour of extinction: populations
can persist within a band of medium to high harvesting efforts, whereas extinction
occurs for lower and very high harvesting efforts. This phenomenon is also typical
of a strategy of constant quota harvesting, and has been uncovered by Sinha and
Parthasarathy [17]. For constant effort harvesting in models with Allee effects, it
was first demonstrated by Schreiber [14].

The influence of harvest timing in the model (10) has been considered in [2]. Here
we just state the main conclusions for the model
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Fig. 11 Bifurcation diagram
of model (13) with F4,4(x) =
(4x/(1 + 4x))x e4(1−x) and
harvesting rate γ = 0.875.
For early and late harvesting
times, the population can
survive at moderate sizes, but
the same harvesting effort
drives the population extinct
if the harvest takes place at
intermediate moments of the
season
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xn+1 = θ(1 − γ )Fβ,r (xn) + (1 − θ)Fβ,r ((1 − γ )xn), n = 0, 1, 2, . . . , (13)

where θ ∈ [0, 1] and Fβ,r (x) = (βx/(1 + βx))x er(1−x).

• For moderate harvesting efforts, intermediate values of the harvest timing θ can sta-
bilize the larger positive equilibrium and hence facilitate stabilization—similarly
to the models considered in Sects. 2 and 3.

• For large harvesting efforts (close to the regime of overharvesting), intermedi-
ate values of the harvest timing θ can render the population more vulnerable to
extinction. In this scenario, the population can persist for early- or late-season
harvesting, but goes extinct for mid-season harvesting; see Fig. 11. The underly-
ing reason is that intervention time θ does change the overharvesting effort, i.e. the
critical value of the harvesting effort at which the system switches from survival
to extinction. This is in contrast to the models considered in Sects. 2 and 3.

• For low harvesting efforts (close to the regime of essential extinction), intermediate
values of the harvest timing θ can prevent essential extinction, which would occur
for early or late harvesting.

Hence, intermediate harvest times can be both beneficial (for small and moderate
harvesting efforts) and detrimental (for large harvesting efforts). See [2] for more
details.
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5 Conclusions

In this contribution, we have reviewed the impact of harvesting effort and harvest tim-
ing on population dynamics. While a large part of the literature is mainly concerned
with the yield obtained from harvesting (e.g., [3]), we have focused on (i) the abun-
dance of the exploited population and (ii) the complexity of the dynamics induced by
harvesting, in particular whether harvesting can be stabilizing or destabilizing. Both
aspects are crucial for the yield as well as for the sustainability of the population.
In the overview of this contribution, we have exclusively considered single-species
discrete-time population models. However, they represent a fair amount of different
ecological situations as they take into account overcompensation (scramble compe-
tition); adult survival (iteroparity) and critical depensation (strong Allee effect).

Regarding population abundance, the most interesting phenomenon is the
hydra effect [1, 11, 15]. Average population abundance can increase in response
to an increase in the per-capita mortality rate. This phenomenon underlines the im-
portance of census timing, as the hydra effect in parts of the population may be
“hidden” from observation and go unnoticed [5].

Regarding the complexity of the dynamics, increased harvesting typically sta-
bilizes population dynamics, but in the presence of adult survivorship it can also
be destabilizing. Typical mechanisms are period-halving bifurcations and bubbling
[8, 11].

In compensatory models (i.e., without Allee effect), harvest timing does not affect
the critical harvesting effort leading to overexploitation and population extinction.
Harvesting at an intermediate moment of the season can reduce dynamic complexity,
preventing chaos and sometimes stabilizing the positive equilibrium. In models with
a strong Allee effect, intermediate harvest timing can enhance both persistence as
well as extinction; the actual outcome depends on the magnitude of the harvesting
effort [2].

In models with a strong Allee effect, population extinction due to overharvesting
may occur in form of a sudden collapse rather than gradually. Intermediate harvesting
rates, however, may help the population to survive, preventing essential extinction
due to overproduction [14].

To conclude, we emphasize that a good knowledge of the population dynamics is
crucially important for designing management programmes of exploited populations.
For example, does population growth exhibit exact or undercompensation, overcom-
pensation or depensation? Is the population semelparous or iteroparous? Once the
underlying population dynamics is known, it can be equally important to address the
aspects of census timing (how many times and at what moments in the seasons the
population is measured) and harvest timing. Kokko [6, p. 143] highlighted already
in 2001 that

Timing of harvesting may profoundly influence the impact on the population.

In this overview, we have collected further theoretical mechanisms demonstrating the
role of harvest timing and that it should not be neglected in comparison to harvesting
effort.
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