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Abstract

We get a sharp global stability result for a first order difference equation modelling the growth of bob-
white quail populations. The corresponding higher-dimensional model is also discussed, and our stability
conditions improve other recent results for the same equation.
© 2006 Elsevier Inc. All rights reserved.
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1. Introduction

Recently [1–3], we have developed a new method for proving global stability in a family of
discrete single-species modeled by a difference equation

xn+1 = xnF (xn−k), n = 0,1, . . . , (1.1)

where F : (0,∞) → (0,∞) is continuous. Assuming that there is a unique positive equilibrium
x̄ of (1.1), we say that x̄ is globally stable if it is stable and all solutions of (1.1) converge to
x̄ as n tends to ∞. Due to biological reasons, by a solution of (1.1) we mean a sequence {xn}
defined by the recurrence (1.1) from a set of initial conditions x−k, . . . , x−1, x0 ∈ (0,∞). Notice
that xn > 0 for all n � 0.
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For k = 0 in (1.1), the above mentioned method gives us the best possible global stability
conditions, since we prove that x̄ is globally stable whenever it is asymptotically stable (see [3]
and Proposition 3).

For k > 0, we believe that local stability continues to imply global stability under the same
assumptions on F . Although this is still an open problem, a result in the good direction may be
derived from [1,2], and it is stated below as Proposition 4.

This note is devoted to apply our results to the model

xn+1 = αxn + βxn

1 + xr
n−k

, n = 0,1, . . . , (1.2)

where 0 � α < 1 < α +β, and r > 0. For k = 0, Eq. (1.2) was proposed by Milton and Bélair [4]
to describe the growth of bobwhite quail populations, and the global stability of the equilibrium
was investigated later by Graef et al. [5,6], including also the case k > 0.

For k = 0, Eq. (1.2) is of the form xn+1 = f (xn), where f is in general a hump-with-tail
map, that is, with two extremum points. We notice that many of the known methods for proving
global stability in discrete equations only work for monotone or unimodal (one-humped) maps.
A typical example is precisely Eq. (1.2) with α = 0 and k = 0, which becomes the well-known
unimodal population model proposed by Maynard Smith in 1974 (see, e.g., [7]). However, the
presence or two extrema is not a problem when applying our approach, since the important point
is that Eq. (1.2) can be written in the form (1.1) with F strictly decreasing in (0,∞).

In Section 2, we first recall some previous stability results for (1.2), and then we apply our
techniques to prove our main theorem, showing how it improves the previous ones. Moreover,
we emphasize that for the one-dimensional model (k = 0 in (1.2)), our result is the best possible,
and we propose an open problem for k > 0.

2. Main result

As it was proved by Levin and May [8], if F is differentiable, then the boundary of the region
for which the positive equilibrium x̄ of (1.1) is asymptotically stable is given by the relation

x̄
∣∣F ′(x̄)

∣∣ = 2 cos

(
kπ

2k + 1

)
.

In the particular case of Eq. (1.2), the equilibrium x̄ = ((α +β −1)/(1−α))1/r is asymptotically
stable if

r <
2β

(α + β − 1)(1 − α)
cos

(
kπ

2k + 1

)
. (2.1)

The global stability of x̄ was addressed by Graef et al. In their first paper [5], they use Lyapunov
functions to get several sufficient conditions. However, as it is pointed out in [6], these conditions
are complicated and hard to verify in some cases. In this latest paper, the authors propose an
alternative approach to improve their previous estimations. Their main result is the following
one:

Theorem 1. [6, Theorem 3.1] The equilibrium x̄ of Eq. (1.2) is globally stable if

r <
2α + β + 2

√
α2 + αβ

β

3k + 4

2(k + 1)2
. (2.2)
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For k = 0, (2.2) reads

r < 2
2α + β + 2

√
α2 + αβ

β
,

which is in general far from the local stability condition

r <
2β

(α + β − 1)(1 − α)
.

We are in a position to state our main result.

Theorem 2. The equilibrium x̄ of Eq. (1.2) is globally stable if

r <
β

(α + β − 1)(1 − α)

3k + 4

2(k + 1)2
and k � 1, (2.3)

or

r � 2β

(α + β − 1)(1 − α)
and k = 0. (2.4)

In order to demonstrate Theorem 2, we will use two recent results which make use of the
Schwarzian derivative. We recall that the Schwarzian derivative of a C3-map f is defined by

(Sf )(x) = f ′′′(x)

f ′(x)
− 3

2

(
f ′′(x)

f ′(x)

)2

,

whenever f ′(x) �= 0.

Proposition 3. [3, Corollary 2.7] Assume that F : [0,∞) → (0,∞) is differentiable, F ′(x) < 0
for all x > 0, F(0) > 1, and function g(x) = − ln(F (x̄e−x)) has negative Schwarzian derivative
everywhere, where F(x̄) = 1.

Then, the unique positive equilibrium x̄ of

xn+1 = xnF (xn), n = 0,1, . . . ,

is globally stable if and only if

x̄
∣∣F ′(x̄)

∣∣ � 2.

A similar result can be proved for the higher order difference equation (1.1). The following
proposition is a consequence of Corollary 4.3 in [1] and Theorem 1.3 in [2].

Proposition 4. Let the assumptions of Proposition 3 hold. Then, the unique positive equilibrium
of (1.1) is globally stable if k � 1 and

x̄
∣∣F ′(x̄)

∣∣ <
3k + 4

2(k + 1)2
.

To prove Theorem 2, there only remains to check that all conditions of Proposition 3 are
fulfilled. Indeed, Eq. (1.2) can be rewritten as (1.1) with

F(x) = α + β

r
,

1 + x
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which satisfies F(0) = α +β > 1, and F ′(x) = −βrxr−1(1+xr)−2 < 0 for all x > 0. Regarding
the Schwarzian derivative of g(x) = − ln(F (x̄e−x)), direct computations show that

(Sg)(x) = −r2

2

2αβ(1 + h(x))3 + α2(1 + h(x))4 + β2(1 + 2h(x))

(1 + h(x))2(α + β + αh(x))2
,

where

h(x) = α + β − 1

1 − α
e−rx > 0, ∀x ∈ R.

Therefore, (Sg)(x) < 0 for all x ∈ R, and we are done.

Final remarks. Notice that, for k = 0, Theorem 2 gives us the best possible result on the global
stability of the equilibrium x̄, showing that it is globally stable whenever it is asymptotically
stable. For k > 0, we conjecture that the same is true, that is, the equilibrium x̄ of Eq. (1.2) is
globally stable if k > 1 and (2.1) holds. This conjecture is a particular case of Conjecture 4.8
in [1], which was motivated by a remark made by Levin and May in [8]. In any case, it is clear
that Theorem 2 also improves Theorem 1 for k > 0. In fact, it is a substantial improvement;
notice, for example, that condition (2.3) is always true for any fixed r, k,β when α is sufficiently
close to 1. This fact cannot be derived from Theorem 1.
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