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a Departamento de Matemática Aplicada II, E.T.S.I. Telecomunicación, Campus Marcosende,

Universidad de Vigo, 36280 Vigo, Spain
b Institute of Mathematics, National Academy of Sciences of Ukraine, Tereshchenkivs�ka Str. 3, Kiev 01601, Ukraine
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Abstract

We address the global stability issue for some discrete population models with delayed-density depen-
dence. Applying a new approach based on the concept of the generalized Yorke conditions, we establish
several criteria for the convergence of all solutions to the unique positive steady state. Our results support
the conjecture stated by Levin and May in 1976 affirming that the local asymptotic stability of the equilib-
rium of some delay difference equations (including Ricker�s and Pielou�s equations) implies its global sta-
bility. We also discuss the robustness of the obtained results with respect to perturbations of the model.
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1. Introduction

The stability of equilibria is one of the most important issues in the studies of any model of single
species population. The main conceptual result of these studies (both numerical and analytical) is
the following folk theorem: �The local stability of the unique positive equilibrium of a single species
model implies its global stability�. The practical importance of this result relies on the fact that it is
much easier to perform the local analysis of the equilibrium than its global analysis. However, a
rigorous mathematical proof of the above statement was found only in the simplest situations when
populations are modelled by first order differential or difference equations (the paper [2] is a good
source to find more details and references about this situation). In the case when the biological sys-
tem is modelled by a higher order difference equation [13] or by a delay differential equation [7,19],
only extensive numerical simulations [8,13] confirm the validity of the above affirmation; we do not
know any case of analytical proof of it. This situation generated various stability conjectures: the
most famous is the Wright conjecture (for the delayed logistic equation) waiting for an affirmative
answer since 1955 (see, e.g., [12]). Similar conjectures were suggested by Smith for the Nicholson�s
blowflies model [14,16,21] (see also some discrete analogues in [3,6]), and by Levin and May in [13]
for the Ricker delay difference equation and the Pielou delay difference equation (see also [11,
Research Project 4.1.1] concerned with the latter equation).

Since anyone can readily find discrete or continuous dynamical systems having a unique stable
positive equilibrium which does not attract all the trajectories, the following important question
arises: What characteristic feature of a single species population allows the perfect concordance
between the local and global stability properties? It is expected that the mathematical expression
of this characteristic should possess some degree of robustness with respect to small perturbations
of the model.

A possible approach to answer the above question was proposed independently in [2] (for first
order difference population models) and in [16,17] (for a family of scalar functional differential
equations). Its main ingredient consists in a comparison of the involved scalar non-linearity f with
an appropriate Möbius (linear fractional) function r. In terms of [2], f should be enveloped by r,
and it is required in [16] that f satisfy the generalized Yorke condition (see (H2) and (Y2) below). It
is the purpose of this note to analyze some advances in the study of the above-mentioned Levin
and May�s conjecture proposed for delay difference equations; applying some techniques from
[5,16,17], we obtain results which support an affirmative answer. Additionally, our global stability
condition has a sort of weak autonomy with respect to the non-overlapping of generations pos-
tulate. It also shows a surprisingly strong robustness with respect to perturbations (not necessarily
small or time-independent) of f.
2. Delay difference equations and EPCAs

There are various ways in which scalar delay difference equations (or, what is the same, scalar
higher order difference equations) appear in the population biology. For example, they can be ob-
tained as useful discrete versions of scalar delay differential equations; see [22,25] for more refer-
ences and a discussion about the methods of discretization of continuous models. For example, if
the population growth is described by a 1-periodic delay differential equation
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x0ðtÞ ¼ xðtÞf ðt; xðtÞ; xðt � 1Þ; . . . ; xðt � kÞÞ; k 2 N; ð2:1Þ

then, assuming that the growth rate can be approximated as
f ðt; xðtÞ; xðt � 1Þ; . . . ; xðt � kÞÞ � f ðt; xðnÞ; xðn� 1Þ; . . . ; xðn� kÞÞ
on the period intervals [n,n + 1), we get the following simplified version of (2.1):
x0ðtÞ ¼ xðtÞf ðt; xð½t�Þ; xð½t � 1�Þ; . . . ; xð½t � k�ÞÞ. ð2:2Þ
Here [Æ] : R ! R denote the greatest integer function: [t] = n, if t 2 [n,n + 1). Eq. (2.2), which
belongs to the class of delay differential equations with piecewise continuous argument (EPCAs,
see [1]), can be easily integrated over intervals [n,n + 1) to get
xnþ1 ¼ xnF nðxn; xn�1; . . . ; xn�kÞ; xn > 0; ð2:3Þ

where we set xn = x(n) and F nðxn; xn�1; . . . ; xn�kÞ ¼ expð

R 1

0 f ðs; xn; xn�1; . . . ; xn�kÞdsÞ. In this way,
the Ricker difference equation with delay
xnþ1 ¼ xn expðc� axn�kÞ; c; a > 0; n ¼ 0; 1; . . . ð2:4Þ

can be obtained from the delayed logistic differential equation (also known as the Hutchinson
equation (1948); see, e.g., [19]). The general form of Eq. (2.4) is
xnþ1 ¼ xnF ðxn�kÞ; n ¼ 0; 1; . . . ð2:5Þ

and other important example of (2.5) is given by the Pielou equation [20]:
xnþ1 ¼
kxn

1þ axn�k
; k > 1; a > 0; n ¼ 0; 1; . . . ð2:6Þ
We notice that, for k > 0, Eq. (2.5) represents a significant simplification of (2.3); in general, the
influence of other variables on the growth rate cannot be so underestimated. See, for example, the
note [24], where the phenomenological model
xnþ1 ¼ xn expðc� axn � bxn�1Þ; c; a; b > 0; n ¼ 0; 1; . . . ð2:7Þ

was used instead of (2.4). Similarly, it is natural to consider the following non-autonomous
version of (2.6)
xnþ1 ¼
kxn

1þ
Pk

j¼1aj;nxn�j

; a ¼
Xk
j¼1

aj;n; n ¼ 0; 1; . . . ð2:8Þ
This form of the Pielou equation takes into account a possible influence of all generations on the
growth rate and coincides with (2.6) if ak,n = a and aj,n = 0 for j 5 k. In the case when a0,n = a and
aj,n = 0 for j5 0, Eq. (2.8) becomes the well known Beverton–Holt difference equation [7,22].

In all previous equations, due to the interpretation of xn as a density of population, it was as-
sumed that xn > 0. Moreover, each considered model has a unique positive equilibrium x*. A sim-
ple rescaling zn = xn/x* allows us to assume that x* = 1 without loss of generality. Furthermore,
we admit also negative values of the dependent variable after the change of variable yn = �lnxn,
which transforms Eq. (2.3) with strictly positive Fn into an equivalent difference equation
ynþ1 ¼ yn � ln F nðexpð�ynÞ; expð�yn�1Þ; . . . ; expð�yn�kÞÞ.



E. Liz et al. / Mathematical Biosciences 199 (2006) 26–37 29
Finally, we observe that the latter equation (whose unique equilibrium is the trivial solution
yn � 0) can be obtained from the EPCA
y0ðtÞ ¼ gðt; yð½t�Þ; yð½t � 1�Þ; . . . ; yð½t � k�ÞÞ; ð2:9Þ
where gðt; zÞ ¼ gðt; z0; z1; . . . ; zkÞ ¼ � ln F nðe�z0 ; e�z1 ; . . . ; e�zkÞ for t 2 ½n; nþ 1Þ; n 2 N. Eq. (2.9)
can also be deduced directly from Eq. (2.2).
3. The generalized Yorke condition and global stability

We will say that the positive equilibrium x* of (2.3) is globally attracting if limn!+1xn = x* for
every sequence {xn},xn > 0, satisfying (2.3). The positive equilibrium x* of (2.3) is called locally
asymptotically stable if it is stable and limn!+1xn = x* for every solution xn having the initial
data sufficiently close to x*. Finally, x* is globally asymptotically stable [or simply globally stable]
if it is stable and globally attracting.

The key assumption in our approach is that the generalized Yorke condition introduced in [16]
(see also [5,17,23]) is satisfied by gnðzÞ ¼ � ln F nðe�z0 ; e�z1 ; . . . ; e�zkÞ. This condition is given in
terms of the functional M : Rkþ1 ! Rþ defined as MðzÞ ¼ maxf0;maxki¼0fzigg. Below we list
four hypotheses required in our main result:

(H1) There exists # : R ! Rþ such that gn(z) 6 #(s) for every z 2 Rkþ1, z = (z0, . . . ,zk), with
minzi P s.

(H2) There are rational functions rn(x) = anx/(1 + bx), with b P 0,an < 0, such that
rnðMðzÞÞ 6 gnðzÞ 6 rnð�Mð�zÞÞ; n 2 N; ð3:1Þ

where the first inequality holds for all z 2 Rkþ1, and the second one for all z 2 Rkþ1 such that
minizi > �b�1 2 [�1, 0).

(H3) If {zn} is a sequence of real numbers such that limn!1zn 5 0, then the seriesP1
n¼0gnðzn; . . . ; zn�kÞ diverges.

(H4) For an as in (H2), there is m0 P k such that either
b > 0 and sup
mPm0

Xmþk

i¼m

jaij 6 3=2
or
b ¼ 0 and sup
mPm0

Xmþk

i¼m

jaij < 3=2.
We briefly explain the biological meaning of conditions (H1)–(H4) in regard to the population
model (2.3). First, (H1) means that the growth rate Fn is uniformly positive, in the sense that
infnP0 inf{Fn(x0, . . . ,xk) : 0 < xi < s, i = 0, . . . ,k} > 0 for every fixed s > 0. Condition (H2) includes
two natural ingredients to avoid destabilization of the model. First of them is the so-called neg-
ative feed-back condition with respect to the positive equilibrium, which in this case says that the
population cannot increase (resp. decrease) after n generations if the size of the population in the
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previous k + 1 generations xn, . . . ,xn�k was above (resp. below) the equilibrium. On the other
hand, the restrictions on the size of Fn imposed by (H2) and (H4) prevent excessive growing of
the solutions. See the last section for further discussions on (H2). Finally, condition (H3) says that
the population cannot stabilize around a constant level different from the positive equilibrium.
Actually, we do not need to require such a condition in the autonomous case, that is, when
Fn(x0, . . . ,xk) � F(x0, . . . ,xk) is independent of n.

Now, we are ready to state our main result:

Theorem 3.1. Let gnðzÞ ¼ � ln F nðe�z0 ; e�z1 ; . . . ; e�zkÞ; n 2 N, satisfy (H1)–(H4). Then the positive
equilibrium of the population modelled by (2.3) is globally attracting.

To prove Theorem 3.1, we will use a result for functional delay differential equations (Theorem
3.2 below), which was established in [17] and improved in [5]. Such a theorem is a unified version
of the celebrated 3/2—theorems by Wright and Yorke.

Let C be the space of continuous functions from [�h, 0] to R; h > 0, equipped with the norm
kuk = max�h6s60ju(s)j. We consider the functional delay differential equation
y 0ðtÞ ¼ wðt; ytÞ; t P 0; ð3:2Þ
where as usual, for each t P 0, yt 2 C is defined by yt(s) = y(t + s), s 2 [�h, 0].
Next we list the necessary hypotheses on the functional w, which were the motivation for (H1)–

(H4).

(Y1) Function w : R� C ! R satisfies the Carathéodory condition. Moreover, for every q 2 R

there exists #(q)P 0 such that w(t,/) 6 #(q) almost everywhere on R for every / 2 C sat-
isfying the inequality /(s) P q, s 2 [�h, 0].

(Y2) There are a piecewise continuous function k : [0,+1) ! (0,+1) and a constant b P 0 such
that, for r(x) = �x/(1 + bx), x > �1/b,
kðtÞrðMð/ÞÞ ¼ �kðtÞMð/Þ
1þ bMð/Þ 6 wðt;/Þ 6 kðtÞMð�/Þ

1� bMð�/Þ ¼ kðtÞrð�Mð�/ÞÞ;
where the first inequality holds for all / 2 C, and the second one for all / 2 C such
that mins2[�h,0]/(s) > �b�1 2 [�1, 0). Here Mð/Þ ¼ maxf0;maxs2½�h;0�/ðsÞg is the Yorke
functional (see, e.g., [12, Section 4.5]).

(Y3)
Rþ1
0 wðs; psÞds diverges for every continuous p(s) having non-zero limit at infinity.

(Y4) For k(t) as in (Y2), there is TP h such that, for
a :¼ aðT Þ ¼ sup
tPT

Z t

t�h
kðsÞds;
a 6 3/2 if b > 0, and a < 3/2 if b = 0.

Notice that (Y3) implies that y(t) � 0 is the unique equilibrium of the equation. We recall that
w(t,/) is a Carathéodory function if it is measurable in t for each fixed /, continuous in / for each
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fixed t, and for any fixed ðt;/Þ 2 R� C there is a neighborhood V(t,/) and a Lebesgue integrable
function m such that jw(s,w)j 6 m(s) for all (s,w) 2 V(t,/) (see [9, p. 58]).

Theorem 3.2. ([5, Theorem 2.5]) Assume that w satisfies (Y1)–(Y4). Then all solutions of (3.2)
converge to zero as t ! +1.

Proof of Theorem 3.1. With Eq. (2.3), we have already associated Eq. (2.9), which can be written
as (3.2) with w : R� Cð½�k � 1; 0�;RÞ ! R defined as
wðt;/Þ ¼ gðt;/ð�ftgÞ;/ð�ftg � 1Þ; . . . ;/ð�ftg � kÞÞ.

Here, {t} = t � [t] 2 [0,1). It is easy to check that the above w satisfies (Y2) with the piecewise
constant function k(t) = janj, t 2 [n,n + 1). Hence, since
a ¼ sup
tPm0

Z t

t�k�1

kðsÞds ¼ sup
mPm0

Xmþk

i¼m

jaij,
(Y4) follows from (H4). Conditions (Y1) and (Y3) are derived from (H1) and (H3), respectively.
Thus, Theorem 3.2 ensures the convergence of all solutions of (2.9) to zero. Let now {xn}nP�k be
a solution to (2.3). Consider the initial value problem for (2.9), with y(s) = w(s), s 2 [�k�1,0],
where w 2 Cð½�k � 1; 0�;RÞ is such that w(j) = �lnxj for all j = �k, � k + 1, . . . , 0. An elementary
analysis shows that, in this case, xn = exp(�y(n)) for every n P 0. Hence, limn!+1xn = 1 for
every solution xn of (2.3) and Theorem 3.1 is proved. h
4. Stability of xn+1 = xnF(xn�k)

In this section, we investigate Eq. (2.5) in more detail, in order to shed some new light on the
Levin and May�s conjecture mentioned in the introductory part. We consider a more general
equation
xnþ1 ¼ xnF
Xk
i¼0

aixn�i

 !
; n ¼ 0; 1; . . . ; ð4:1Þ
where ai P 0,
Pk

i¼0ai ¼ 1. We will assume that F : [0,1)! (0,1) is continuous, non-increasing,
and there exists a unique x* > 0 such that F(x*) = 1. Without loss of generality, we can set x* = 1.

In this case it is not difficult to check that conditions (H1) and (H3) automatically hold for
gnðz0; z1; . . . ; zkÞ ¼ � ln F
Xk
i¼0

aie
�zi

 !
;

since Eq. (4.1) is autonomous, F is continuous, and F(x) = 1 only for x = 1. On the other hand,
one can check that (H2) holds for gn if g(x) = �lnF(e�x) satisfies (H2) for some rational function
r(x) = ax/(1 + bx), a < 0, b P 0. Notice that, in this case, MðxÞ ¼ maxf0; xg ¼ xþ, for all x 2 R.

The above discussion allows us to state the following consequence of Theorem 3.1:

Theorem 4.1. Let g(x) = �lnF(e�x) satisfy (H2). Then the positive equilibrium of (4.1) is globally
attracting if either b > 0 and jaj(k + 1) 6 3/2, or b = 0 and jaj(k + 1) < 3/2.
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Remark 4.2. The conclusion of Theorem 4.1 remain valid if, instead of g(x), condition (H2) holds
for ĝðxÞ ¼ ln F ðexÞ. For it, we only have to use the change of variables yn = lnxn instead of
yn = �lnxn.

On the other hand, for the particular case of Eq. (2.5) (i.e., (4.1) with ak = 1, ai = 0,
i = 0, . . . ,k�1), the monotone character of F is not necessary.

Since in the applications it may be difficult to check (H2) for either g or ĝ directly, we give two
results which can simplify this task.

First one make use of the so-called Schwarzian derivative, which is defined for a function
g 2 C3ðR;RÞ by
ðSgÞðxÞ ¼ g000ðxÞ
g0ðxÞ � 3

2

g00ðxÞ
g0ðxÞ

� �2

;

for all x 2 R where g 0(x)50. Let us introduce the following assumptions:

(A1) g(0) = 0,g 0(x) < 0 for all x 2 R and g is bounded below.
(A2) (Sg)(x) < 0 for all x 2 R.

It follows from Lemma 2.1 in [15] that, if g satisfies (A1) and (A2) and g00(0) P 0, then (H2)
holds with a = g 0(0) and b = �g00(0)/(2g 0(0)). Notice that ĝ00ð0Þ P 0 if g00(0) 6 0, and ĝ satisfies
(A1) and (A2) if g fulfills (A1) and (A2) and g00(0) < 0 (see [15, Corollary 2.2]). Hence, we have
the following.

Corollary 4.3. Let g(x) = �lnF(e�x) satisfy (A1) and (A2) and either g00(0) 5 0 and
jg 0(0)j(k + 1) 6 3/2, or g00(0) = 0 and jg 0(0)j(k + 1) < 3/2. Then the positive equilibrium of (4.1) is
globally attracting.

Remark 4.4. Since F(1) = 1, g 0(x) = F 0(e�x)e�x/F(e�x), and g( +1) = �ln(F(0)), it follows that g
satisfies (A1) whenever F 0(x) < 0 for all x > 0.

Sometimes, function g(x) = �lnF(e�x) takes a rather complicated form, which makes more dif-
ficult to check the hypotheses of Theorem 4.1 and Corollary 4.3. Next result shows that in some
cases we can check those conditions for the simpler function eF ðxÞ ¼ F ðxþ 1Þ � 1, obtained by
shifting the equilibrium x = 1 to the origin. Notice that, due to Lemma 2.1 from [15], eF satisfies
(H2) if F is decreasing, F(0) > 1, and (SF)(x) < 0 for xP 0.

Proposition 4.5. Let eF ðxÞ ¼ F ðxþ 1Þ � 1 satisfy (H2) with some a 2 (�1,0) and b + a P 0,
1 � a � 2b > 0 (so that b 2 (0,1)). Then the positive equilibrium of (4.1) is globally attracting if
jaj(k + 1) 6 3/2.

Proof. We will show that g(x) = �lnF(e�x) also meets (H2) with the same a and b1 =
(1 � a � 2b)/2.

Set R(y) = ay/(1 + by). Due to our assumptions,
F ðyÞ P Rðy � 1Þ þ 1 > 0; y P 1;

F ðyÞ 6 Rðy � 1Þ þ 1; y 2 ð1� b�1; 1Þ.
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Therefore (�ln(F(e�x)) � w(x))x P 0, where w(x) = �ln(R(e�x � 1) + 1). Now, it suffices to
prove the negativity of the Schwarzian of w(x), because this implies (see [15]) that (w(x) � ax/
(1 + b1x))x > 0, x 5 0 with a = w 0(0), b1 = �0.5w00(0)/w 0(0) = (1 � a � 2b)/2. Using the chain rule
formula for the Schwarz derivative, we have
ðSwÞðxÞ ¼ ðS½f � v � h�ÞðxÞ ¼ ðSf ÞðvðzÞÞðvzðzÞzxÞ2 þ ðSvÞðzÞðh0ðxÞÞ2 þ ðShÞðxÞ

with f(y) = �lny,y = v(z) = R(z) + 1,z = h(x) = e�x � 1. Since (Sf)(y) = 1/(2y2), (Sv)(z) = 0,
(Sh)(x) = �1/2, we get
ðSwÞðxÞ ¼ 1

2

RzðzÞðzþ 1Þ
ðRðzÞ þ 1Þ

� �2

� 1

2
¼ 1

2

að1þ zÞ
ð1þ bzÞð1þ zðaþ bÞÞ

� �2

� 1

2
< 0; ð4:2Þ
since the squared expression in (4.2) is less than 1. Proposition 4.5 is proved. h

Next we apply our results to the models (2.4) and (2.6). Notice that in both cases F is smooth
and hence we can apply the following asymptotic stability criterion from [13].

Proposition 4.6. The positive equilibrium x* in (2.5) is asymptotically stable if
x�jF 0ðx�Þj < 2 cos
pk

2k þ 1

� �
. ð4:3Þ
Remark 4.7. Since jg 0(0)j = x*jF 0(x*)j, and (4.3) holds if (k + 1)x*jF 0(x*)j 6 3/2, Corollary 4.3
provides sufficient conditions for the global stability in (2.5) when the non-linearity F is smooth.

For model (2.4), it is easy to check that g(x) = c(e�x�1), and hence (A1) and (A2) are very
easy to verify. In particular, (Sg)(x) = �1/2 < 0 for all x 2 R. Since g 0(0) = �c, g00(0) = c > 0,
Corollary 4.3 and Remark 4.2 ensure that x* is globally stable for (2.4) if c(k + 1) 6 3/2, which
improves condition c(k + 1) 6 1 established in [10]. In the case of model (2.6), function eF is a
rational function eF ðxÞ ¼ ax=ð1þ bxÞ, with a = (1 � k)/k 2 (�1,0) and b = �a 2 (0,1). Hence, an
immediate application of Proposition 4.5 ensures that the equilibrium x* = (k � 1)/a is globally
attracting if (1 � 1/k)(k + 1) 6 3/2. Moreover, Proposition 4.6 applies and x* is actually globally
stable.

Notice that our global stability condition for (2.4) and (2.6) can be stated as
x�jF 0ðx�Þj 6 3

2ðk þ 1Þ ; ð4:4Þ
while the condition in [10] is
x�jF 0ðx�Þj 6 1

k þ 1
. ð4:5Þ
Taking into account the relations
3

2ðk þ 1Þ < 2 cos
pk

2k þ 1

� �
6

2

k þ 1
; k P 1 ð4:6Þ
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Fig. 1. Border of the local stability region (dashed line) against the global stability regions given by (4.4) and (4.5)
(p = x*jF 0(x*)j).
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and Fig. 1, where the good agreement between the stability conditions given in Corollary 4.3 and
Proposition 4.6 is shown, one is tempted to suggest the following generalization of May and
Levin�s conjecture:

Conjecture 4.8. Assume that F 2 C3([0,1), (0,1)) is strictly decreasing, F(0) > 1 = F(x*), and
function g(x) = �lnF(e�x) has negative Schwarz derivative for all x 2 R. Then the local asymptotic
stability of the equilibrium x* of (2.5) implies its global asymptotic stability.
5. A possible generalization of Theorem 4.1

In this section, we suggest a first step in the direction to justify further (or disprove) Conjecture
4.8. In concrete, we propose to investigate if the stability condition (4.4) established for (2.4) and
(2.6) can be replaced by
x�jF 0ðx�Þj < 3

2ðk þ 1Þ þ
1

2ðk þ 1Þ2
; ð5:1Þ
which is a better approximation to (4.3). Notice that, for k P 1,
3

2ðk þ 1Þ <
3

2ðk þ 1Þ þ
1

2ðk þ 1Þ2
< 2 cos

pk
2k þ 1

� �
¼ p

2ðk þ 1Þ þO
1

k þ 1

� �2

. ð5:2Þ
Another motivation to consider such an expression is the following: Erbe et al. [4] proved that all
solutions of the difference equation
xnþ1 � xn ¼ anxn�k; ð5:3Þ
where {an} is a sequence of non-positive numbers, converge to zero if
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lim sup
n!1

Xn
i¼n�k

janj <
3

2
þ 1

2ðk þ 1Þ and
X1
n¼0

janj ¼ 1. ð5:4Þ
The result by Erbe et al. was generalized in [18] to the non-linear difference equation
xnþ1 � xn ¼ anf ðxn�kÞ; ð5:5Þ

where f is a continuous function satisfying the negative feed-back condition xf(x) < 0 for all
x5 0, and f is a sub-linear function: jf(x)j < x,x50. Although the non-linearities corresponding
to models (2.4) and (2.6) do not satisfy this last condition, we should expect that the result re-
main true for Eq. (5.5) with f satisfying (H1) and (H3). See [5,16], where a similar generalization
was made for delay differential equations. Summing up, we guess that the following result is
true:

Open problem. Show that all solutions of (5.5) converge to zero if (H1) and (H3) hold,
f 0(0) = �1, and {an} satisfies (5.4).

Let us observe that, for janj � p > 0, condition (5.4) reads
p <
3

2ðk þ 1Þ þ
1

2ðk þ 1Þ2
.

Hence, if the answer to the problem is positive, the global stability condition (4.4) is improved up
to (5.1).
6. Conclusions

The dynamics of population models is the basis of many studies on difference equations (dis-
crete models) and delay-differential equations (continuous models). It is a common feature among
many of them that there exists a unique positive equilibrium x* which losses its asymptotic stabil-
ity with the appearance of non-trivial periodic solutions (either in a period-doubling bifurcation in
the discrete case, or in a Hopf bifurcation in the continuous case). However, the global dynamics
for the values of the parameters for which the equilibrium is stable are not completely understood.
For example, for the continuous delayed logistic equation, the Wright conjecture (1955), saying
that the equilibrium is globally stable whenever it is locally stable, is still an open problem.

In this note, we have given new results which support the positive answer to this open problem
and other related conjectures (in particular, the one proposed by Levin and May in 1976). More-
over, we see that a common property, which seems to be the responsible for this agreement be-
tween the local and global properties, is that the non-linearity satisfies the generalized Yorke
condition. From the biological point of view, the robustness of hypothesis (H2) cannot be under-
estimated: it assures that even relatively large perturbations cannot change drastically the globally
attracting behavior of the equilibrium in a model satisfying (H2). Indeed, what (H2) is saying is
that the unique property of the involved non-linearity which has real importance is the position of
its graph with respect to some linear fractional function, and this property is robust. For example,
by Corollary 4.3, function g(x) = c(exp(�x)�1) (obtained from the normalized equation (2.4))
is enveloped by r(x) = �2cx/(2 + x). Since the global stability result holds for c 6 3/(2(k + 1)),
we can see that significant modifications in the form of g, whenever they occur outside a small



r

g

Fig. 2. Graphs of g(x) = c(exp(�x)�1) and its rational approximation.
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neighborhood of x = 0, do not affect our basic property (H2): it is sufficient that the perturbed
function remain enveloped by
rðxÞ ¼ �3x
ðk þ 1Þð2þ xÞ .
See Fig. 2, where, for k = 1, we plot the graphs of g(x) = c(exp(�x)�1), with c = 0.6 < 3/4,
and the rational function r(x) = �1.5x/(2 + x). Recall that x = 0 here corresponds to the positive
steady state x* in (2.4).

Furthermore, the use of the Yorke functional in the statement of (H2) provides a kind of weak
independence of the global stability property from the non-overlapping of generations postulate.
In this respect, see again the statement of Theorem 4.1, which does not depend on the choice of
the weights aj in (4.1). As it was noticed in recent papers [5,14–16,23] (see also [2]), the property
(H2) is shared by many celebrated population models and is intimately linked with the negative
Schwarzian property (notice that linear fractional functions have zero Schwarzian). As a result of
our discussion, we have formulated Conjecture 4.8 and indicated another open problem whose
solution can be seen as the first step in the direction to solve (justify further) the conjecture.

Finally, we show that the �magic number� 3/2 (already found in the fifties by Wright and Mysh-
kis in delay differential equations) plays an important role in the stability results, in special when
we consider equations with variable coefficients (2.3) and (5.5).
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