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1. Introduction

The stability analysis of higher order difference equations is of great importance in many

areas where discrete processes occur, especially in economics and population dynamics.

As it is well-known, the linear equation with real constant coefficients

xnþ1 2 xn þ
XN
k¼0

akxn2k ¼ 0; n $ 0; ð1:1Þ

is exponentially stable, if and only if all roots of its characteristic equation

lNþ1 2 lN þ
XN
k¼0

akl
N2k ¼ 0

lie inside the unit circle D ¼ {l [ C : jlj , 1}: Although necessary and sufficient

conditions to ensure this fact can be obtained from the Schur criterion (see, e.g. [4,6,9]), as it

is noticed in [6], the stability conditions become increasingly complicated as the order of the
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equation increases, and as a result, their interpretation in the considered model is more and

more difficult. This discussion has motivated the investigation of explicit sufficient

conditions, which can be easily employed in the applications. In the literature, many results

can be found in this direction (see, e.g. [6,8,9] and references therein). Explicit necessary and

sufficient conditions were found only for very particular cases of equation (1.1) (see, e.g.

[3,12,13,18]). The situation is even more complicated when the considered model is

nonautonomous, and the corresponding linear equation has a more general form

xnþ1 2 xn þ
Xp
k¼0

akðnÞxgðk;nÞ ¼ 0; n $ 0; ð1:2Þ

where gðk; nÞ # n for all k ¼ 0; 1; . . .; p and all n $ 0:

Recently, some new approaches led to different stability results for linear and nonlinear

difference equations. We mention the use of weak contraction arguments [20–22], discrete

Halanay-type inequalities [14–16], monotonicity arguments [10,11,17], delay perturbation

methods [7] and Bohl-Perron type theorems [1,2].

In this paper, we further develop some ideas from [2,14,17] to obtain new explicit

conditions for the global stability of a nonlinear difference equation, which in particular,

allows us to generalize some previous stability results for the linear equations (1.1) and (1.2).

We notice that, for the particular case of equation (1.1), our conditions can be seen as new

explicit conditions to ensure that the moduli of all the roots of a given polynomial are less

than one.

We give some examples to illustrate the applicability of our results. Moreover, Section 4 is

devoted to show how the stability properties of the equilibrium in a nonlinear version of the

well-known Samuelson’s multiplier–accelerator model [6] are preserved for some values of

the involved parameters.

2. Halanay-type results

First of all, we establish a simple result, which can be obtained from [15]. However, due to

the simplicity of its proof, we include it here for the sake of completeness. We recall that the

zero solution of a difference equation

xnþ1 ¼ f ðn; xn; . . .; xn2T Þ; n $ 0; ð2:1Þ

is globally exponentially stable if there exist constants M . 0; l [ ½0; 1Þ such that, for every

solution {xn}n$2T of equation (2.1), the inequality

jxnj # Mln max
2T#i#0

{jxij}

� �
ð2:2Þ

holds for all n $ 0: We say that the zero solution of equation (2.1) is globally asymptotically

stable, if it is stable and for every solution {xn} of the equation, we have limn!1xn ¼ 0:

Theorem 2.1 Assume that f : N £ RTþ1 ! R satisfies

j f ðn; u0; . . .; uT Þj # bmax{ju0j; . . .; juT j} ð2:3Þ
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for some constant b , 1; and for all ðn; u0; . . .; uT Þ [ N £ RTþ1: Then

jxnj # bn=ðTþ1ÞM0; n $ 0;

for every solution {xn} of equation (2.1), where M0 ¼ max2T#i#0{jxij}: In particular, the

zero solution of equation (2.1) is globally exponentially stable (take l ¼ b1=ðTþ1Þ , 1 in

equation (2.2)).

Proof. We first show that jxnj # bM0 for all n $ 1: Indeed, by (2.3),

jx1j ¼ j f ð0; x0; . . .; x2T Þj # bM0:

Fix j . 1 and assume that jxnj # bM0 is true for n ¼ 1; 2; . . .; j: Thus,

jxjþ1j ¼ j f ðj; xj; . . .; xj2T Þj # bmax{jxjj; . . .; jxj2T j} # bmax{M0; bM0} ¼ bM0:

In particular, jxnj # bM0 # bn=ðTþ1ÞM0; for all n ¼ 1; . . .; T þ 1:

Assume now that jxnj # bn=ðTþ1ÞM0; for all n ¼ 1; . . .; pðp $ T þ 1Þ: Thus,

jxpþ1j # bmax{jxpj; . . .; jxp2T j} # bM0 max{bp=ðTþ1Þ; . . .; b ðp2TÞ=ðTþ1Þ} ¼ b ðpþ1Þ=ðTþ1ÞM0:

An application of the induction principle completes the proof. A

Remark 2.2 For the autonomous version of equation (2.1), i.e.

xnþ1 ¼ f ðxn; . . .; xn2T Þ; n $ 0; ð2:4Þ

an analogous result to Theorem 2.1 was obtained by Sedaghat in [20, Corollary 2]. See also

Section 4.3 in the recent monograph [21] of the same author, where other related interesting

results and discussion on their significance in the stability theory of difference equations can

be found.

For further generalizations and applications of Theorem 2.1, see [14,16,17,22].

Let us consider equation (1.2) with bounded delays, i.e. we assume the existence of an

integer N . 0 such that n2 N # gðk; nÞ # n; for all k ¼ 0; 1; . . .; p and all n $ 0: Notice

that the general form of a linear nonautonomous equation of an order not exceeding N is

xnþ1 2 xn ¼ 2
XN
k¼0

akðnÞxn2k: ð2:5Þ

A direct application of Theorem 2.1 shows that equation (2.5) is exponentially stable,

if a0ðnÞ [ ð0; 2Þ and

j1 2 a0ðnÞj þ
XN
k¼1

jakðnÞj # b , 1;

for some constant b and sufficiently large n. (Compare with [5].)

However, Theorem 2.1 does not work directly to obtain exponential stability results for

equation (2.5) with a0ðnÞ # 0: In particular, the case a0ðnÞ ¼ 0 has attracted much attention

(see some related references in [2]). To overcome this difficulty, we use some ideas from [2]

and [14]. Our main result in this section improves Theorem 6 in [2] and Theorem 2.4 in [14].
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For convenience in the presentation of our results, we consider the following nonlinear

difference equation:

xnþ1 2 xn ¼ 2
XN
k¼0

akðnÞxn2k þ f ðn; xn; . . .; xn2T Þ: ð2:6Þ

(Without loss of generality, we can suppose that N # T :) We assume that there exist

constants bn $ 0 such that

j f ðn; u0; . . .; uT Þj # bn max{ju0j; . . .; juT j}; ð2:7Þ

for all n $ 0 and ðu0; . . .; uT Þ [ RTþ1:

Theorem 2.3 Assume that, for large n, equation (2.7) holds and there exists a constant

g > 1 such that

cn U 1 2
XN
k¼0

akðnÞ

�����
�����þ
XN
k¼0

jakðnÞj
Xn21

m¼n2k

bm þ
XN
k¼0

jakðmÞj

 !
þ bn # g: ð2:8Þ

Then the zero solution of equation (2.6) is globally exponentially stable. Moreover,

if inequalities (2.7) and (2.8) hold for n $ 0; then

jxnj # gn=ðNþTþ1Þmax{jxN j; . . .; jx2 Tj}; n $ N;

for every {xn} solution of equation (2.6).

Proof. In order to apply Theorem 2.1, for n $ N; we rewrite equation (2.6) in the form

xnþ1 ¼ ð1 2 a0ðnÞÞxn 2
XN
k¼1

akðnÞxn2k þ f ðn; xn; . . .; xn2T Þ

¼ 1 2
XN
k¼0

akðnÞ

 !
xn þ

XN
k¼1

akðnÞðxn 2 xn2kÞ þ f ðn; xn; . . .; xn2T Þ

¼ 1 2
XN
k¼0

akðnÞ

 !
xn þ

XN
k¼1

akðnÞ
Xn21

m¼n2k

ðxmþ1 2 xmÞ þ f ðn; xn; . . .; xn2T Þ

¼ 1 2
XN
k¼0

akðnÞ

 !
xn þ

XN
k¼1

akðnÞ
Xn21

m¼n2k

2
XN
k¼0

akðmÞxm2k þ f ðm; xm; . . .; xm2T Þ

" #

þ f ðn; xn; . . .; xn2T Þ U hðn; xn; . . .; xn2lÞ; l ¼ N þ T:

Using inequalities (2.7) and (2.8), we have

jhðn; u0; . . .; ulÞj # cn max{ju0j; . . .; julj} # gmax{ju0j; . . .; julj};

for large n and all ðu0; . . .; ulÞ [ Rlþ1: The result follows from Theorem 2.1. A

Next, we establish a corollary for linear equations.
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Let I , {1; 2; . . .;N} be a set of indices and J ¼ {1; 2; . . .;N} n I: We can rewrite equation

(2.5) as

xnþ1 2 xn ¼ 2a0ðnÞxn 2
X
k[I

akðnÞxn2k 2
X
k[J

akðnÞxn2k; n $ 0: ð2:9Þ

Thus, observing that

X
k[J

akðnÞxn2k

�����
����� #

X
k[J

jakðnÞj

 !
max{jxnj; . . .; jxn2N j};

we have the following consequence of Theorem 2.3:

Corollary 2.4 Assume there exist a set of indices I , {1; 2; . . .;N} and a constant g , 1

such that, for large n,

1 2
X
k[I0

akðnÞ

�����
�����þ
X
k[I

jakðnÞj
Xn21

m¼n2k

XN
k¼0

jakðmÞj þ
X
k[J

jakðnÞj # g; ð2:10Þ

where I0 ¼ {0} < I: Then equation (2.5) is exponentially stable.

Remark 2.5 It is easy to check that Theorem 6 in [2] can be obtained from Corollary 2.4.

As it was noticed there, we can get 2N explicit conditions for the exponential stability of

equation (2.5) by choosing different partitions (I, J) of {1; 2; . . .;N}:

Next, taking I ¼ {k : ak . 0} , {1; 2; . . .;N} and a0 ¼ 0 in equation (1.1), Corollary 2.4

gives the stability condition

XN
k¼1

jakj
XN
k¼1

kaþk ,
XN
k¼1

ak;

for equation

xnþ1 2 xn þ
XN
k¼1

akxn2k ¼ 0; n $ 0: ð2:11Þ

Here, aþk ¼ max{ak; 0}: This is equivalent to Corollary 2.5 in [14].

For the nonlinear equation (2.1), Theorem 2.3 gives the following

Corollary 2.6 Assume that inequality (2.7) holds and

lim sup
n!1

bn ¼ b , 1; ð2:12Þ

then the zero solution of equation (2.1) is globally exponentially stable.

Remark 2.7 For the autonomous equation (2.4), the global asymptotic stability of the

equilibrium is ensured in [20] under the weaker assumption

j f ðu0; . . .; uT Þj , max{ju0j; . . .; juT j} ð2:13Þ
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for all ðu0; . . .; uT Þ [ RTþ1n {ð0; . . .; 0Þ}; instead of equation (2.3). Clearly, such a result does

not apply to the nonautonomous case. For example, equation

xnþ1 ¼ f ðn; xnÞ U
1 2 e2n21

1 2 e2n22
xn; n ¼ 0; 1; . . .

satisfies j f ðn; uÞj , juj for all u – 0: However, the solution starting at x0 converges to

x0ð1 2 e21Þ; so that the zero solution is not asymptotically stable.

Our next result is a nonautonomous version of the mentioned weak contraction result of

Sedaghat. It ensures the global asymptotic stability of the equilibrium in some cases where

inequality (2.12) fails.

Theorem 2.8 Assume that f : N £ RTþ1 ! R satisfies inequality (2.7) for some constants

bn # 1 and for all ðn; u0; . . .; uT Þ [ N £ RTþ1: Let

Bk ¼ max{bðTþ1Þk; bðTþ1Þkþ1; . . .; bðTþ1ÞkþT}: ð2:14Þ

If {xn} is a solution of equation (2.1), then

jxnj # M0

Yk
i¼0

Bi; ð2:15Þ

for any integer n such that ðT þ 1Þk þ 1 # n # ðT þ 1Þðk þ 1Þ; where M0 ¼

max2T#i#0{jxij}:

Proof. Let us first prove that jxij # B0M0; i ¼ 1; 2; . . .; T þ 1: By inequality (2.7)

jx1j ¼ j f ð0; x0; . . .; x2T Þj # b0M0 # B0M0 # M0;

jx2j ¼ j f ð1; x1; . . .; x2Tþ1Þj # b1 max
2Tþ1#j#1

jxjj # b1M0 # B0M0 # M0:

Similarly, jxij # bi21M0 # B0M0; i ¼ 1; 2; . . .; T þ 1; since the previous T þ 1 elements

of the sequence do not exceed M0.

Like in Theorem 2.1, let us prove inequality (2.15) by induction. As shown above,

inequality (2.15) is satisfied for k ¼ 0: Further, let us assume

jxnj # M0

Yk
i¼0

Bi; ðT þ 1Þk þ 1 # n # ðT þ 1Þðk þ 1Þ:

Then

xðTþ1Þðkþ1Þþ1 # bðTþ1Þðkþ1Þmax{jxðTþ1Þðkþ1Þj; . . .; jxðTþ1Þkþ1j}

# bðTþ1Þðkþ1ÞM0

Yk
i¼0

Bi # M0

Yk
i¼0

Bi:
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Similarly, for ðT þ 1Þðk þ 1Þ þ 1 # j # ðT þ 1Þðk þ 2Þ;

jxjj # bj21M0

Yk
i¼0

Bi:

Thus

jxjj # bj21M0

Yk
i¼0

Bi # Bkþ1M0

Yk
i¼0

Bi ¼ M0

Ykþ1

i¼0

Bi;

for ðT þ 1Þðk þ 1Þ þ 1 # j # ðT þ 1Þðk þ 2Þ: The reference to the induction principle

completes the proof. A

Corollary 2.9 Assume that inequality (2.7) holds and lim
k!1

Qk
i¼0Bi ¼ 0; where Bi were

defined in equation (2.14). Then the zero solution of equation (2.1) is globally asymptotically

stable.

Example 2.10 Let us consider the following nonautonomous linear equation

xnþ1 ¼
kðnÞ þ 1

kðnÞ þ 2

Xn2kðnÞ

i¼0

aiðnÞxn2i; where kðnÞ ¼
n

l

h i
l; ð2:16Þ

l $ 1 is a fixed positive integer, [y] is the greatest integer not exceeding y, and aiðnÞ $ 0;

i ¼ 0; . . .; n2 kðnÞ;
Pn2kðnÞ

i¼0 aiðnÞ ¼ 1: Equation (2.16) can be written in the form (2.1) with

T ¼ l2 1; and

f ðn; u0; . . .; ul21Þ ¼
kðnÞ þ 1

kðnÞ þ 2

Xn2kðnÞ

i¼0

aiðnÞui; kðnÞ ¼
n

l

h i
l:

Thus inequality (2.7) holds with bn ¼ ðkðnÞ þ 1Þ=ðkðnÞ þ 2Þ; so that lim supn!1 bn ¼ 1

and Corollary 2.6 does not apply. Next, Bi ¼ ðliþ 1Þ=ðliþ 2Þ; and limk!1

Qk
i¼0Bi ¼ 0:

Hence, Corollary 2.9 ensures that equation (2.16) is asymptotically stable.

We notice that, in general, equation (2.16) is not exponentially stable. Indeed, take

an2kðnÞ ¼ 1; ai ¼ 0; i – n2 kðnÞ: Then equation (2.16) reads

xnþ1 ¼
kðnÞ þ 1

kðnÞ þ 2
xkðnÞ; kðnÞ ¼

n

l

h i
l: ð2:17Þ

It is not difficult to check that, for an arbitrary x0 [ R; the solution of equation (2.17) is

given by

xn ¼
Yk
i¼0

Bi

 !
x0; for lk þ 1 # n # ðlþ 1Þðk þ 1Þ:

Since
Qk

i¼0Bi $ 1=ðk þ 2Þ $ 1=ðnþ 2Þ; it is clear that equation (2.17) cannot be

exponentially stable.

While Corollary 2.6 is given in terms of the coefficients bn in equation (2.7), Corollary 2.9

requires the computation of the new coefficients Bk given in equation (2.14). Thus, a natural
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question arises: Does the conclusions of Corollary 2.9 remain valid if we replace Bi by bi?

The answer to this question is negative, as the following example shows:

Example 2.11 Consider the following equation

xnþ1 ¼
3 þ ð21Þn

4
xn21; n ¼ 0; 1; . . . ð2:18Þ

It is clear that the zero solution of equation (2.18) is not asymptotically stable, since, for

every initial data ðx21; x0Þ; we have x2kþ1 ¼ x21 for all k $ 0: Notice that inequality (2.7)

holds with bn ¼ ð3 þ ð21ÞnÞ=4 and hence,

lim
k!1

Yk
i¼0

bi ¼ lim
k!1

22½ðkþ1Þ=2� ¼ 0:

On the other hand, Bk ¼ 1 for all k $ 0; and therefore limk!1

Qk
i¼0Bi ¼ 1 – 0:

3. Monotonicity arguments

As it was noticed above, one of the interesting features of Theorem 2.3 is that it gives us the

possibility to choose the most appropriate set of indices for each particular linear difference

equation in order to ensure the exponential stability (see, e.g. [2, Example 3]). In this section,

we show that the results from [17,19], based on monotonicity arguments, provide another

way to obtain different stability conditions. We recall Theorem 1.4 in [17]

Theorem 3.1 [17, Theorem 1.4] Suppose that there exist b . 0 and m [ ð0; 1Þ such that

equation (2.3) holds and

mþ
XN
k¼1

aþk m
2k # 1 2 a0; ð3:1Þ

b ,
XN
k¼0

ak: ð3:2Þ

Then, the zero solution of equation

xnþ1 2 xn ¼ 2
XN
k¼0

akxn2k þ f ðn; xn; . . .; xn2T Þ ð3:3Þ

is globally exponentially stable.

Remark 3.2 A version of Theorem 3.1 valid to obtain the global asymptotic stability of

equation (2.6) (with variable coefficients in the linear part) can be found in [19]. (Notice that

for a linear equation with constant coefficients the asymptotic stability is equivalent to the

exponential stability).

Let us consider the linear equation with constant coefficients (1.1). Arguing as in Corollary

2.4, we have the following consequence of Theorem 3.1
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Corollary 3.3 Assume there exist a set of indices I , {1; 2; . . .;N} and a constant

m [ ð0; 1Þ such that

mþ
X
k[I

aþk m
2k # 1 2 a0; ð3:4Þ

and

0 ,
X
k[J

jakj ,
X
k[I0

ak; ð3:5Þ

where J ¼ {1; 2; . . .;N}n I and I0 ¼ {0} < I: Then equation (1.1) is exponentially stable.

Remark 3.4 If
P

k[J jakj ¼ 0; that is, when I ¼ {1; 2; . . .;N}; the conclusion of Corollary

3.3 still holds if
P

k[I0
ak . 0 and ai , 0 for some i [ I.

Corollary 3.3 complements Corollary 10 in [2], providing a new set of stability conditions

for equation (1.1). We illustrate this fact by considering the equation with two delays

xnþ1 2 xn ¼ 2a0xn 2 a1xn2p 2 a2xn2q; ð3:6Þ

with p . 0; q . 0:

In order to simplify condition (3.1), we will use the following result, which follows easily

from Proposition 3 in [11].

Proposition 3.5 Condition (3.1) holds for equation

xnþ1 2 xn ¼ 2a0xn 2 akxn2k;

where k $ 1 is an integer, if

21

k
# a0 , 1 and 0 , ak # ð1 2 a0Þ

kþ1 k k

ðk þ 1Þkþ1
:

Using Proposition 3.5, and considering the different possibilities for the set I in Corollary

3.3, we have the following result.

Corollary 3.6 Assume that a0 , 1 and at least one of the following conditions holds:

(a) ja1j þ ja2j , a0;

(b) ja1j , a0 þ a2; qa0 $ 21 and 0 , a2 # ð1 2 a0Þ
qþ1qqðqþ 1Þ2ðqþ1Þ;

(c) ja2j , a0 þ a1; pa0 $ 21 and 0 , a1 # ð1 2 a0Þ
pþ1ppðpþ 1Þ2ðpþ1Þ;

(d) a0 þ a1 þ a2 . 0 and there exists m [ ð0; 1Þ such that

mþ aþ1 m
2p þ aþ2 m

2q # 1 2 a0; ð3:7Þ

with a1 . 0 or a2 . 0.

Then equation (3.6) is exponentially stable.
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Example 3.7 Consider equation (3.6) with a0 ¼ a1 ¼ 1=2; i.e.

xnþ1 ¼
xn 2 xn2p

2
2 a2xn2q: ð3:8Þ

If a2 . 0; Corollary 13 in [2] does not apply. However, an application of Corollary 3.6 (b)

gives the exponential stability for small enough a2, namely, for a2 , qqð2 þ 2qÞ2q21:

Now, for the nonautonomous equation (2.6), we have the following result.

Corollary 3.8 Suppose there exist constants b, c0, c1,. . .,cN and m [ ð0; 1Þ; such that

inequality (2.3) holds and

mþ
XN
k¼1

cþk m
2k # 1 2 c0; ð3:9Þ

lim sup
n!1

XN
k¼0

jck 2 akðnÞj þ b ,
XN
k¼0

ck: ð3:10Þ

Then, the zero solution of equation (2.6) is globally exponentially stable.

Proof. Without loss of generality we may assume

XN
k¼0

jck 2 akðnÞj þ b ,
XN
k¼0

ck; n $ 0

(otherwise, we shift the initial point). Equation (2.6) can be rewritten as

xnþ1 2 xn ¼ 2
XN
k¼0

ckxn2k þ
XN
k¼0

½ck 2 akðnÞ�xn2k þ f ðn; xn; . . .; xn2T Þ:

Applying Theorem 3.1, with f and b replaced, respectively, by

gðn; u0; . . .; uT Þ ¼
XN
k¼0

½ck 2 akðnÞ�uk þ f ðn; u0; . . .; uT Þ;

B ¼ sup
n$0

XN
k¼0

jck 2 akðnÞj þ b;

completes the proof. A

Corollaries 3.3 and 3.8 imply the following result for the linear equation (2.5):

Corollary 3.9 Suppose there exist a set of indices I , {1; 2; . . .;N}; constants c0,. . .,cN,

and m [ ð0; 1Þ; such that

mþ
X
k[I

cþk m
2k # 1 2 c0; ð3:11Þ

lim sup
n!1

XN
k¼0

jck 2 akðnÞj þ
X
k[J

jckj ,
X
k[I0

ck; ð3:12Þ

where J ¼ {1; 2; . . .;N}n I; and I0 ¼ {0} < I:
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Then the zero solution of equation (2.5) is globally exponentially stable

.

Let us apply this result to the equation with two delays and nonconstant coefficients

xnþ1 2 xn ¼ 2a0xn 2 a1ðnÞxn2p 2 a2ðnÞxn2q: ð3:13Þ

Denote ci ¼ ð1=2Þ½supnaiðnÞ þ infnaiðnÞ�; di ¼ supnjaiðnÞ2 cij; i ¼ 1; 2:

Corollary 3.10 Assume that a0 , 1 and at least one of the following conditions holds:

(a) jc1j þ jc2j þ jd1j þ jd2j , a0;

(b) jc1j þ jd1j þ jd2j , a0 þ c2; qa0 $ 21 and 0 , c2 # ð1 2 a0Þ
qþ1qqðqþ 1Þ2ðqþ1Þ;

(c) jc2j þ jd1j þ jd2j , a0 þ c1; pa0 $ 21 and 0 , c1 # ð1 2 a0Þ
pþ1ppðpþ 1Þ2ðpþ1Þ;

(d) jd1j þ jd2j , a0 þ c1 þ c2 and there exists m [ ð0; 1Þ such that

mþ cþ1 m
2p þ cþ2 m

2q # 1 2 a0; ð3:14Þ

with c1 . 0 or c2 . 0:

Then equation (3.13) is exponentially stable.

Example 3.11 Consider the equation

xnþ1 2 xn ¼
1

2
xn 2

1

2
þ b1 cos n

� �
xn2p 2 ða2 þ b2 sin nÞxn2q: ð3:15Þ

Let us apply Corollary 3.10(b). Here c1 ¼ ð1=2Þ; c2 ¼ a2; d1 ¼ jb1j; d2 ¼ jb2j: Hence, if

jb1j þ jb2j , a2 ,
qq

ð2 þ 2qÞqþ1
;

then equation (3.15) is exponentially stable. This result also cannot be obtained by the

methods in [2,17].

4. An example in macroeconomics

In this section, we consider a generalization of the multiplier–accelerator model for the

national income determination proposed by Samuelson [6, section 5.1]. Assuming that the

autonomous investment is a constant G, the model is given by the second order difference

equation

ynþ1 2 bð1 þ kÞyn þ bkyn21 ¼ G; ð4:1Þ

where b [ ð0; 1Þ is the propensity to consume, and k is the acceleration coefficient.

For a general discussion, historical remarks, and recent results on model (4.1) and other

related multiplier–accelerator models, we refer the reader to [21, Section 5.1].

Equation (4.1) is a linear (nonhomogeneous) equation of the second order. It is well known

that the unique equilibrium y* ¼ G=ð1 2 bÞ is asymptotically stable if and only if bk , 1:
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In order to have a more realistic model, it is natural to assume that the investment depends

on the national income in the previous years. Thus, we have a nonlinear equation

ynþ1 2 bð1 þ kÞyn þ bkyn21 ¼ Gðyn; yn21Þ: ð4:2Þ

We assume some hypotheses on function G defined in Rþ £ Rþ: First, we suppose that

there exists a unique equilibrium y* of equation (4.2), which is the solution of the nonlinear

equation y* ¼ Gðy*; y*Þ=ð1 2 bÞ: We will also assume that G is differentiable and

R ¼ sup
›G

›x
ðx; yÞ

����
����þ ›G

›y
ðx; yÞ

����
���� : x $ 0; y $ 0

� �
, þ1:

For example, if Gðx; yÞ ¼ r lnðpþ lðxþ yÞÞ for some constants r . 0; l . 0 and p . 1;

then we have R ¼ 2rl=p:

The change of variables xn ¼ yn 2 y* transforms equation (4.2) into

xnþ1 2 bð1 þ kÞxn þ bkxn21 ¼ Fðxn; xn21Þ; ð4:3Þ

where Fðx; yÞ ¼ G ðxþ y*; yþ y*Þ2 G ðy*; y*Þ: Obviously, the exponential stability of the

equilibrium y* of equation (4.2) is equivalent to the exponential stability of the zero solution

for equation (4.3). Next, the mean value theorem gives the relation

jFðx; yÞj # Rmax {jxj; jyj};

whenever xþ y* $ 0; yþ y* $ 0: Thus, we can apply our results to get sufficient conditions

to ensure that all solutions of equation (4.2) converge exponentially to the positive

equilibrium. We have the following consequence of Theorems 2.1 and 3.1:

Proposition 4.1 Under the assumptions made for function G, the equilibrium y* of

equation (4.2) is exponentially stable if at least one of the following conditions holds:

(A1) 0 # R , 1 2 ð2k þ 1Þb; b , 1=ð2k þ 1Þ:

(A2) 0 # R , 1 2 b and b $ 4k=ð1 þ kÞ2:

Proof. Assume that (A1) holds. Equation (4.3) can be written in the form (2.1) with

f ðn; u0; u1Þ ¼ bð1 þ kÞu0 2 bku1 þ Fðu0; u1Þ: Thus, condition (2.3) is fulfilled with b ¼

ð2k þ 1Þbþ R , 1: The result follows from Theorem 2.1. Next, assume that (A2) is

satisfied. In this case, we write equation (4.3) as equation (3.3) with a0 ¼ 1 2 bð1 þ kÞ;

a1 ¼ bk and f ðn; u0; u1Þ ¼ Fðu0; u1Þ: By Proposition 3.5, condition (3.1) holds for some

m [ ð0; 1Þ if 0 , 1 2 a0 # 2 and ð1 2 a0Þ
2 $ 4a1; i.e. for 1 . b $ 4k=ð1 þ kÞ2: Finally,

condition (3.2) holds for R , a0 þ a1 ¼ 1 2 b; and therefore the result follows from

Theorem 3.1. A

Hence, we can conclude that the equilibrium is globally exponentially stable for

sufficiently small R in the region of the plane of parameters (k,b) defined by the relations

1 . b $ 4k=ð1 þ kÞ2 and 0 , b , 1=ð2k þ 1Þ , 1: In figure 1, we represent such a region.

The dashed line delimits the corresponding region for which the linear model (4.1) is

exponentially stable.
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Remark 4.2 Proposition 4.1 shows that the theoretical methods presented in Sections 2 and

3 are complementary. Indeed, the stability region for the nonlinear model (4.2) consists of

two parts; for small b, the Halanay-type result Theorem 2.1 ensures the global stability for

small R, whereas for b close to 1, such a result does not apply and Theorem 3.1, based on

monotonicity arguments, is needed.
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