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ABSTRACT
Proportional threshold harvesting (PTH) refers to some control rules
employed in fishing policies, which specify a biomass level below
which no fishing is permitted (the threshold), and a fraction of the
surplus above the threshold is removed every year. When these rules
are applied to a discrete population model, the resulting map gov-
erning the harvestingmodel is piecewise smooth, so border-collision
bifurcations play an essential role in the dynamics. In this paper, we
carry out a bifurcation analysis of a PTHmodel, providing a thorough
picture of the 2-parameter bifurcation diagram in the plane (T , q) for
a case study. Here, T is the threshold and q is the harvest proportion.
Our results explain some numerical bifurcation diagrams in previ-
ous work for PTH, and uncover new features of the dynamics with
interesting consequences for population management.
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1. Introduction

Discrete dynamical systems constitute a very useful mathematical description of pop-
ulation models, especially when reproduction occurs only once a year, during a short
season [12,20]. In particular, they are widely used in !sheries, where the so-called stock-
recruitment function governs the between-year dynamics [4,18]. In this context, it is
very important to investigate how di"erent management policies in#uence population
dynamics.

Fisheries have to !nd a balance between maximizing the yield and minimize the risk
of extinction. This aim leads to use !shing strategies based on biological reference points,
such as target !shing mortality or threshold biomass levels [17]. Recently, many !sheries
have adopted threshold control rules in their harvest policies to ensure that populations
are not over!shed. These rules specify a biomass level below which no !shing is permit-
ted (the threshold), and di"erent forms of harvesting (constant, proportional) are applied
otherwise [5,13,16].

Theoretical methods based on the use of population models are an essential tool to
estimate and evaluate the choice of suitable reference points as well as the response of !sh-
eries to di"erent forms of threshold harvesting [19]. In particular, discrete-time dynamical
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systems have been recently used for this purpose; for example, ‘pure’ threshold harvesting
(the entire excess of a population stock above the threshold level is removed) was studied
in [10], di"erent forms of threshold constant-catch harvesting (a !xed quota is removed
if population stock is above the threshold) can be found in [1,11,15], and proportional
threshold harvesting (a fraction of the population surplus above the threshold is removed)
was addressed in [3,8,9].

Consider a discrete population model in the form

xn+1 = f (xn), (1)

where xn denotes the population at the nth generation and f is the reproduction (stock-
recruitment) function. In a natural way, when threshold harvesting is applied to (1), the
resulting dynamical system is governed by a piecewise-smooth map. Thus, the study
of such maps [2,6] became an essential tool to understand the dynamics of threshold
harvesting population models, as pointed out by Bischi et al. [3] (see also [11,15]).

In the recent paper [9], we studied how the stability properties of the positive equilib-
rium depend on the threshold parameter for a family of discrete-time population models
subject to proportional threshold harvesting (PTH). If in the absence of harvesting the
population abundance in a year in terms of the population at the previous year is governed
by (1), the harvesting model is given by the di"erence equation

xn+1 = G(xn) :=
{
f (xn) if f (xn) ≤ T,

F(xn) := f (xn) − q(f (xn) − T) if f (xn) > T.
(2)

where q ∈ (0, 1] is the harvest proportion and T is the threshold.
In the limit case q = 1, (2) becomes the pure threshold harvesting rule (TH), de!ned

by the map G1(x) = min{f (x),T}. The limit case T = 0 gives the usual proportional
harvesting (PH) method, de!ned by the map G2(x) = (1 − q)f (x) (see, e.g. [14]).

One of the main conclusions of [9] is that increasing harvesting by decreasing the
threshold can have di"erent e"ects on the stability of the equilibrium, depending on the
considered function f. In particular, for the Ricker map f (x) = x er(1−x), increasing har-
vesting intensity by decreasing the threshold T is destabilizing for a range of q values. We
have also observed numerically that bistability can occur for some combinations of the two
relevant parameters T and q.

Since the map G de!ned in (2) is piecewise-smooth, border-collision bifurcations
(BCBs) [2,6] play an essential role in the dynamics. In this paper, we carry out a bifurca-
tion analysis of (2), providing a thorough picture of the 2-parameter bifurcation diagram
in the plane (T, q) for a case study.We choose the Ricker model with r = 2.6, for which the
unique attractor is 4-periodic.With this choice, on the one handwe avoid chaotic dynamics
that would obscure the in#uence of BCBs; on the other hand, the cyclic dynamics high-
lights how the combination of border-collision and smooth bifurcations (SBs) enriches the
dynamics.

The results in this paper explain some numerical bifurcation diagrams in previous work
for PTH [8,9]. Our main !ndings are the following:

• We describe all possible bifurcations (BCBs and SBs) for our case study;
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• we identify the regions of bistability in the 2-parameter bifurcation diagram and the
mechanisms that create or destroy bistability;

• we determine the period (1, 2 or 4) of the attractors, both in the regions where there is
a unique attractor or where bistability occurs;

• we show a sort of robustness of the limit cases: when T is the bifurcation parameter,
we demonstrate that for large enough values of q (q close to 1), the dynamics of (2)
are similar to those of the limit case q = 1 (TH). If q is the bifurcation parameter, then
the dynamics of (2) for small values of T is similar to the dynamics of the limit case
T = 0 (PH);

• we distinguish between observable and non-observable bifurcations. The latter corre-
spond to persistence BCBs between unstable cycles;

• we identify the mechanisms that lead to subcritical or supercritical #ip BCBs.

2. Preliminaries

In the following, we focus on the Ricker model, that is, we consider Equation (2) with
f (x) = x er(1−x), which we state below for later reference.

xn+1 = G(xn) :=
{
f (xn) := xn er(1−xn) if f (xn) ≤ T,

F(xn) := (1 − q)xn er(1−xn) + qT if f (xn) > T.
(3)

From now on, we assume that r>2 because for r ≤ 2 the dynamics of (3) are trivial: all
solutions converge to 1 if T ≥ 1, and all solutions converge to the unique positive !xed
point p ∈ (T, 1) of F if T<1 [9, Propositions A.3 and A.4].

We follow [6] for notations related to piecewise-smooth maps and border-collision
bifurcations, see also [2].

The map G has a unique positive equilibrium p [9, Proposition A.1]. If T ≥ 1, then the
positive equilibrium is p = 1, which is the positive !xed point of f ; moreover, if T>1 then
G′(1) = f ′(1) = 1 − r < −1, and therefore p is unstable. IfT<1, then 1 is not a !xed point
ofG. In terms of [6], 1 is an admissible !xed point ofG if T ≥ 1, and a virtual !xed point if
T<1.When T = 1, we say that 1 is a boundary !xed point ofG, whichmeans thatG is not
di"erentiable at the !xed point p = 1. For the map F, the opposite occurs: if T>1, then
the unique positive !xed point of F, p ∈ (1,T), is a virtual !xed point of G, and p ∈ (T, 1)
is admissible if T<1.

If we choose T as the bifurcation parameter, a BCB occurs at T = 1. In our case, only
two types of BCBs for !xed points can occur:

• A persistence BCB occurs at T = 1 when an admissible and a virtual !xed point collide
and interchange their roles. No other periodic points are created or destroyed at the
bifurcation point.

• A !ip BCB or period-doubling BCB occurs at T = 1 when a 2-periodic orbit {p1, p2} of
G is created either for T ∈ (1 − ε, 1) or for T ∈ (1, 1 + ε), for some ε > 0, where p1 and
p2 are at di"erent sides of the boundary !xed point (that is, F(p1) = p2, f (p2) = p1). See
Figure 1 for an illustration.
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Figure 1. Detail of a supercritical flip BCB in (3), with r = 2.6, and q = 0.7, as T is increased and passes
the critical value T = 1. The graph of G is represented by the blue, solid curve; the red dashed curve
corresponds to the graph of f, and the black dashed line represents the threshold. (Colours refer to the
online version). (a) The fixed point p = 1 is an attractor of (3) for T = 1. (b) A 2-periodic attractor of (3)
for T = 1.05.

Following [6], we denote a stable admissible !xed point of F by the letter A, an unstable
admissible !xed point of F by a, a stable admissible !xed point of f by B, and an unstable
admissible !xed point of f by b. A period-two point of G is denoted by AB if it is stable
and ab otherwise. We use the symbol ↔ to indicate the occurrence of a BCB as T passes
through 1. Using this notation, we distinguish between non-observable persistence BCBs
(a ↔ b) and observable persistence BCBs (A ↔ B). Clearly, the former do not have any
in#uence in the observable dynamics. Also, we distinguish between a supercritical #ip BCB
(A ↔ {b,AB}) and a subcritical #ip BCB ({A, ab} ↔ b). We use the classi!cation criteria
in [6, Theorem 3.1 and Figure 3.5] to identify the type of BCBs for !xed points in the next
section.

We also !nd in our case study BCBs for !xed points of the second iteration G2 and
the fourth iteration G4 of G, that is, for the 2-periodic and 4-periodic orbits of G. These
BCBs can be of the same type as the previous ones, but there are fold BCBs as well. For
example, a fold BCB for G2 takes place when an attracting and a repelling 2-periodic
orbits collide and then disappear ({ab,AB} ↔ ∅). This border collision occurs when
F(F(T)) = T.

3. Bifurcations

In this section, we describe all possible smooth and border-collision bifurcations in (3)
with r = 2.6, using either T or q as bifurcation parameters, which allows us to represent a
2-parameter bifurcation diagram in Figure 2. It is well known that, as r grows, the Ricker
map undergoes a period-doubling bifurcation sequence to chaos, so its dynamics become
complex for r large enough. It is expected that the dynamics of (3) will bemore complicated
as well, in particular exhibiting multiple bistability regions in the 2-parameter bifurcation
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Figure 2. Two representations of the 2-parameter bifurcation diagram for (3) with r = 2.6, showing
smooth and border-collision bifurcation boundaries, as well as the location of periodic attractors. For
a zoom of the bistability regions, see Figure 3. (a) Smooth and border-collision bifurcation bound-
aries. See the text for a detailed explanation of the different colours, which refer to the online version.
(b) Regions with periodic attractors of period 1, 2 or 4. There is bistability in the two regions marked
with B.

Figure 3. Zoom of the bistability regions corresponding to the boxes in Figure 2 (a). (a) Coexistence
between a fixed point and a 2-cycle (B1), and between two 2-cycles (B2). (b) Coexistence between a
2-cycle and a 4-cycle (B3), and between two 4-cycles (B4).

diagram. However, our simulations for other values of r suggest that the main changes in
the dynamics due to border-collision bifurcations are very similar to those appearing in
the case r = 2.6.

We begin with smooth bifurcations, and then we study BCBs, which are divided in
bifurcations of !xed points, of 2-periodic cycles, and of 4-periodic cycles.
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3.1. Smooth bifurcations

We!nd#ip and fold smooth bifurcations. A#ip bifurcation occurswhenT<1 andF′(p) =
(1 − q)f ′(p) = −1, where p is the positive !xed point of F. For T ≥ 1, the unique positive
equilibriumofG is 1, and it is unstable. This bifurcation has been studied in [9], and de!nes
a decreasing smooth curve in the 2-parameter plane (T, q) (for an implicit equation of the
curve, see [9, Proposition A.5]).We emphasize that this is the only bifurcation curve for (3)
studied in [9]. All results from here are new.

Let x = T∗ ≈ 1.752 be the unique solution x>1 of equation x = f 2(x). A second #ip
bifurcation occurs when T < T∗ ≈ 1.752 and an attracting 2-cycle {p1, p2} of G satis!es
G2(p1) = p1, (G2)′(p1) = −1. For T ≥ T∗, the unique 2-periodic orbit ofG is {T∗, f (T∗)},
and it is unstable.

These #ip SBs are represented in Figure 2 by blue solid lines. It is worth emphasizing
that the second one de!nes a continuous curve in the 2-parameter plane (T, q), but it is
not di"erentiable at T = T# ≈ 0.1346. The reason is that for T < T# the equations de!n-
ing the bifurcation are F2(p1) = p1, (F2)′(p1) = −1, while for T > T# they are given by
f (F(p1)) = p1, f ′(F(p1))F′(p1) = −1, where p1 < 1.

The map G has always a unique positive !xed point, and therefore there are no fold
bifurcations for G. However, we !nd fold bifurcations for G2 and G4. In both cases, the
corresponding bifurcation curve is represented in Figure 2 by a magenta solid line (see the
zoom in Figure 3).

The fold SB for G2 is de!ned, for T<1, by the system f (F(x)) = x, f ′(F(x))F′(x) = 1.
Two periodic orbits (one attracting and one repelling) appear at the bifurcation curve as
T increases or q decreases. This bifurcation curve is de!ned for T ∈ (T̃, 1), where T̃ ≈
0.5709. At this point, the curve collides with a branch of fold BCBs (F2(T̃) = T̃).

Similarly, a fold SB forG4 is de!ned, forT ∈ (1,T∗), by the systemH(x) = x,H′(x) = 1,
where H(x) = F(f (f (f (x))). In this case, two 4-periodic orbits (one attracting and one
repelling) appear as T increases or q decreases and meet the bifurcation curve. This bifur-
cation curve is de!ned for T ∈ (T,T∗) ≈ (1.653, 1.752). At T = T, the curve collides with
a branch of fold BCBs ((F ◦ f )2(T) = T).

3.2. Border-collision bifurcations

Next, we describe all possible BCBs in (3) using either T or q as bifurcation parameters.
We distinguish BCBs for !xed points, 2-periodic orbits and 4-periodic orbits.

3.2.1. BCBs of fixed points
BCBs of !xed points only occur atT = 1, when F(T) = f (T) = T. In the next proposition,
we give the precise classi!cation of the di"erent types of BCBs that occur as the bifurcation
parameterTmeets the critical valueT = 1. In particular, this result explains the numerical
bifurcation diagrams in [9, Figure 6].

Proposition 3.1: Assume that r>2. Then Equation (3) undergoes a BCB as T meets the
critical value T = 1. This BCB is:

• a !ip BCB if 1 > q > (r − 2)/(r − 1);
• a persistence BCB if 0 < q < (r − 2)/(r − 1).
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Moreover, the !ip BCB is supercritical if q ∈ ((r − 2)/(r − 1), r(r − 2)/(r − 1)2) and
subcritical if q > r(r − 2)/(r − 1)2.

Proof: Following the terminology in [6, Theorem 3.1], we denote by σ+
1 (resp. σ−

1 ) the
number of real eigenvalues greater than 1 (resp. the number of real eigenvalues less than
−1) of the linearization G′(1−) = F′(1). Analogously, we denote by σ+

2 (resp. σ−
2 ) the

number of real eigenvalues greater than 1 (resp. the number of real eigenvalues less than
−1) of the linearization G′(1+) = f ′(1).

In addition, σ+
11 and σ+

12 are the number of real eigenvalues of F′(1)F′(1) and F′(1)f ′(1)
which exceed 1, respectively.

Thus, the relevant values to classify the BCBs at T = 1 are f ′(1), F′(1) = (1 − q)f ′(1),
F′(1)f ′(1) = (1 − q)(f ′(1))2, and F′(1)F′(1) = (1 − q)2(f ′(1))2.

We easily get:

• σ+
1 = σ+

2 = 0 (because f ′(1) = 1 − r < 0);
• σ−

2 = 1 (because f ′(1) = 1 − r < −1);
• σ−

1 = 1 if (1 − q)f ′(1) < −1, and σ−
1 = 0 if (1 − q)f ′(1) > −1.

Hence, if (1 − q)f ′(1) < −1, then σ−
1 + σ−

2 is even, and thus there is a persistence BCB,
of the form a ↔ b. This condition is equivalent to q < (r − 2)/(r − 1).

If q > (r − 2)/(r − 1), then (1 − q)f ′(1) > −1 and σ−
1 + σ−

2 is odd. Hence, there is
a #ip BCB. The character of this bifurcation depends now on σ+

11 and σ+
12. Since 0 >

F′(1) = (1 − q)f ′(1) > −1, it follows that F′(1)F′(1) = (1 − q)2(f ′(1))2 < 1, and there-
fore σ+

11 = 0. This means that the bifurcation is supercritical (A ↔ {b,AB}) if σ+
12 = 0,

which is equivalent to (1 − q)(f ′(1))2 < 1, and it is subcritical ({A, ab} ↔ b) if σ+
12 = 1,

which is equivalent to (1 − q)(f ′(1))2 > 1. Thus, the #ip BCB is subcritical for q ∈ ((r −
2)/(r − 1), r(r − 2)/(r − 1)2), and it is supercritical if q > r(r − 2)/(r − 1)2). !

For r = 2.6, we get a persistence BCB for each q<0.375, a subcritical #ip BCB for q ∈
(0.375, 0.609375), and a supercritical #ip BCB for q > 0.609375.

See Figure 1 for an illustration of a supercritical #ip bifurcation for q = 0.7>0.609375.
The bifurcation boundaries corresponding to the case T = 1 are represented by vertical

lines in Figure 2: brown solid line for #ip supercritical, brown dashed line for #ip sub-
critical, and red dashed line for persistence (notice that it is non-observable because the
involved equilibria are unstable).

3.2.2. BCBs of 2-periodic cycles
When a !xed point of G2 collides with T, a border-collision bifurcation occurs. In our
context, there are two possibilities: eitherT = f 2(T), withT>1, orT = F2(T), withT<1.

Recall that T∗ ≈ 1.752 satis!es f 2(T∗) = T∗. The classi!cation of BCBs that occur as
the bifurcation parameter T meets the critical value T∗ can be made in an analogous way
to the previous case (T = 1). We provide the classi!cation but skip the details.

If q < q1 ≈ 0.208, then there is a (non-observable) persistence BCB: two unstable 2-
periodic orbits switch from admissible to virtual periodic points of G2. The value q1 is
found solving (numerically) equation (F ◦ f )′(T∗) = −1.
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If q1 < q < q2 ≈ 0.3735, then there is a subcritical #ip BCB for G2. This means that,
as T is increased and passes through T∗, an unstable 4-periodic orbit and an attracting 2-
periodic orbit collide. For T > T∗, an unstable 2-cycle of f becomes an admissible cycle of
G. The value q2 is found solving (numerically) equation (F ◦ f 3)′(T∗) = 1.

If q > q2, then there is a supercritical #ip BCB for G2. As T is increased and passes
through T∗, an attracting 2-periodic orbit ofG is replaced by an attracting 4-periodic orbit
of G.

The colours for the bifurcation boundaries in Figure 2 are chosen as in the previous
case: brown solid line for #ip supercritical, brown dashed line for #ip subcritical, and red
dashed line for persistence BCBs.

Other BCBs of 2-periodic cycles occur when T = F2(T), for some T<1. In this case,
there are fold and persistence BCBs.

When q > q3 ≈ 0.3575, a fold BCB for G2 occurs when T = F2(T). The unstable 2-
periodic orbit that emerged at the fold SB collides with the attracting 2-periodic orbit of
F and both disappear. The value q3 is found solving (numerically) system (f ◦ F)(T) =
T, (f ◦ F)′(T) = 1. The bifurcation boundary for this fold BCB is represented by a green
curve in Figure 2 (for a zoom, see Figure 3 (b)). At (T, q) = (T̃, q3) ≈ (0.5709, 0.3575), the
boundaries of the fold SB and the fold BCB collide.

For q < q3, a persistence BCB for G2 occurs when T = F2(T). We distinguish two
cases. If q3 > q > q4 ≈ 0.0637, then this persistence BCB is observable: as T increases or
q decreases and meets the bifurcation boundary, the 2-periodic orbit of F becomes virtual
and it is replaced by a 2-cycle {p1, p2} with p1 = f (F(p1)). For q < q4, the 2-periodic orbit
of F is unstable, and the persistence BCB is non-observable.

Bifurcation boundaries for persistence BCBs are represented by red curves in Figure 2;
the trace is continuous for the observable case, and discontinuous for the non-observable
one.

3.2.3. BCBs of 4-periodic cycles
Finally, we brie#y discuss the possible border-collision bifurcations for G4. There are four
possibilities:

• First, let T ≈ 1.904 be the largest value of T for which f 4(T) = T holds. At this point,
there is a persistence BCB for the bifurcation parameter T, which is observable: as T
decreases, the admissible 4-periodic attractor of f becomes virtual and it is replaced by
an admissible attracting cycle {p1, p2, p3, p4} of G, satisfying G4(p4) = F(f 3(p4)) = p4.
The corresponding bifurcation boundary T = T4 is represented by a red solid vertical
line in Figure 2.

• Let us now choose, for each q ∈ (0, 1), the smallest T such that F4(T) = T holds. This
expression de!nes a new (observable) fold BCB. The same occurs for those values T<1
such that (f ◦ F)2(T) = T, T<1.

• Finally, values T>1 such that (F ◦ f )2(T) = T give rise to either persistence or fold
BCBs for G4, depending on if T > T (fold) or T < T (persistence), where T ≈ 1.6534
was de!ned in Subsection 3.1. As before, the bifurcation boundary for the fold BCB is
represented in Figure 2 by a green solid line, and the persistence BCB by a red solid
line.
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We have not included all persistence BCBs of 4-periodic cycles in Figure 2 to avoid
complicating too much the diagram.

4. Numerical bifurcation diagrams

It is worth emphasizing that the bifurcation analysis made in the previous section allows
us to split the parameter plane (T, q) into !ve di"erent regions: two bistability regions and
three regions where (3) with r = 2.6 has a unique periodic attractor, with period 1, 2 or 4,
respectively. See Figure 2(b).

In particular, we see that the limit cases are robust in the following sense: for small
enough values of T, the dynamics of (3) are similar to the dynamics of PH (limit case
T = 0), while for large enough values of q (q close to 1), the dynamics of (2) are similar to
those of TH (limit case q = 1). In both cases, a sequence of period-halving bifurcations sta-
bilizes the positive equilibrium as harvesting intensity increases (increasing the harvesting
proportion q in PH or decreasing the threshold T in TH). In the !rst case, the #ip bifur-
cations are smooth, whereas in the second one they are border-collision bifurcations. In
Figure 4(a), we show the bifurcation diagram of (3) for T = 0.1, which is similar to the
usual bifurcation diagram for PH (see, e.g. [14, Figure 2]l), but extinction is not possible
due to theminimumbiomass level ensured by the threshold harvesting rule. In Figure 4(b),
we show the bifurcation diagram of (3) for q = 0.9, which is qualitatively analogous to the
bifurcation diagram for TH [10, Figure 3].

Next we illustrate the dynamics for other values of the parameters, showing the most
relevant phenomena.

When q is the bifurcation parameter, some numerical bifurcation diagramswere plotted
by Franco and Perán in [8]. Our results allow us to explain in detail the main changes in
the dynamics of (3) as q is smoothly varied, for a !xed value of T.

We illustrate the dynamics with two cases in Figure 5. The bifurcation diagram for
T = 0.75 is shown in Figure 5 (a). Although increasing q is stabilizing, bistability is another
outcome. More precisely, there are three smooth bifurcations and one border-collision

Figure 4. Bifurcation diagrams for (3) with r = 2.6. (a) T = 0.1 and bifurcation parameter q. (b) q = 0.9
and bifurcation parameter T.
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Figure 5. Bifurcation diagrams for (3) with r = 2.6 and bifurcation parameter q. In both cases, the green
dashed line represents anunstable fixedpoint ofG, and reddashed lines correspond tounstable 2-cycles.
(a) T = 0.75. (b) T = 1.05. (Colours refer to the online version).

bifurcation. A !rst #ip SB occurs at q = q1 ≈ 0.083, at which the 2-periodic orbit of G
becomes asymptotically stable. At q = q2 ≈ 0.386, F2(T) = T, and there is a fold BCB for
G2. After a new #ip SB at q = q3 ≈ 0.403, the stable 2-cycle arising from the fold BCB
disappears, and the positive !xed point p of F becomes asymptotically stable. Finally, at
q = q4 ≈ 0.423, the unstable 2-cycle arising from the fold BCB collides with the stable 2-
cycle of G and both disappear through a fold SB for G2. Bistability occurs for q ∈ (q2, q4),
corresponding to regions B2 (q2 < q < q3) and B1 (q3 < q < q4) in Figure 3(a). Our
numerical experiments suggest that p is a global attractor for q > q4. As q tends to 1, p
approaches T = 0.75, which is indeed a global attractor in the limit case q = 1, where
PTH becomes TH, see [10].

For T = 1.05, the bifurcation diagram is shown in Figure 5(b). The only bifurcation
occurs at q ≈ 0.103, and it is a #ip SB, at which the 2-periodic orbit of G becomes asymp-
totically stable. As q → 1, the attracting 2-cycle approaches {T, f (T)}, which is the attractor
of TH in the limit case q = 1. Here, T = 1.05, f (T) ≈ 0.922.

When T is the bifurcation parameter, several bifurcation diagrams are shown
in [9, Figure 6]. Our results in Subsections 3.1, 3.2.1 and 3.2.2 provide a theoretical
framework to rigorously explain those diagrams.

An interesting result from [9] is that period-halving bifurcations cannot stabilize a pos-
itive equilibrium of (3) as a result of increasing harvesting intensity by decreasing the
threshold from T = 1. However, our results in this paper reveal that period-halving bifur-
cations can stabilize a 2-periodic orbit when the threshold gets smaller. Moreover, two
stability switches can occur for some values of the harvesting proportion q. See Figure 6 (a).

Other interesting bifurcation scenario occurs when, for a !xed value of q, a continu-
ous variation of the parameter T passes through the bistability region labelled as B4 in
Figure 3(b). For example, if we choose q = 0.185, then the attracting 2-periodic orbit of (3)
with r = 2.6 !rst undergoes a period-doubling SB at T = T1 ≈ 1.653. A fold SB at T =
T2 ≈ 1.683 gives rise to a pair of 4-cycles (one attracting and one repelling). The unstable
4-cycle collides with the attracting 4-cycle born at the #ip SB and both disappear after a
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Figure 6. Detail of the upper branch of the bifurcation diagram for (3) with r = 2.6. Red dashed lines
correspond to unstable 2-cycles, andmagenta dashed lines to unstable 4-cycles. (a) q = 0.06 and bifur-
cation parameter T ∈ (0, 0.5), showing two consecutive flip smooth bifurcations (4-cycle→ 2-cycle→
4-cycle). (b) q = 0.185 and T ∈ (1.6, 1.8), showing two smooth bifurcations (flip and fold) and one-fold
BCB for G4. (Colours refer to the online version).

fold BCB forG4 occurs atT = T3 ≈ 1.695, for whichG4(T3) = T3. ForT ∈ (T2,T3), there
is bistability between two 4-cycles ofG. The upper branch of the corresponding bifurcation
diagram is shown in Figure 6(b).

As far as we know, the consequences of persistence BCBs have not been studied for
model (3).We illustrate such e"ects choosing q = 0.35. An observable persistence BCB for
G2 occurs at T = T1 ≈ 0.548, where F2(T1) = T1, and a non-observable persistence BCB
for G occurs at T = 1. The observable/non-observable character is clear in Figure 7(a),
where we show the bifurcation diagram (blue colour) together with the average popula-
tion size (magenta colour). The e"ect is even more evident in Figure 7(b), where we show
the average population size (magenta line) and the positive equilibrium ofG (black dashed
line). As T is increased from T = 0, the average population size is bigger than the equilib-
rium, but this tendency begins to change at T = T1. No e"ect is observed in the average
population size at T = 1, where the positive equilibrium stops increasing and becomes
constant.

5. Discussion

Our main aim in this paper was providing a deeper analysis of the dynamics and bifur-
cations in discrete single-species population models subject to proportional threshold
harvesting by using the theory of piecewise-smooth one-dimensional maps [2,6]. Our pur-
pose choosing the Ricker map f (x) = xer(1−x) with r = 2.6 as a case study was twofold.
On the one hand, the same example was used for related harvesting rules in the recent
literature; in particular, for threshold harvesting in [10] and for constant-catch threshold
harvesting in [15]. This allows us to compare the obtained results and to understand the
typical dynamical features of each di"erent threshold rule. On the other hand, the relatively
simple dynamics of the unharvested model (having an attracting 4-periodic orbit) allowed
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Figure 7. Illustration of the consequences of observable and non-observable persistence BCBs in
model (3). Themagenta line, emphasized by the shadowed region below it, represents the average pop-
ulation size for each value of the threshold level. (a) Bifurcation diagram for (3) with r = 2.6, q = 0.35
andbifurcationparameter T. The averagepopulation size is also shown. At T = T1 ≈ 0.548, a persistence
BCB occurs. (b) Average population size (magenta) together with the positive equilibrium of G (black
dashed lines) to emphasize the influence of observable and non-observable persistence BCBs (see the
text). (Colours refer to the online version).

us to arrive at a thorough picture of the global dynamics depending on the two relevant
parameters from a management point of view.

In comparison with the above-mentioned threshold rules, the main feature of propor-
tional threshold harvesting is that the map G governing this rule (see Equation (2)) does
not have #at intervals leading to superstable attractors. For this reason, some new phenom-
ena appear; for example, we emphasize the possibility of subcritical #ip border-collision
bifurcations as the threshold passes the critical value T = 1.We also point out the relevant
di"erence between observable and non-observable persistence bifurcations, which, as far
as we know, has not been reported before. Even if an observable persistence bifurcation
does not change essentially the dynamics because the period of the attractor remains the
same and no other periodic points are created or destroyed, the non-smooth character of
the bifurcation can explain dramatic changes in the rate of change of population average,
as Figure 7 illustrates.

Finally, we emphasize that the PTH rule de!ned by Equation (2) is a ‘precautionary’
threshold harvesting strategy in the spirit of [7]. This means that, even after harvesting,
population stock cannot fall below the threshold level. One important consequence is that
the map G de!ning the between-year dynamics of the exploited population is continuous.
This is contrast with other threshold rules, which lead to piecewise continuous maps, thus
exhibiting more complicated bifurcation scenarios (see [3,11]).
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