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Abstract
One-dimensional discrete-time population models are often used to investigate the
potential effects of increasing harvesting on population dynamics, and it is well known
that suitable harvesting rates can stabilize fluctuations of population abundance. How-
ever, destabilization is also a possible outcome of increasing harvesting even in simple
models. We provide a rigorous approach to study when harvesting is stabilizing or
destabilizing, considering proportional harvesting and constant quota harvesting, that
are usual strategies for the management of exploited populations. We apply our results
to some of the most popular discrete-time population models (quadratic, Ricker and
Bellows maps). While the usual case is that increasing harvesting is stabilizing, we
prove, somehow surprisingly, that increasing values of constant harvesting can desta-
bilize a globally stable positive equilibrium in some cases; moreover, we give a general
result which ensures that global stability can be shifted to observable chaotic dynamics
by increasing one model parameter, and apply this result to some of the considered
harvesting models.
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1 Introduction

One-dimensional discrete-time equations are suitable models to describe the growth
of populations whose generations do not overlap, and they have been the basis of
many fishery models (Clark 1990; Quinn and Deriso 1999). The potential complex
behaviour of these simple models has been popularized by the papers of R. M. May
and others, and the main message is that increasing growth rates lead to oscillatory
behaviour and chaotic dynamics (May 1976). Paradigmatic examples are the quadratic
map f (x) = x(1 + r(1 − x/K )) and the Ricker map f (x) = xer(1−x/K ), where in
both cases r represents the growth rate and K the carrying capacity. In mathematical
terms, K is the positive equilibrium (that can be normalized to 1) and r is the parameter
that controls the dynamics: large values of r lead to complex behaviour.

Since harvesting can reduce the growth rate, a common conclusion is that harvest-
ing tends to stabilize a population that is oscillatory without exploitation. A graphic
analysis using unimodal maps can be already found in Ricker’s influential paper, who
writes (Ricker 1954, p. 620, item 11): “Another result of exploitation is to reduce
the amplitude and complexity of any reproduction-curve oscillations that may be in
progress; sufficiently intensive exploitation eliminates such oscillation entirely.”

The most popular harvesting policies are proportional (or constant effort) harvest-
ing, that we will refer to as PH, and constant quota harvesting (CH). Applying PH to
a population governed by the normalized quadratic map f (x) = r x(1 − x) leads to
the simple model

xn+1 = (1 − γ )r xn(1 − xn), n = 0, 1, 2, . . . ,

where γ ∈ (0, 1) is the harvesting effort. If the population is unstable in the absence
of harvesting (r > 3), then it is clear that increasing γ has a stabilizing effect, and the
harvested population becomes stable when (1 − γ )r ≤ 3, that is, for γ ≥ (r − 3)/r .
Actually, it is not difficult to prove that the same conclusion holds for the Ricker map
and for the rest of unimodal maps usually employed in population dynamics. This
simple remark has been noticed by several authors (Ruxton 1993; Doebeli 1995), but
it is not directly applicable to all population models.

Sometimes, it is meant that increasing harvesting is stabilizing if the equilibrium
becomes stable for sufficiently large harvesting rates. In this direction, it is clear that
if we consider a family fγ = (1 − γ ) f , where f is a smooth map with f (0) = 0, a
unique critical point f (c), which is a localmaximum, and a unique positive equilibrium
p > c, with f ′(p) < −1, then a simple graphical analysis shows that a sufficiently
large value of γ takes the equilibrium to c, and thus it becomes asymptotically stable,
as claimed by Ricker (see, e.g., Goh (1977); Liz (2010b) for rigorous statements).

The above comments do not imply that increasing harvesting cannot destabilize a
stable equilibrium. Actually, one can easily imagine unimodal maps for which PH
has the potential to destabilize a stable equilibrium. For example, see the figure of
Stone (1993), BOX 1 and Fig. 46 of Sharkovsky et al. (1997), which are very similar.
These two examples have been suggested in two different but related contexts. Stone’s
example tries to explain how the so-called period-doubling cascade can be reversed
in a one-parameter family of maps, and it is directly linked with ecological models.

123



Destabilization and chaos induced by harvesting: insights... Page 3 of 28     3 

The example by Sharkovsky et al. (1997) was first introduced by Kolyada (1989), and
has an analytic—though complicated—expression. Kolyada’s example proves that
there exist unimodal maps with negative Schwarzian derivative for which increasing
the value of λ in the family fλ = λ f can lead from chaos to a globally attracting
equilibrium, thus exhibiting the opposite effect than in the quadratic family.

Of course, it is well known that a similar behaviour cannot happen in concave
maps (see Chapter 8 in Sharkovsky et al. (1997)). Even for maps with an inflection
point, sometimes it is easy to show that PH cannot destabilize an asymptotically stable
equilibrium, just by looking at the stability criteria (see, e.g., Examples 1 and 2 of Liz
and Buedo-Fernández (2019), that we will mention later in the paper).

For higher order discrete models, it is known that PH can destabilize a positive
equilibrium; as far as we know, the first who showed this fact were Goh and Agnew
(1978), using a two dimensional Clark model

xn+1 = (1 − γ )(αxn + f (xn−1)), n = 0, 1, 2, . . . ,

where α ∈ (0, 1) is a survival coefficient and f is the recruitment function. This
equation can be derived from a stage-structured model with two classes (juveniles and
adults); a thorough analysis about how harvesting can destabilize the equilibrium in
this equation can be found in Liz and Pilarczyk (2012). Actually, empirical evidence to
show that harvesting can increase variability in the abundance of exploited populations
is directly linked to age structure (Anderson et al. 2008; Hsieh et al. 2006).

It is worth noticing that increasing the order of the difference equation is not nec-
essary to show this effect. Using PH in Thieme’s expression (Thieme 2003, Sect. 9.2)
for the Ricker difference equation, we arrive at

xn+1 = (1 − γ )
(
αxn + (1 − α)xner(1−xn)

)
, n = 0, 1, 2, . . . . (1.1)

This model assumes that α is an adult’s probability of surviving one year, including
the reproductive season. Models of this type were already introduced by Clark (Clark
1990, Sect. 7.5), so wewill refer to (1.1) as the Ricker–Clarkmodel withPH. Equation
(1.1) has been studied by Liz and Ruiz-Herrera (2012), who proved that increasing γ

can destabilize an attracting positive equilibrium. Moreover, it has been proved there
that increasing harvesting can take a population from a stable periodic attractor to
chaos.

For theRicker andBellowsmapswith constant harvesting, Schreiber (2001) empha-
sizes that “increasing harvesting rates can stabilize chaotic dynamics by shifting the
dynamics from chaotic semistability to persisting at a linearly stable fixed point.”
However, he also showed (see, e.g., Fig. 5b in Schreiber (2001)) that increasing har-
vesting rates has the potential to lead a Ricker model from a stable 4-periodic orbit to
chaotic semistability and essential extinction.

The above examples show that a suitable rigorous approach is necessary to under-
stand whether or not increasing harvesting can be destabilizing and to find sufficient
conditions under which chaos can be an outcome of increasing harvesting rates. More-
over, from an applied point of view, it is important to report phenomena that are visible;
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in this direction, most of the existing results of chaos in the ecological literature do not
guarantee that this chaos is observable; see, e.g., (Thunberg 2001, Sect. 1.1), where
the key difference between visible and invisible chaos is discussed. Our main results
in this paper cover these two problems:

On the one hand, we use the characterization of period-doubling bifurcations given
by (Sharkovsky et al. 1997, Theorem 8.1) to get a criterion to decide whether or
not increasing harvesting rates can destabilize an attracting equilibrium either with a
strategy of proportional harvesting (Proposition 3.1) or constant harvesting (Propo-
sition 4.1). In this way we characterize the possible stability switches for usual
population models; perhaps the most interesting result in this direction is Theo-
rem 4.2, which establishes the exact range of parameter values for which constant
harvesting or constant immigration can destabilize a global attractor for the map
f (x) = ax/(1 + xm), a > 1, m > 1, introduced by Maynard Smith and Slatkin
(1973) and usually known as the Bellows map (Bellows 1981) or the generalized
Beverton–Holt map (Schreiber 2001). As far as we know, this result is new and it
provides the first example for which CH induces a period-doubling bifurcation in an
attracting equilibrium in one of the usual unimodal maps employed in discrete-time
population dynamics (this situation is impossible for the Ricker map). Moreover, we
clarify some previous discussions on the effects of constant immigration in discrete-
time population models (McCallum 1992; Stone 1993; Doebeli 1995; Solé et al. 1999;
Stone and Hart 1999). We will come back to this question in Sect. 5.

On the other hand, Theorem B.1 provides a method to establish the existence of
observable chaos in a one-parameter family of one-dimensional maps. The generality
of the statement of this theorem allows us to get results of observable chaos both for
proportional and constant harvesting. In conjunction with our criteria for destabiliza-
tion, we are able to present two examples in which harvesting takes a population with a
globally stable positive equilibrium to observable chaos. In this way, we complement
some results by Schreiber (2001) and Liz and Ruiz-Herrera (2012).

The paper is organized as follows: Sect. 2 is devoted to briefly introduce our
framework. Sections 3 and 4 contain the main results for proportional and constant
harvesting, respectively. Then we provide further remarks and discussions in Sect. 5.
The theoretical results are proved in two appendices:AppendixA is devoted to stability
switches, and Appendix B to chaos.

2 Discrete-time harvestingmodels

Let us consider a first-order difference equation

xn+1 = f (xn), n = 0, 1, 2, . . . , (2.1)

where f : I → I is a map defined in an arbitrary interval of the real line I .
We recall some notions and properties for their use in the paper. If f ∈ C(I ) and

x ∈ I , then the orbit of x is the set { f n(x)}∞n=0. A point p is said to be periodic of
period r ≥ 1 or r -periodic if f r (p) = p and f i (p) �= p for any 1 ≤ i < r . A
1-periodic point is also called a fixed (or an equilibrium) point. An interval J ⊂ I

123



Destabilization and chaos induced by harvesting: insights... Page 5 of 28     3 

satisfying f (J ) ⊂ J is called invariant. If f is differentiable and f ′(c) = 0, then c is
called a critical point of f . If p is r -periodic for f and |( f r )′(p)| ≤ 1, then we say
that it is stable, and it is unstable otherwise.

Since we are interested in population models, in many cases we assume that I ⊆
[0,∞) and f has a unique positive equilibrium p; moreover, f (x) > x for x < p
and f (x) < x for x > p. In the framework of population dynamics, xn represents the
population after n reproductive periods, starting at an initial population size x0.

We also assume that f is smooth enough to apply Theorem A.1 stated in
Appendix A. Condition (b) in this theorem concerns the Schwarzian derivative. We
recall that the Schwarzian derivative of a C3 map f is defined by the expression

S f (x) = f ′′′(x)

f ′(x)
− 3

2

(
f ′′(x)

f ′(x)

)2

,

whenever f ′(x) �= 0.
It is worth noticing that, under typical negative Schwarzian derivative assumptions,

stability and asymptotical stability, meaning by this the attraction of all nearby orbits,
amount to the same thing.

In most usual discrete-time models of population dynamics, condition (b) holds.
For example, it iswell known that theRickermap f (x) = xer(1−x) satisfies S f (x) < 0
for all x �= 1/r , the same as the quadratic map f (x) = r x(1 − x), for all x �= 1/2,
and the Bellows map f (x) = ax/(1 + xm) for x �= (m − 1)−1/m , whenever m ≥ 2.
We will use these unimodal maps for applications of the main results, because they
are well known by ecologists and they cover many interesting situations.

We will also consider the Ricker–Clark map f (x) = αx + (1 − α)xer(1−x), with
α ∈ (0, 1). The negativity of the Schwarzian derivative of the Ricker map is inherited
by the Ricker–Clark map in the points where a flip bifurcation can occur (Liz and
Franco 2010, Proposition 1). Thus, we will not take care of condition (b), and we
will focus on (c), which will be the responsible for stabilizing or destabilizing effects
when a flip bifurcation occurs. Notice that, in the considered population models, flip
bifurcations characterize the way by which a stable positive equilibrium can be either
stabilized or destabilized as one of the model parameters changes.

We focus our study on the two more common harvesting strategies (see, e.g., Goh
(1977); Quinn and Deriso (1999); Deroba and Bence (2008) for more details):

• Proportional harvesting (PH), which consists of removing a constant proportion
of the total population every period. Mathematically, it leads to equation

xn+1 = (1 − γ ) f (xn), n = 0, 1, 2, . . . , (2.2)

where γ > 0 represents the harvesting effort.
• Constant quota harvesting (CH), in which a constant amount of population is
harvested every year. This leads to equation

xn+1 = max{ f (xn) − γ, 0}, n = 0, 1, 2, . . . , (2.3)

where γ is the constant quota.
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3 Proportional harvesting

In this section, we consider the proportional harvesting modeled by equation (2.2).
An application of Theorem A.1 provides the following result, whose proof is given in
Appendix A.

Proposition 3.1 Let p be the positive equilibrium of (2.1). Then :

(a) If p is stable then it is destabilized by PH as γ is increased if there is γ > 0 such
that (2.2) has an equilibrium xγ with (1−γ ) f ′(xγ ) = −1 and (1−γ )xγ f ′′(xγ ) >

2.
(b) If p is unstable then it is stabilized by PH as γ is increased if there is γ > 0 such

that (2.2) has an equilibrium xγ with (1−γ ) f ′(xγ ) = −1 and (1−γ )xγ f ′′(xγ ) <

2.

A first consequence of Proposition 3.1 is that the sign of f ′′(x) is not enough by
itself to determine the possible destabilizing effect of proportional harvesting, although
it is clear that PH cannot destabilize a stable equilibrium of (2.1) if the production
function f is concave in the interior of I , like in the quadratic case. We recall that for
concave maps (and in particular for quadratic maps), a property of monotonicity of
bifurcations of cycles holds. Roughly speaking, this means that the dynamics of the
map fγ (x) = (1 − γ ) f (x) becomes simpler as γ increases (Sharkovsky et al. 1997,
Chapter 8).

As far as we know, the first example of a unimodal map with negative Schwarzian
derivative for whichmonotonicity of bifurcations of cycles does not hold for the family
fγ (x) = (1−γ ) f (x)was provided byKolyada (1989). Since the definition of f in this
example is quite complicated, we include here an example of a decreasing map with
negative Schwarzian derivative for which increasing γ is destabilizing. The following
map is based on an example given by (Jiménez López and Parreño 2016, p. 370):

f (x) = 1

(1 − 2a)(a + (1 − a)x) + 2a(a + (1 − a)x)2
, (3.1)

with a = −0.001. Function f is a small perturbation of the map h(x) = 1/x , which
is globally periodic (h2(x) = x for all x �= 0). It is easy to check that f maps the
interval [1/3, f (1/3)], f (1/3) ≈ 3.00201, into itself, and the same is true for fγ (x) =
(1−γ ) f (x) and [1/3, fγ (1/3)]wheneverγ ≤ 0.5.Moreover, f is decreasing, convex,
and S f (x) < 0 for all x . The unique fixed point of f is p = 1, and −1 < f ′(1) < 0;
thus, it is a global attractor by the Allwright–Singer theorem (Allwright 1978; Singer
1978) (see Appendix B). However, for γ = 0.5, the fixed point xγ ≈ 0.707046
of fγ (x) is unstable. We can verify the existence of a value γ ∗ ≈ 0.499914 such
that the fixed point xγ ∗ ≈ 0.707107 of fγ ∗ satisfies (1 − γ ∗) f ′(xγ ∗) = −1 and
(1 − γ ∗)xγ ∗ f ′′(xγ ∗) > 2, in agreement with Proposition 3.1.

The map f in (3.1) is an academic example, but in the rest of the section we
consider maps usually employed as production functions in discrete-timemodels from
population dynamics.

Although it is easy to apply Proposition 3.1 to the Ricker and the Bellows models,
in these particular cases we can give more information using some known results.
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Indeed, it has been proved by Liz (2018) that the unique positive equilibrium p of the
gamma-Ricker model with PH

xn+1 = (1 − γ )βxα
n e−r xn , n = 0, 1, 2, . . . , (3.2)

with β > 0, r > 0, 0 < α ≤ 1, and 0 < γ < 1, is globally asymptotically stable in
(0,∞) if and only if

β(1 − γ ) ≤ eα+1
(

α + 1

r

)1−α

. (3.3)

Moreover, p is unstable if (3.3) does not hold. Hence, it is obvious that increasing
harvesting is stabilizing. The Ricker map corresponds to the particular case α = 1 in
(3.2).

A similar result has been recently proved by Liz and Buedo-Fernández (2019) for
the following generalization of the Bellows model with proportional harvesting:

xn+1 = (1 − γ )axα
n

1 + xm
n

, n = 0, 1, 2, . . . , (3.4)

where a, m > 0, 0 < α ≤ 1, and 0 < γ < 1. In this case, the sharp global stability
condition is

m ≤ 1 + α, or m > 1 + α and a(1 − γ ) ≤ m

m − 1 − α

(
1 + α

m − 1 − α

)(1−α)/m

.

(3.5)
The Bellows model corresponds to the particular case α = 1 in (3.4). In this case,
condition a(1 − γ ) > 1 is required to ensure that the positive equilibrium exists.

Hence, destabilization of the positive equilibrium is not a possible outcome of
increasing harvesting by PH in the previous models. However, there are other models
for which the global stability condition is qualitatively different, and actually destabi-
lizationbyPH is possible.As an example,we applyProposition3.1 to theRicker–Clark
model with PH (1.1), which has been studied by Liz and Ruiz-Herrera (2012) (see
also Yakubu et al. (2011)).

In this case, f (x) = αx + (1 − α)xer(1−x) is an increasing or bimodal map. For
each γ < 1 − ((1 − α)er + α)−1, Eq. (1.1) has a unique positive equilibrium

xγ = 1 − 1

r
ln

(
1 − α(1 − γ )

(1 − γ )(1 − α)

)
. (3.6)

The system of equations xγ = (1 − γ ) f (xγ ), (1 − γ ) f ′(xγ ) = −1 leads to

r xγ = 2

1 − α(1 − γ )
. (3.7)

Using the previous equation, we get that

(1 − γ )xγ f ′′(xγ ) > 2 ⇐⇒ α(1 − γ ) >
1

3
.
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Fig. 1 Left: stability diagram of thePHmodel (1.1), with r = 7 in the parameter plane (α, γ ). The solid blue
line α(1− γ ) = 1/3 divides the region where a positive equilibrium exists (below the extinction boundary
delimitated by the black curve) into two parts: above the line, flip bifurcations lead to stabilization (red
dashed line); below it, flip bifurcations lead to destabilization (red solid line). In this case, destabilization as
γ is increased occurs for 5/7 ≈ 0.714 < α < e4/(2 + e4) ≈ 0.964. Right: bifurcation diagram for r = 7,
α = 0.8, for which Theorem B.1 guarantees abundance of observable chaos for some values of γ (see the
text)

Therefore, in the light of Proposition 3.1, the equilibrium p = 1 of the Ricker–Clark
model can be destabilized if α(1−γ ) > 1/3, and can be stabilized if α(1−γ ) < 1/3.
In particular, since xγ < 1 for all γ > 0, destabilization of the equilibrium p = 1 in
the Ricker–Clark model by PH is only possible if r > 3. We plot a stability diagram
in Fig. 1 for r = 7, in terms of parameters α and γ .

It is not difficult to give an explicit range of values for which destabilization by
PH occurs in the Ricker–Clark model: Eqs. (3.6) and (3.7) lead to α = 1 − 2/r for
γ = 0, and α = er−3/(2+ er−3) when α(1− γ ) = 1/3. Thus, destabilization by PH
occurs if 1 − 2/r < α < er−3/(2 + er−3). This result was already obtained with a
more complicated proof (Liz and Ruiz-Herrera 2012, Theorem 2). We emphasize that
Proposition 3.1 provides a systematic approach to face this problem.

As an application of Theorem B.1, we show that global attraction may evolve
to abundance of observable chaos, via proportional harvesting, in the Ricker–Clark
model.

For r = 7 and α = 0.8, f has, besides its unique positive equilibrium p = 1, two
critical points:

c1 = 1 − W0(αe1−r/(α − 1))

r
≈ 0.144288

and

c2 = 1 − W−1(αe1−r/(α − 1))

r
≈ 1.06898,

where the so-called Lambert W functions W0 : [−1/e,∞) → [−1,∞) and W−1 :
[−1/e, 0) → (−∞,−1] are the two branches of the inverse of x �→ xex . A routine

123



Destabilization and chaos induced by harvesting: insights... Page 9 of 28     3 

calculation shows that S f (x) < 0 for any x /∈ {c1, c2}, f ′′(c2) > 0 and the interval
I = [ f (c2), f 2(c2)] is invariant for f . Since the restriction of f to I is (lower-)
unimodal, and f ′(1) = −0.4, the Allwright-Singer theorem implies that 1 is globally
asymptotically stable for f |I . In fact, 1 attracts the orbits of all points x > 0, because
they eventually fall into I .

We now apply proportional harvesting to f to get the maps fγ (x) = (1− γ ) f (x),
γ ∈ [0, γ1], γ1 ≈ 0.673626, and consider their (monotone or unimodal) restrictions
to the fγ -invariant intervals Iγ = [a(γ ), b(γ )] = [ fγ (c2), f 2γ (c2)], with equilibrium
p(γ ) = xγ as in (3.6). Unimodality (at most) holds, in fact, whenever 0 ≤ γ <

1 − c1/ f (c2) ≈ 0.853826, but we have chosen γ1 to get f 3γ1(c2) = p(γ1) = q ≈
0.653349, when f ′

γ1
(q) ≈ −2.37932 implies that the strong Misiurewicz condition

(see Appendix B) is satisfied. Then h( f0|I0) = h( f |I ) = 0 and h( fγ1 |Iγ1
) > 0.

Finally, with the notation of Theorem B.1,

∂ F3

∂γ
(c2, γ1) ≈ −1.64288

�= −0.592379 ≈ p′(γ1) = − f (q)

1 − f ′
γ1

(q)
= (∂ F/∂γ )(q, γ1)

1 − f ′
γ1

(q)

and Theorem B.1 guarantees abundance of chaos observable for the family fγ (x), in
particular near γ1.

4 Constant harvesting and constant immigration

In this section, we consider the constant harvesting scheme (2.3). Applying Theo-
rem A.1 to the family fγ (x) = f (x) − γ , we easily get the following result:

Proposition 4.1 Let p be the positive equilibrium of (2.1). Then :

(a) If p is stable then it is destabilized by CH as γ is increased if there is γ > 0 such
that (2.3) has an equilibrium xγ with f ′(xγ ) = −1 and f ′′(xγ ) > 0.

(b) If p is unstable then it is stabilized by CH as γ is increased if there is γ > 0 such
that (2.3) has an equilibrium xγ with f ′(xγ ) = −1 and f ′′(xγ ) < 0.

In order to relate our results with discussions in the literature about the effects of
immigration in discrete-time models (McCallum 1992; Stone 1993; Doebeli 1995;
Stone and Hart 1999), we also consider the model with constant immigration

xn+1 = f (xn) + δ, n = 0, 1, 2, . . . , (4.1)

where δ > 0 is the constant immigration in each reproductive period. Obviously, (4.1)
coincides with (2.3) for γ < 0. Thus, the corresponding version of Proposition 4.1
establishes that the positive equilibrium of (2.1) can be destabilized as δ is increased
in (4.1) if f ′(xδ) = −1 and f ′′(xδ) < 0 occur for an equilibrium xδ of (4.1). One is
tempted to believe (see, e.g., Doebeli 1995, p. 86) that if constant harvesting is stabiliz-
ing for a given model, then constant migration should be destabilizing. Nevertheless,
we show below that this is far from being true in general.
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Fig. 2 Stability diagrams of the CH (γ > 0) and immigration (γ < 0) models (2.3). a For the quadratic
map, increasing harvesting is stabilizing for r > 3 and increasing immigration is destabilizing for r < 3.
Observe that, strictly speaking, the picture only makes sense when r/4 − γ ≤ 1, otherwise fγ does not
map [0, 1] into itself. b For the Ricker map, both increasing harvesting and immigration tend to stabilize
the positive equilibrium for r > 2. Of course, overharvesting leads to extinction in both models

We recall that increasing γ produces two positive equilibria. Their roles are very
different: the smallest one is called the Allee threshold, determines a population
level below which extinction occurs, and it is always unstable; the largest one is
the equilibrium about which population can persists indefinitely (sometimes it is
called the carrying capacity). We are interested in the latter. For more details on Allee
effects induced by constant harvesting and their consequences, see, e.g., Sinha and
Parthasarathy (1996), Schreiber (2001), and Liz (2010a).

4.1 The quadratic and Ricker maps

We begin with the simple case of the quadratic map f (x) = r x(1 − x). We assume
1 < r ≤ 4 to ensure that there is a positive equilibrium and f maps [0, 1] into itself.
In this case, it is clear that constant harvesting stabilizes the equilibrium if 3 < r ≤ 4
and constant immigration destabilizes it if 1 < r ≤ 3 (see Fig. 2a).

However, we will see that the situation is different for the Ricker map and much
subtler for the Bellows model.

Consider Eq. (2.3) with the Ricker map f (x) = xer(1−x). For γ > 0, it stands for
a harvesting model, while for γ < 0 represents constant immigration. Observe, first
of all, that f ′′ vanishes exactly at 2/r , hence (when r > 2) f ′(x) = f ′

γ (x) = −1 has
exactly two solutions, one to the left, the other one to the right of 2/r .

The largest positive equilibrium xγ (when it exists) is defined by equation

xγ er(1−xγ ) = xγ + γ.
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Hence,

er(1−xγ ) = xγ + γ

xγ

.

The last equality implies that er(1−xγ ) > 1 if γ > 0 and er(1−xγ ) < 1 if γ < 0. Next,

f ′(xγ ) = −1 ⇐⇒ er(1−xγ ) = 1

r xγ − 1
,

which implies that r xγ < 2 if γ > 0 and r xγ > 2 if γ < 0.
Finally, since f ′′(xγ ) = r(r xγ −2)er(1−xγ ),weget that f ′′(xγ ) < 0 if f ′(xγ ) = −1

with γ > 0, and f ′′(xγ ) > 0 if f ′(xγ ) = −1 with γ < 0.
Thus, increasing either constant harvesting or constant migration rates in the Ricker

model can never destabilize the positive equilibrium. Actually, both have a stabilizing
effect if r > 2. We show the stability and extinction regions in Fig. 2b. To avoid
further complication of the figures, we do not show the region of essential extinction
(the interested reader is referred to Schreiber (2001)).

We notice that a similar diagram to Fig. 2b was obtained numerically by Solé
et al. (1999), who considered the stabilizing effect of proportional and constant har-
vest/migration in theRickermodel butwithout analytical results; actually their diagram
for proportional harvesting seems to be wrong.

4.2 The Bellowsmap

Now we focus on the Bellows map with constant harvesting or immigration, that is,

xn+1 = max

{
axn

1 + xm
n

− γ, 0

}
, n = 0, 1, 2, . . . , (4.2)

where γ > 0 corresponds to harvesting and γ < 0 to immigration.
This is a very interesting case; although it is known that increasing immigration

can be either stabilizing or destabilizing (some examples are given in Stone and Hart
(1999)), sufficient conditions under which one or the other occur are not available. For
constant harvesting, it is clear that a sufficiently large harvesting quota is stabilizing:
let c = (m − 1)−1/m be the unique critical point of f (x) = ax/(1 + xm); then,
for γ = f (c) − c, xγ = c is an asymptotically stable equilibrium of (4.2) because
f ′(c) = 0. However, as far as we know, it is an open problem whether or not CH can
destabilize a stable equilibrium in (4.2). Our next result gives a positive answer to this
question.

We recall (see, e.g., Liz and Buedo-Fernández 2019, Proposition 2) that the positive
equilibrium of (2.1) with the Bellows map f (x) = ax/(1 + xm) is asymptotically
stable if and only if m ≤ 2 or m > 2 and 1 < a ≤ m/(m − 2).

Theorem 4.2 For equation (4.2) with a > 1 and m > 2, we have:
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Fig. 3 Stability diagrams of (4.2) with harvesting (γ > 0) and immigration (γ < 0). a For m = 2.5,
increasing harvesting is destabilizing for 40/9 ≈ 4.44 < a ≤ 5. b For m = 4, increasing immigration is
destabilizing for 16/9 ≈ 1.77 < a ≤ 2

(a) Increasing harvesting is destabilizing if and only if

m < 3 and
4m

(m − 1)2
< a ≤ m

m − 2
.

(b) Increasing immigration is destabilizing if and only if

m > 3 and
4m

(m − 1)2
< a ≤ m

m − 2
.

The proof of Theorem 4.2 can be found in Appendix A.
Figure 3 illustrates the destabilizing effects of increasing harvesting (m = 2.5, γ >

0) or immigration (m = 4, γ < 0) in (4.2). Figure 4a shows a bifurcation diagram for
increasing harvesting setting m = 2.5, a = 4.75 in (4.2).

Remark 4.3 The following remarks are in order:

• We have restricted the statement of Theorem 4.2 to m > 2 to ensure that the
Schwarzian derivative is negative. However, our analysis and simulations show
that increasing harvesting is also destabilizing for (4.2) if 1 < m ≤ 2 and a >

4m/(m − 1)2. See Fig. 4b.
• It is worth mentioning that the case m = 3 is not included in the statement of
Theorem 4.2. For m = 3, the qualitative behaviour of (4.2) is essentially the same
as that of the Ricker map with CH, and therefore destabilization is not possible.
The stability diagram is similar to Fig. 2b.

As an application of Theorem B.1, we show that global attraction may evolve to
abundance of observable chaos, via constant harvesting in the Bellows model.

Consider the Bellows map f (x) = ax/(1+ xm) with a = 20 and m = 2.1. Recall
that f has negative Schwarzian derivative except at its only critical point c = (m −
1)1/m ≈ 0.955629, with f ′′(c) < 0. Since a < m/(m − 2), its positive equilibrium
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Fig. 4 Bifurcation diagrams of (4.2) with harvesting (γ > 0), showing the destabilizing effect of increasing
the harvesting quota: a m = 2.5, a = 4.75; b m = 1.8, a = 12.5

p = (a − 1)1/m ≈ 4.06378 is asymptotically stable and, in fact, attracts all positive
orbits of the map.

Let p0 ≈ 0.811919. Then γ0 = f (p0)− p0 = f (c)−c ≈ 9.05572 and f (x)−x is
strictly increasing in [0, p0]. Let γ = γ (p) = f (p)− p, γ : [0, p0] → [0, γ0], and let
p = p(γ ) denote its inverse. If f ( f (c)+ p − f (p)) ≥ f (p), then fγ (x) = f (x)−γ

leaves invariant the interval [p, fγ (c)] and p is a fixed point of fγ (and so is c when
γ = γ0). If p1 ≈ 0.0991346 and p2 ≈ 0.653378, when we accordingly write γ1 =
γ (p1) ≈ 1.86821 and γ2 = γ (p2) ≈ 8.62022, it can be checked that this exactly
happenswhen p ∈ [0, p1]∪[p2, p0] or, equivalently,when γ ∈ [0, γ1]∪[γ2, γ0]. Then
f 2γ1(c) = p1, f 2γ2(c) = p2, with ( fγ1)

′(p1) ≈ 19.5227 and ( fγ2)
′(p2) ≈ 5.53959.

Also,

∂ F2

∂γ
(c, γ1) ≈ −0.740373

�= 0.0539879 ≈ −1

1 − f ′
γ1

(p1)
= (∂ F/∂γ )(p1, γ1)

1 − f ′
γ1

(p1)

and

∂ F2

∂γ
(c, γ2) = −1.6668

�= 0.220284 = −1

1 − f ′
γ2

(p2)
= (∂ F/∂γ )(p2, γ2)

1 − f ′
γ2

(p2)
.

Then we have abundance of observable chaos at the parameter intervals [0, γ1] and
[γ2, γ0], in particular near γ1 and γ2. See Fig. 5.
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Fig. 5 Bifurcation diagram of (4.2) with harvesting (γ > 0), showing how increasing the harvesting quota
can lead from a globally stable equilibrium for the unharvested population (γ = 0) to observable chaos
and then from chaos to global stability again. Parameter values are m = 2.1, a = 20. Theorem B.1 ensures
existence of observable chaos for γ near γ1 ≈ 1.868 and γ2 ≈ 8.62. Essential extinction occurs for
γ ∈ (γ1, γ2)

4.3 The Ricker–Clark model

In this subsection, we study the destabilizing effects ofCH in the Ricker–Clark model,
that is:

xn+1 = max
{
αxn + (1 − α)xner(1−xn) − γ, 0

}
, n = 0, 1, 2, . . . , (4.3)

Equation (4.3) has been considered in (Liz 2010a), but that paper focus on extinction.
However, some numerical results show that destabilization by CH is possible (Liz
2010a, Fig. 5 (b), p. 215). Using Proposition 4.1, we give the exact range of values for
which the positive equilibrium of the Ricker–Clarkmodel is destabilized by increasing
a constant harvesting quota.

Proposition 4.4 The positive equilibrium of the Ricker–Clark model is destabilized by
increasing γ in (4.3) if and only if r > 2 and

r − 2

r
< α <

−1 + er−2

1 + er−2 . (4.4)

The proof of Proposition 4.4 can be found in Appendix A. We illustrate the result
of Proposition 4.4 in Fig. 6, with r = 3. As we did in Fig. 2, we do not show the region
of essential extinction to avoid distracting from the stability region. For a diagram
focused on survival and extinction switches in (4.3), we refer to (Liz 2010a, Fig. 4).

5 Discussion

The possibility of increasing dynamical complexity in response to increasing har-
vesting in simple population models has been an object of many studies because it is
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Fig. 6 Stability diagram of the
CH model (4.3), with r = 3 in
the parameter plane (α, γ ). The
solid blue line γ r = 4α divides
the region where a positive
equilibrium exists into two parts:
above the line, flip bifurcations
lead to stabilization (red dashed
line); below it, flip bifurcations
lead to destabilization (red solid
line). In this case, destabilization
occurs for 1/3 < α <

(e − 1)/(e + 1) ≈ 0.46
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considered an undesirable effect of increasing harvesting pressure in different contexts,
such as fishery management and pest control.

While destabilizing effects of harvesting have been related to variable fishing pres-
sure (Jonzén et al. 2003; Anderson et al. 2008) and age-truncation effects (Hsieh
et al. 2006; Anderson et al. 2008; Liz and Pilarczyk 2012), the possibility of inducing
fluctuations in a stable population by a combination of overcompensatory effects and
high harvesting rates has been rarely detected in the usual single-species models for
semelparous populations. On the contrary, stabilizing effects of harvesting have been
reported for proportional harvesting (Ricker 1954; Goh 1977; Liz 2010b) and for con-
stant quota harvesting (McCallum 1992; Solé et al. 1999; Schreiber 2001). Although
possible destabilizing effects of increasing constant harvesting or immigration have
been suggested (Doebeli 1995; Stone and Hart 1999), a rigorous study providing a
criterion under which destabilization occurs in a particular model was not available.

Our main contributions in this paper are the following: first, we rigorously prove
that stabilization or destabilization switches depend on the harvesting strategy and
the considered model. In particular, although destabilization by increasing a constant
harvesting quota is not possible for the quadratic and the Ricker maps, we prove that it
is possible for the Bellowsmap, and provide the exact conditions on the parameters for
which this effect is observed (Theorem 4.2). This result was an unexpected outcome
of our approach. Second, we provide sufficient conditions for a shift from a globally
stable positive equilibrium to chaotic dynamics induced by constant quota harvesting.
In contrast with most available results in this direction, Theorem B.1 can be easily
applied to get concrete values of the model parameters for which observable chaos is
generated by increasing harvesting rates.

Our study sheds some new light on the potential stabilizing or destabilizing effects
of immigration. This topic has been treated by many authors, but mostly based on
numerical observations. McCallum (1992) and Stone (1993) showed that adding a
fixed number of individuals to a population every year (for example, by immigration)
has the potential to simplify the dynamics. The stabilizing effects of immigration
were later studied by Doebeli (1995) and Stone and Hart (1999), among others (see
Solé et al. (1999) and its references). However, some conclusions were controversial.
For example, Doebeli (1995) argued that the relative position of the equilibrium to
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the inflection point in the original map is enough to know whether adding constant
migration has a stabilizing or a destabilizing effect. This oversimplification has been
criticized (and refuted) by Stone and Hart (1999). However, Stone and Hart only
justify that sufficiently large values of migration always induce a stable fixed point,
but they do not provide a method to study if increasing migration can destabilize a
stable equilibrium.

It is worthmentioning that, according to Doebeli’s conclusions, adding or removing
a constant number of individuals should have opposite effects on stability. However,
we proved that a stable fixed point of the Ricker map cannot be destabilized either by
constant migration or constant harvesting, a property that can be observed in numer-
ical results made by (Solé et al. 1999, Fig. 2). A more involved example is given
by the Bellows map: while numerical bifurcation diagrams in Stone and Hart (1999)
suggest that constant migration can either stabilize or destabilize the positive equilib-
rium, depending on the model parameters, no analytic results are provided. Whether
destabilization is possible with constant harvesting in the Bellows model remained as
an open question that we solved in this paper.

We have also revisited the possible destabilizing effects of proportional and constant
harvesting in simple one-dimensional models for iteroparous populations, providing
a more systematic approach to previous studies (Liz 2010a; Yakubu et al. 2011; Liz
and Ruiz-Herrera 2012).

We underline that our approach is quite general, and we expect that it can be applied
to other harvesting strategies in order to find the exact range of parameter values for
which increasing harvest rates leads to stability switches. For example, recent work
showed that increasing harvesting by reducing the threshold can be destabilizing in a
strategy of proportional threshold harvesting applied to a population growth governed
by a Ricker map (Hilker and Liz 2019).

In the context of population management, on the one hand, our results support the
view that sustainable exploitation requires harvesting strategies different from the clas-
sical constant quota searching to maximize the yield (Lande et al. 1995). In particular,
this is especially important for stable populations in which intraspecific competition
leads to stock-recruitment functionswhich can generate chaoswhen subject to suitable
harvesting quotas (see, e.g., Fig. 5). On the other hand, in the line with the discussion
in Jonzén et al. (2003), our results also emphasize the importance of a rigorous study of
the dynamics of exploited populations because harvesting has the potential to change
the behavior of an exploited population in many ways.

Acknowledgements The authors acknowledge the support ofMinisterio deEconomía, Industria yCompeti-
tividad (MINECO) and Agencia Estatal de Investigación (AEI), Spain, and Fondo Europeo de Desarrollo
Regional (FEDER), European Union (research grants MTM2017-84079-P (V. Jiménez López) and
MTM2017-85054-C2-1-P (E. Liz).
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A Appendix: results on stability switches

In this appendix, we prove the results related to the destabilizing effects of harvesting.
Our results on stabilization/destabilization are based on the following characterization
of flip bifurcations:

Theorem A.1 (Sharkovsky et al. 1997, Theorem 8.2) Let fγ : I → I be a family of C3
maps with smooth dependence on the parameter γ , where I is a real interval. Assume
that fγ0 has a fixed point xγ0 and the following conditions hold:

(a) f ′
γ0

(xγ0) = −1,
(b) (S fγ0)(xγ0) < 0, where S f is the Schwarzian derivative of f , and

(c)
∂

∂γ

(
f ′
γ (x)

)
< 0 at γ = γ0 and x = xγ0 .

Then, there are ε > 0 and δ > 0 such that

(i) for γ ∈ (γ0 − δ, γ0), fγ has exactly one fixed point xγ ∈ (xγ0 − ε, xγ0 + ε) and
xγ is asymptotically stable;

(ii) for γ ∈ (γ0, γ0 + δ), there are three fixed points of f 2γ in (xγ0 − ε, xγ0 + ε).
Moreover, the middle point is an unstable fixed point of fγ , and the other two
points form an asymptotically stable cycle of fγ of period two.

If the inequality in (c) has the opposite sign, then the conclusions remain valid, but
the 2-cycle appears as γ decreases.

Proof of Proposition 3.1 The proof follows easily from the application of TheoremA.1
to the family fγ (x) = (1 − γ ) f (x). Denote by G(x, γ ) = fγ (x) − x , so that the
equilibria of (2.2) are defined by G(x, γ ) = 0.

Using implicit differentiation, we have:

∂

∂γ

(
f ′
γ (xγ )

)
= ∂

∂γ

(
(1 − γ ) f ′(xγ )

)

= − f ′(xγ ) − (1 − γ ) f ′′(xγ )

(
∂G/∂γ

∂G/∂x

)
(xγ )

= − f ′(xγ ) + (1 − γ ) f ′′(xγ )
f (xγ )

(1 − γ ) f ′(xγ ) − 1
.

If f ′
γ (xγ ) = −1, we get (1 − γ ) f ′(xγ ) = −1, and therefore

∂

∂γ

(
f ′
γ (xγ )

)
= 1

1 − γ
− f ′′(xγ )xγ

2
.

Thus,

∂

∂γ

(
f ′
γ (x)

)
< 0 ⇐⇒ (1 − γ )xγ f ′′(xγ ) > 2,

from which the result follows. ��
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Proof of Theorem 4.2 Denote f (x) = ax/(1 + xm), so that

f ′(x) = −a ((m − 1)xm − 1)

(1 + xm)2
; f ′′(x) = amxm−1 (m(xm − 1) − 1 − xm)

(1 + xm)3
.

If p is the positive fixed point of f and xγ is the largest positive equilibrium of (4.2),
then it is clear that xγ < p if γ > 0, and xγ > p if γ < 0.

First we notice that condition a ≤ m/(m − 2) is necessary to ensure that the fixed
point p of f (x) is asymptotically stable.Next, condition a > 4m/(m−1)2 is necessary
to ensure that there is a value of γ for which f ′(xγ ) = −1 and xγ = f (xγ ) − γ .
Indeed, the first equality leads to equation

a
(
(m − 1)xm

γ − 1
)

=
(
1 + xm

γ

)2
.

Denoting z = 1 + xm
γ , we get that z must be a zero of the polynomial q(z) =

z2 − a(m − 1)z + am. Since the discriminant of q(z) is 	 = a2(m − 1)2 − 4am,
we have that 	 > 0 ⇐⇒ a > 4m/(m − 1)2. In case 	 = 0, we can verify that
f ′(x) > −1 for all x �= xγ , and therefore destabilization by CH is not possible.
Hence, under the conditions of Theorem 4.2 (a) and (b), equation q(z) = 0 has

two positive solutions z1 > z2, that provide two values γ1, γ2 for which f ′(xγi ) = −1
and xγi = f (xγi ) − γi , i = 1, 2. Moreover, condition a ≤ m/(m − 2) implies that
z1 > z2 ≥ a if m > 3, and z2 < z1 ≤ a if m < 3, the equality corresponding to the
case a = m/(m − 2).

If m < 3, then z2 < z1 ≤ a, which is equivalent to xm
γ2

< xm
γ1

≤ p and then
f (xm

γ2
) > xm

γ1
≥ p. Therefore, 0 ≤ γ1 < γ2. We prove that f ′′(xγ1) > 0 and

f ′′(xγ2) < 0, which implies by Proposition 4.1 that increasing harvesting is first
destabilizing and then stabilizing again.

Using the expression of f ′′(x), we have:

f ′′(xγ1) > 0 > f ′′(xγ2) ⇐⇒ m(xm
γ1

− 1) − 1 − xm
γ1

> 0 > m(xm
γ2

− 1) − 1 − xm
γ2

⇐⇒ 1 + xm
γ2

= z2 <
2m

m − 1
< 1 + xm

γ1
= z1.

Thus, we only need to prove that q(2m/(m − 1)) < 0. Indeed,

q(2m/(m − 1)) = m

(
4m

(m − 1)2
− a

)
< 0,

because a > 4m/((m − 1)2).
If m > 3, then a ≤ z2 < z1 and γ1 < γ2 ≤ 0. Repeating the above argument, it

follows that f ′′(xγ2) < 0 and f ′′(xγ1) > 0, which implies in this case that increasing
immigration is first destabilizing and then stabilizing again. ��
Proof of Proposition 4.4 Denote by f (x) = αx + (1 − α)xer(1−x).
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The system of equations

f ′(xγ ) = −1 , xγ = f (xγ ) − γ (A.10)

leads to
(r xγ − 1)

(
(1 − α)xγ + γ

) = (1 + α)xγ . (A.20)

Hence, system (A.10) has a positive solution, which is given by the positive root of
the quadratic equation

Q(xγ ) = r(1 − α)x2γ + (γ r − 2)xγ − γ = 0.

Since f ′′(xγ ) > 0 if and only if r xγ > 2, we have, using (A.20), that

f ′′(xγ ) > 0 ⇐⇒ r xγ > 2 ⇐⇒ (1 − α)xγ + γ < (1 + α)xγ

⇐⇒ xγ >
γ

2α
⇐⇒ Q(γ /(2α)) < 0 ⇐⇒ γ r < 4α.

Therefore, Proposition 4.1 ensures that the positive equilibrium p = 1 of the
Ricker–Clark equation canbedestabilized ifγ r < 4α and canbe stabilized ifγ r > 4α.

We next show that for a given r > 2, destabilization occurs if and only if α ∈
(α1(r), α2(r)), with α1(r) = (r − 2)/r and α2(r) = (−1 + er−2)/(1 + er−2).

Notice first that p = 1must be asymptotically stable for the Ricker–Clark equation,
that is, f ′(1) ≥ −1. This condition is equivalent to r > 2 and α ≥ (r − 2)/r .

The value α2(r) is determined finding the intersection point between the flip bifur-
cation curve defined by (A.10) and the line γ r = 4α (see Fig. 6).

Using the expression of the positive root of the quadratic polynomial Q(x) and
substituting γ by 4α/r , we easily get xγ = 2/r .

Now, using the formulas r xγ = 2 and γ = 4α/r in the equilibrium equation
xγ = f (xγ ) − γ , it follows that α = (−1 + er−2)/(1 + er−2).

Let us emphasize, to conclude, that (as in Sect. 4.1) 2/r is the only zero of f ′′,
allowing two γ ’s with corresponding xγ satisfying f ′

γ (xγ ) = −1 for every α ∈
(α1(r), α2(r)). ��

B Appendix: results on chaos

In this appendix, we state and prove our main results related to the existence of observ-
able chaos in discrete-time population models with harvesting.

We follow the notations and definitions stated at the beginning of Sect. 2. The
celebrated Allwright-Singer theorem (Allwright 1978; Singer 1978) establishes that
if f has a stable fixed point p, f (x) > x (respectively f (x) < x) whenever x <

p (respectively, x > p), and S f (x) < 0 except for at most one critical point (an
extremum) of f , then all orbits of f converge to p.
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Let f ∈ C(I ) with I compact. The (topological) entropy of f , h( f ) ∈ [0,∞], is
defined by

h( f ) = lim
ε→0

lim sup
n→∞

1

n
log sn( f , ε),

where sn( f , ε) is the maximal cardinality of the sets E having the property that for
all distinct points x, y ∈ E there is 0 ≤ i < n such that | f i (x) − f i (y)| > ε. If f
consists of finitely many pieces of monotonicity, and cn is the number of laps of f n ,
that is, the minimal cardinality of an interval partition of I such that f n is monotone on
each of the intervals of the partition, then h( f ) = limn→∞(1/n) log cn (Misiurewicz
and Szlenk 1980). Positive entropy admits several useful characterizations. Namely,
if f ∈ C(I ), then the following statements are equivalent (Li et al. 1982; Ruette 2017,
Theorem 4.58, p. 84):

• h( f ) > 0;
• f has a periodic point of period not a nonnegative power of 2;
• there are a point x , a positive integer m and an odd number k such that either

f km(x) ≤ x < f m(x) or f km(x) ≥ x > f m(x);
• there are subintervals J , K of I with disjoint interiors and positive integers m, l
such that f m(J ) ∩ f l(K ) ⊃ J ∪ K .

On the other hand, if the orbits of all points of I are attracted by periodic orbits (that
is, for any x there is a periodic point p such that limn→∞ | f n(x)− f n(p)| = 0), then
h( f ) = 0 (Ruette 2017, Lemma 5.5, p. 110, and Theorem 5.17, p. 116). A sufficient
condition for this to happen (Sharkovsky et al. 1997, pp. 73–74) is that the set of period
of periodic points of f is bounded —equivalently, see below, f has type less than 2∞
in the Sharkovsky order—. Therefore, monotone maps have zero entropy (they can
only have periodic points of periods 1 and 2) and so they have the restrictions to
invariant compact intervals of maps satisfying the hypotheses of the Allwright-Singer
theorem.

Thus, if amaphas positive entropy, then it is, in a sense, dynamically “bad-behaved”.
It is important to stress that this complicated behaviour needs not be “observable” in
practice. For instance, for the quadratic map f (x) = r x(1 − x), r ≈ 3.83187 . . .,
I = [0, 1], the point 1/2 is 3-periodic, hence h( f ) > 0, but the orbits of almost all
points (in the sense of Lebesgue measure) are attracted by the 3-point orbit of 1/2
(Guckenheimer 1979). The following definition takes care of this problem:

Let f ∈ C(I ). We say that (x, y) ∈ I 2 is a Li-Yorke pair (for f ) if
lim supn→∞ | f n(x) − f n(y)| > 0 and lim infn→∞ | f n(x) − f n(y)| = 0. We say
that f has observable chaos if the set of Li-Yorke pairs has (two-dimensional) posi-
tive Lebesgue measure.

A sufficient condition (under mild additional assumptions) to guarantee a very
strong form of observable chaos is the existence of an absolutely continuous invariant
measure (acip) for f . By this we mean a Borel probability measure μ such that
μ( f −1(B)) = μ(B) for anyBorel set B and,moreover, satisfyingμ(B) = 0whenever
λ(B) = 0, λ denoting the Lebesgue measure. For instance, if I is compact, f ∈ C3(I )
and f ′′(c) �= 0 for any critical point c of f , then the existence of an acip for f implies
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(besides h( f ) > 0) the existence of a subinterval J of I , invariant for some iterate f r

of f , such that:

• λ2-almost every (x, y) ∈ ( f i (J ))2, 0 ≤ i < r , is a Li-Yorke pair;
• the orbit of λ-almost every x ∈ K = ⋃r−1

i=0 J is dense in K ;
• limn→∞ log |( f n)′(x)|/n > 0 for λ-almost every x ∈ K ;
• limn→∞ λ( f rn+i (A)) = λ( f i (J )) for any measurable set A ⊂ J of positive
Lebesgue measure.

For more details on this, including many relevant references, see Bruin and Jiménez
López (2010); Barrio Blaya and Jiménez López (2012).

Under the previous smoothness and compactness assumptions, a sufficient hypoth-
esis implying the existence of an acip is the so-called Misiurewicz condition, that is,
the orbits of critical points do not accumulate on the set of critical points and all
periodic points are unstable (van Strien 1990). If f has just one critical point c and
negative Schwarzian derivate outside c, this condition can be somewhat relaxed (see
Lemma B.5); in particular, if there are an integer k and an unstable periodic point p
such that f k(c) = p (when we say that f satisfies the strong Misiurewicz condition),
then f has an acip.

The following theorem is a kind of mixture of (Misiurewicz 1981a, Theorem 7.9)
and (Thieullen et al. 1994, Theorem I.3), and then not substantially new, but some
conditions there are not really necessary, so this concrete formulation may be more
useful in applications.

Theorem B.1 Let the family fγ ∈ C3([a(γ ), b(γ )]), γ ∈ [γ0, γ1], satisfy the following
conditions:

(i) the maps a, b : [γ0, γ1] → R are continuous;
(ii) if M = {(x, γ ) : γ ∈ [γ0, γ1], x ∈ [a(γ ), b(γ )]}, then both F(x, γ ) = fγ (x)

and F ′(x, γ ) = f ′
γ (x) are continuous in M;

(iii) every map fγ has at most one critical point c(γ ) and f ′′
γ (c(γ )) �= 0 when such

a point exists;
(iv) S fγ (x) < 0 for any x �= c(γ ).

Let � ⊃ �S be, respectively, the sets of parameters γ such that fγ has an acip
(and then observable chaos) and fγ satisfies the strong Misiurewicz condition. If one
of the maps fγ0 , fγ1 has zero entropy, and the other one positive entropy, then � is
uncountable and �S is infinite.

Let ρ ∈ �S, assume additionally that F is C3 near [a(ρ), b(ρ)]× {ρ}, let k, r ≥ 1
be such that q = f k

ρ (c(ρ)) is an unstable r-periodic point of fρ and write Fn(x, γ ) =
f n
γ (x), d = c(ρ). If

(
1 − ( f r

ρ )′(q)
) ∂ Fk

∂γ
(d, ρ) �= ∂ Fr

∂γ
(q, ρ), (B.10)

then ρ is a Lebesgue density point of � (hence the set of parameters γ such that fγ
has observable chaos has positive measure).

123



    3 Page 22 of 28 V. Jiménez López and E. Liz

Remark B.2 By “F is C3 near [a(ρ), b(ρ)] × {ρ}” we mean that if ε > 0 is small
enough, then the restriction of F to Mε = {(x, γ ) : γ ∈ [ρ − ε, ρ + ε], x ∈
[a(γ ), b(γ )]} can be extended to a C3-map defined on an open set containing Mε .
We say that ρ is a Lebesgue density point of � if there is a Borel set  ⊂ � such that
limε→0+ λ( ∩ [ρ − ε, ρ + ε])/(2ε) = 1 (or limε→0+ λ( ∩ [ρ − ε, ρ])/ε = 1 if
ρ = γ1, and analogously for γ0).

Before proving Theorem B.1, a number of additional notions and results will be
needed. Some of them involve finite and infinite sequences α = α1α2 · · · of symbols
L, C, R, with |α| denoting the (finite or infinite) length of α.

The shift operator S is given by S(α) = α2α3 · · · , hence it is well defined except if
|α| = 1. The renormalization operator R is given byR(α) = Rα1Rα2 · · · , where we
mean L = R,C = C and R = L . As usual,we denote bySn (whenever itmakes sense)
and Rn the n-iterates of these operators. If α (respectively, β) is finite (respectively,
finite or infinite), then αβ is the concatenation of α and β, with αn = α · · ·α (n times)
and α∞ = αα · · · (infinitely many times).

We say that α is admissible if it is either an infinite sequence of L’s and R’s, or a
(maybe empty) finite sequence of L’s and R’s, followed (and finished) by C . Observe
that if α is admissible, then S(α) and R(α) are admissible as well.

We introduce a total order < in the set of admissible sequences as follows. Firstly,
L < C < R. Now, if α �= β and k is the first index such that αk �= βk (such an
index does exist because α and β are admissible), then α < β if either there is an even
number of R’s in α1 · · ·αk−1 = β1 · · ·βk−1 and αk < βk , or there is an odd number
of R’s in α1 · · · αk−1 = β1 · · · βk−1 and αk > βk . An admissible sequence α is said to
be maximal if Sn(α) ≤ α for any n ≤ |α| − 1 (for all n if |α| = ∞).

Let f ∈ C([a, b]). We say that f is unimodal if there is a < c < b such that
both f |[a,c] and f |[c,b] are strictly monotone and c is a turning point of f , when f is
called upper-unimodal (respectively, lower-unimodal) if c is amaximum (respectively,
a minimum). If additionally { f 2(c), f (c)} = {a, b}, then we say that f is strictly
unimodal.

The kneading invariant of a unimodal map f , K ( f ), is an admissible sequence
defined as follows. If f n(c) �= c for any positive integer n, then |K ( f )| = ∞ and
K ( f )n equals L or R according to whether f is increasing or decreasing on f n(c)
(that is, whether f n(c) < c or f n(c) > c when f is upper-unimodal, and whether
f n(c) > c or f n(c) < c when f is lower-unimodal). If, otherwise, k is the first
index such that f k(c) = c, then |K ( f )| = k and K ( f )n (1 ≤ n < k) equals L or R
according to whether f is increasing or decreasing on f n(c), with K ( f )k = C . It can
be proved, although this will be of no consequence here, that K ( f ) is always maximal.
Observe that if K ( f ) = R · · · , then there is exactly one fixed point on which f is
decreasing. We call it the essential fixed point of f . If, moreover, K ( f ) = RL · · · ,
and f 3(c) belongs to the interval with endpoints p and f (c), then we say that f is
renormalizable. If f is renormalizable, then the interval with endpoints f 2(c) and p
is invariant for f 2 and the restriction g of f 2 to this interval is unimodal: we call g the
renormalization of f and write g = N ( f ). Observe that if f is upper-unimodal then
g is lower-unimodal, and conversely. Of course, the renormalization of a map f needs
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not be renormalizable itself: if the n-iteration of the operator N , N n , is well defined
on f for all n, then we call f infinitely renormalizable.

Lemma B.3 Let f ∈ C([a, b]) be a unimodal map and assume that K ( f ) = R(α)

for some admissible sequence α = RL · · · �= RL∞. Then f is renormalizable and
K (N ( f )) = α.

Proof Assume, for instance, that f is upper-unimodal. We have β = K ( f ) =
RL R R · · · , so to prove that f is renormalizable we just need to show that f 3(c) > p.
But this is clear, because otherwise the first index k ≥ 5 such that βk = L (such an
index does exist because α �= RL∞) would be odd, contradicting that β = R(α).
The second statement of the lemma easily follows from the first one, because if f is
renormalizable, then f n(x) ≥ p for any odd integer n and any x ∈ [ f 2(c), p].

The Sharkovsky order is a total order � in the set Z+ ∪ {2∞} defined as follows:

1 � 2 � 4 � · · · � 2n � · · · � 2∞ � · · · � · · · �
(2k + 1)2n � · · · � 7 · 2n � 5 · 2n � 3 · 2n � · · · �
(2k + 1)4 � · · · � 7 · 4 � 5 · 4 � 3 · 4 � · · · �
(2k + 1)2 � · · · � 7 · 2 � 5 · 2 � 3 · 2 � · · · �
2k + 1 � · · · � 7 � 5 � 3.

We say that f ∈ C(I ) is of type t ∈ Z
+ ∪ {2∞} (in the Sharkovsky order), and

then we write T ( f ) = t , if the set of periods of all periodic points of f is exactly
{r ∈ Z

+ : r �t}. According to the famous Sharkovsky theorem (see, e.g., Ruette 2017,
Theorem 3.13, p. 40), every f ∈ C(I ) has a type. Therefore, the type of f is larger
than, equal to, or smaller than 2∞ according to, respectively, f has some periodic
point of period not a power of 2 —equivalently, h( f ) > 0—, f has periodic points of
periods all powers of 2, and no other periods, or the set of periods of periodic points
of f is bounded.

Let ω = ω1ω2 . . . denote the infinite sequence given by ωn = R or ωn = L
according to (after writing n = r2m for some odd number r and some nonnegative
integer m) whether m is even or odd. Clearly,

ω = RL R R RL RL RL R R RL R R RL R R RL RL RL R R RL RL · · ·

is characterized by the propertyR(ω) = ω.

Lemma B.4 Let f ∈ C([a, b]) be a unimodal map. Then the following statements are
equivalent:

(i) T ( f ) = 2∞;
(ii) f is infinitely renormalizable;
(iii) K ( f ) = ω.

Proof We assume, without loss of generality, that f is upper-unimodal.
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(i)⇒ (ii): if f (c) ≤ c then T ( f ) = 1 and if f 2(c) ≥ c then T ( f )�2, contradicting
the hypothesis. Finally, if f 3(c) < p, with p the essential fixed point of f , then
f 2([ f 2(c), c]) ∩ f 2([c, p]) ⊃ [ f 2(c), p]. This, as we mentioned before, means that
T ( f )�2∞, again a contradiction. Therefore, f is renormalizable. But if T ( f ) = 2∞,
then it is clear that T (N ( f )) = 2∞. Repeating the previous argument, we conclude
that f is infinitely renormalizable.

(ii) ⇒ (i): If f is renormalizable, then it cannot have periodic points of odd period
(except 1), that is, T ( f )�6. Analogously, T (N ( f ))�6 because N ( f ) is renormaliz-
able, hence T ( f )�12 and, in general, T ( f )�3·2n for any n, that is, T ( f )�2∞. On the
other hand, if T ( f ) = 2k , then T (N ( f )) = 2k−1 and, by induction, T (N k( f )) = 1.
But if g = N k( f ), then, because g is renormalizable, the signs of the numbers g2(c)−c
and g2(g2(c))−g2(c) differ, hence there is q between g2(c) and c such that g2(q) = q
(and g(q) �= q), contradicting T (g) = 1. Thus T ( f ) = 2∞, as we desired to prove.

(ii)⇒ (iii): If β = K ( f ) and α = K (N ( f )), then β2m−1 = R and αm = β2m for all
m ≥ 1. But N ( f ) is renormalizable as well, so α2m−1 = R, that is, β2(2m−1) = L for
all m ≥ 1. In fact N ( f ), as f , is infinitely renormalizable, and we can analogously get
α2(2m−1) = L and then β4(2m−1) = R for all m. Proceeding in this way we conclude
β = ω.

(iii) ⇒ (ii): This follows immediately from Lemma B.3.

Lemma B.5 Let f ∈ C3([a, b]) be unimodal with turning point c and assume f ′′(c) �=
0 and S f (x) < 0 for any x �= c. If the orbit of c does not accumulate at c and is not
attracted by a stable periodic orbit, then f has an acip.

Proof Assume as usual that f is upper-unimodal. Since the orbit of c is not attracted by
any stable periodic orbit, it is easy to check that f 2(c) < c < f (c), and f 3(c) ≥ f 2(c).
Therefore, g = f |[ f 2(c), f (c)] is a well defined strictly unimodal map, and negative
Schwarzian derivative, together with Theorem 6.1 in (de Melo and van Strien 1993,
p. 145), guarantee that all periodic points of g are unstable, which after adding the
hypothesis that the orbit of c does not accumulate at c means the g satisfies the
Misiurewicz condition. Therefore, by Misiurewicz (1981a) or van Strien (1990) (here
g′′(c) �= 0 is needed), g has an acip. This easily implies (just giving zero measure to
[a, b]\[ f 2(c), f (c)]) that f has an acip as well.

Proof of Theorem B.1 To prove the first part of the theorem we assume, without loss
of generality, that h( fγ0) = 0 < h( fγ1). We claim that there is γ0 ≤ γ ′

0 < γ1 such
that h( fγ ′

0
) = 0 (with T ( fγ ′

0
) = 2∞) and h( fγ ) > 0 for any γ ∈ (γ ′

0, γ1]. To
prove the claim, let ψa,b : [a, b] → [−1, 1] be the affine diffeomorphism given by
ψa,b(x) = −1+2(x −a)/(b −a), a < b, and write gγ = ψa(γ ),b(γ ) ◦ fγ ◦ψ−1

a(γ ),b(γ ).
Then (i) and (ii) just mean that γ �→ gγ maps continually the interval [γ0, γ1] into the
subspace of C1([−1, 1]) (endowed with the C1-topology) of C1-selfmaps on [−1, 1]
with at most two pieces of monotonicity. But topological entropy is continuous in
this space (Misiurewicz 1995), hence there is a parameter γ0 ≤ γ ′

0 < γ1 such that
h(gγ ′

0
) = 0 and h(gγ ) > 0 for any γ ∈ (γ ′

0, γ1]. Moreover, the set of C1-maps of

type less than 2∞ is open in the C1-topology (Misiurewicz 1981b), so T ( fγ ′
0
) = 2∞.

Since h( fγ ) = h(gγ ) and T ( fγ ) = T (gγ ) for all γ , the claim follows.
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As a consequence, all maps fγ , γ ∈ [γ ′
0, γ1], are unimodal, that is, c(γ ) exists

and is not an endpoint of [a(γ ), b(γ )]; moreover, c(γ ) lies between f 2γ (c(γ )) and
fγ (c(γ )), that is, K ( fγ ) = RL · · · . Additionally, (i) and (ii) imply that the sets �up
and �low of parameters γ with fγ being, respectively, upper- or lower-unimodal, are
both open in [γ ′

0, γ1]. Therefore, by connectedness, either �up = [γ ′
0, γ1] or �low =

[γ ′
0, γ1].We assume,without loss of generality, that all thesemaps are upper-unimodal.

The continuity conditions (i) and (ii) also imply that the map c : [γ ′
0, γ1] → R

is continuous, and so are the maps ã(γ ) = f 2γ (c(γ )), b̃(γ ) = fγ (c(γ )). Let ϕc :
[−1, 1] → [−1, 1] be the increasing diffeomorphism defined by ϕc(x) = (x −c)/(1−
cx), −1 < c < 1, and redefine, for any γ ∈ [γ ′

0, γ1], gγ ∈ C3([−1, 1]) by

gγ = φγ ◦ fγ |[ã(γ ),b̃(γ )] ◦ φ−1
γ ,

where we mean φγ = ϕc̃(γ ) ◦ ψã(γ ),b̃(γ )
, with c̃(γ ) = ψã(γ ),b̃(γ )

(c(γ )). Once again,

γ �→ gγ maps continually [γ ′
0, γ1] intoC1([−1, 1]), themaps gγ are strictly unimodal

and have 0 as its critical point (with (gγ )′′(0) �= 0 by (iii)). Notice that the maps ψa,b,
ϕc have zero Schwarzian derivative: since the composition of maps with nonpositive
Schwarzian derivative has negative Schwarzian derivative provided that one of then
has (de Melo and van Strien 1993, p. 144), the maps gγ have negative Schwarzian
derivative by (iv).

Let χ = χ1χ2 · · · be an arbitrary infinite sequence of 0’s and 1’s, and let
α = α(χ) = RL R RLα1α2 · · · , where αn = RL R R or αn = R R accord-
ing to, respectively, χn = 0 or χn = 1. Also, let β = (RL R)∞. It is easy
to check that both α and β are maximal and R(α) < β. Fix m ≥ 1 such that
3 · 2m � T (gγ1) = T ( fγ1). As shown in Collet and Eckmann (1980) (proof of Theo-
rem II.3.10, p. 92),Rm(β) < K (gγ1). Now Proposition II.2.2 in (Collet and Eckmann
1980, p. 74) implies Rm+1(α) < Rm(β), hence Rm+1(α) < K (gγ1). Similarly, we
have ω < α and then ω = Rm+1(ω) < Rm+1(α). Since K (gγ ′

0
) = K ( fγ ′

0
) = ω by

Lemma B.4, and Rm+1(α) is maximal (Collet and Eckmann 1980, Corollary II.2.4,
p. 75), we can apply Theorem III.1.1 in (Collet and Eckmann 1980, p. 173) (here the
continuity of γ �→ gγ in the C1-topology is essential) to find γ ′

0 < γ < γ1 such that
K (gγ ) = Rm+1(α).

Let g = gγ and g̃ = N m+1(g), which is well defined by Lemma B.3 (with K (g̃) =
α) and assume, for instance, that m is odd, that is, g̃ is upper-unimodal. Observe
that 0 is still the critical point of g̃, let p be the essential fixed point of g̃ and let
v = g̃(0), u = g̃2(0), when K (g̃) = α implies u < 0 < v. Observe that if U is
a sufficiently small neighbourhood of 0 and y ∈ U , then g̃(y), g̃3(y), g̃4(y) > 0
and g̃2(y), g̃5(y) < 0, so g̃n(0) /∈ U for any n ≥ 1 and the g̃−orbit of 0 does not
accumulate at 0. In fact, because of the way the renormalization operator is defined,
the g-orbit of 0 cannot accumulate at 0 either.

At this point recall that α = α(χ) and assume that one of the following possibilities
holds: (a) χ is not eventually periodic; (b) χ is eventually 1. In we are in case (a),
then the g̃-orbit of 0 cannot be attracted by any periodic orbit, and the same thing can
be said for g = gγ . By Lemma B.5, gγ has an acip ν, which becomes an acip μ for
fγ by writing μ(B) = ν(φγ (B)) if B is a Borel subset of [ã(γ ), b̃(γ )] and giving
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μ-zero measure to [a(γ ), b(γ )]\[ã(γ ), b̃(γ )]. In other words, γ ∈ �. But there are
uncountably many sequences χ satisfying (a), so � is uncountable.

In case (b) we can say more: g̃ satisfies the strong Misiurewicz condition. Indeed,
let q ∈ (p, v) be such that g̃(q) = 0. Then g̃2 has positive derivative in (0, q) and
g̃2(0) = u < 0, g̃2(q) = v > q. Therefore, according to the minimum principle (de
Melo and van Strien 1993, Lemma 6.1, p. 144) (which establishes that if a map has
negative Schwarzian derivative in a compact interval, then the absolute value of its
derivative attains its minimum value at some endpoint of the interval), (g̃2)′(p) > 1,
and g̃2(y) < y (respectively, g̃2(y) > y) for any y ∈ (0, p) (respectively, for any
y ∈ (p, q). Now, realize that the kneading sequence of g̃ guarantees that g̃n(0) stays at
(0, q) for every n large enough, which is impossible unless 0 is eventually mapped by
g̃ to p, that is, the strong Misiurewicz condition is satisfied (when the same happens
to gγ and fγ ). Since there are infinitely many sequences χ satisfying (b), we conclude
that �S is infinite, which finishes the proof of the first part of Theorem B.1.

Now we prove the second part of Theorem B.1. Recall, first of all, that fρ has an
acip and then h( fρ) > 0, so (by the continuity of entropy) h( fγ ) > 0 if γ is close to
ρ, when the strictly unimodal maps gγ ∈ C3([−1, 1] with gγ (0) = 1, gγ (1) = −1,
can be defined as above. Further, the additional hypothesis on F and (iii) imply that
c(γ ) is C2 near ρ, so each Gn(y, γ ) = gn

γ (y) is C2 in an open set containing a small
rectangle [−1, 1] × [ρ − ε, ρ + ε]. On the other hand, the conditions q = p(ρ) and
f r
γ (p(γ )) = p(γ ), together with ( f r

ρ )′(q) �= 1, define uniquely a continuous (in fact,

C3) map p(γ ) near ρ. (This works even if q = ã(ρ) or q = b̃(ρ), because the maps
f r
γ can be seen as defined on slightly larger open intervals than [ã(γ ), b̃(γ )].)
We claim that if γ is close enough to ρ, then gγ (x) > x for any x ∈ (−1, 0].

If gρ(−1) > −1, then the claim follows for γ = ρ from the strong Misiurewicz
condition, and for allγ nearρ from the continuity of the family.Nowassume gρ(−1) =
−1, when g′

ρ(−1) > 1 by the strong Misiurewicz condition and then g′
γ (x) > 1

whenever x is close enough to −1 and γ is close enough to ρ. Then the claim follows
from the minimum principle.

Let z(γ ) = Fk(c(γ ), γ ) and realize that (B.10) amounts to say (because
(∂ Fk/∂x)(d, ρ) = 0) that z′(ρ) �= p′(ρ). Write φ(x, γ ) = φγ (x), Z(γ ) =
φ(z(γ ), γ ) = Gk(0, γ ), P(γ ) = φ(p(γ ), γ ) = Gr (P(γ ), γ ). Then

Z ′(ρ) − P ′(ρ) = ∂φ

∂x
(q, ρ)(z′(ρ) − p′(ρ)) �= 0

and all conditions in (Thieullen et al. 1994, Theorem I.3) are satisfied, which ensures
that ρ is a Lebesgue density point of a Borel set  ⊂ (γ ′

0, γ1] such that gγ (and then
fγ ) has an acip whenever γ ∈ . This finishes the proof. ��
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