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We investigate a method of chaos control in which intervention is proportional to the difference
between the current state and a fixed value. We prove that this method allows to stabilize the
most usual one-dimensional maps used in discrete-time models of population dynamics about a
globally stable positive equilibrium. From the point of view of targeting, this technique is very
flexible, and we show how to choose the control parameter values to lead the system towards
the desired target. Another important feature of this control scheme in the ecological context
is that it can be designed to prevent the risk of extinction in models with the so-called Allee
effect. We provide a useful geometrical interpretation, and give some examples to illustrate our

theoretical results.
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1. Introduction

Control strategies aiming to stabilize chaotic sys-
tems about fixed points or periodic orbits should
exhibit a number of good features. To list some of
them, the method should be easy to implement,
the control action should not be too strong, and
the controlled system should drive most solutions
to the stabilized equilibrium or periodic orbit. Such
properties have been discussed for several methods
of control; for example, for the proportional feed-
back method (PF) [Giiémez & Matias, 1993; Liz,
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2010a; Braverman & Liz, 2012; Carmona & Franco,
2011], and for the prediction-based control (PBC)
[de Sousa Vieira & Lichtenberg, 1996; Ushio &
Yamamoto, 1999; Polyak, 2005; Liz & Franco,
2010]. Depending on the related problem, some
other aspects are of special interest; for example,
if the method is applied in the context of popula-
tion dynamics, one can seek to stabilize the system
about a high population level (e.g. in exploited pop-
ulations), or to a low population level (e.g. in the
control of plagues). Another important aspect in the
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framework of population control is trying to avoid
the risk of extinction, in particular, preventing the
so-called Allee effects, which are defined as a decline
in individual fitness at low population size, and can
result in critical thresholds below which populations
crash to extinction [Courchamp et al., 2008|. For a
further discussion about the role of chaos control in
ecology, see [Solé et al., 1999].

Let us consider a simple one-dimensional differ-
ence equation

Tny1 = [(2n), (1)

where f : I — I is a continuous function defined
on a real interval I. This equation generates a sim-
ple discrete dynamical system, whose orbits are the
solutions of (1), that is, sequences {zp}n>0 con-
structed by recurrence using (1), starting at some
initial condition xy € I. The above mentioned
control methods are based on the introduction of
an external parameter, which can be controlled to
some extent. For example, methods based on pro-
portional feedback consist in adding or removing a
percentage v of the state variable, while in PBC
methods, the control is proportional to the differ-
ence between the current state x,, and a prediction
of a future state f*(x,), where f* denotes, as usual,
the kth iteration of f.

If we want to improve the features of control
techniques, a good approach is considering methods
depending on more than one parameter, in such a
way that a kind of optimal control (depending on
the desired goal) can be determined by a clever com-
bination of those parameters. A recent attempt in
this direction is the target-oriented control (TOC)
introduced in [Dattani et al., 2011] in the context of
population dynamics governed by (1). The control
method writes

Tpy1 = flan +c(T — )
= f(cT + (1 = c)xy). (2)

Notice that two new parameters were added to the
equation; in [Dattani et al., 2011], ¢ is called the
control and T is referred to as the target. As noticed
in [Dattani et al., 2011], if we fix T" = 0, then the
control scheme (2) becomes the usual PF control
method. For T" # 0, it can be seen as a combination
of the PF method and the modified constant feed-
back method (MCF) introduced in [Wieland, 2002].
An important observation is that, when T is chosen
as an equilibrium of (1), then 7 is an equilibrium
of (2) for every value of ¢; thus, an equilibrium of the

uncontrolled equation can be stabilized using (2).
This is a common property with the PBC method
and the delayed feedback control (DFC) introduced
by Pyragas [1992]. A comparison between TOC
and PBC methods can be found in [Dattani et al.,
2011].

We show that when 7' is different from the equi-
librium, the TOC method becomes a powerful tool
from the point of view of targeting since we are able
to explain the response of the system to control, in
such a way that appropriate parameter values can
be chosen depending on the pursued goal. In partic-
ular, we provide rigorous proofs of some numerical
observations given in [Dattani et al., 2011] in this
direction.

Another important remark is that, if the range
of values of ¢ is restricted to the interval [0, 1], and
T € I, where [ is the domain of definition of f, it is
ensured that, for each xg € I, there is a unique
solution {x,} of (2) defined for all n > 0. The
reason is that ¢I' + (1 — ¢)x, is a convex combi-
nation of x,, and 7. In the context of population
dynamics, this is a very important issue because it
ensures that a permanent system remains perma-
nent after control. Values of ¢ greater than 1 can
induce catastrophe bifurcations, driving the popula-
tion to a sudden extinction in many cases; see Fig. 1
in [Dattani et al., 2011]. Thus, we will restrict our
study to ¢ € [0,1] and T' € 1.

The paper is organized as follows: in Sec. 2,
we introduce a modified target-oriented control
method (MTOC), which has interest in itself and,
besides, it will help to investigate the TOC method.
In Sec. 3, we provide a geometric interpretation of
the equilibria of both TOC and MTOC methods,
and prove a result of stabilization. Section 4 is
focused on unimodal maps with a unique positive
equilibrium; we prove a result of global stabiliza-
tion, and discuss how the size of the stabilized equi-
libria changes when control is applied, depending on
the two parameter values. Section 5 is devoted to
unimodal maps modeling populations that undergo
the so-called Allee effect; we show that the control
methods discussed here allow us to both stabilize
the system and prevent extinction. Finally, we sum-
marize our conclusions and suggest some directions
for future research in Sec. 6.

2. A Modified TOC Method

Let us notice that scheme (2) assumes that the
control acts before the dynamical system; in the
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context of population dynamics, this means that
control intervention is applied before reproduction
[Dattani et al., 2011]. If we assume, on the contrary,
that intervention occurs after reproduction, a mod-
ified target-oriented control method (MTOC) can
be considered in the form

Ynt+1 = f(yn) + (T — f(yn))

=T+ (1= ¢)f(yn)- (3)

Let us fix a value of T' € I. Denoting ¢.(x) =
cT + (1 — ¢)z, it is clear that the change of vari-
ables v, = ¢c(xy,) transforms (2) into (3). This
means that both difference equations are topolog-
ically conjugate. Indeed, if we denote by g.(x) :=
f(¢c(z)) and G.(z) = ¢o(f(x)) the maps defin-
ing the right-hand side of (2) and (3), respectively,
then the relationship ¢. o g. = G. o ¢. holds. This
fact implies that Egs. (2) and (3) share the same
dynamics from a topological point of view (see,
e.g. [Alligood et al., 1996, Section 3.3]). For exam-
ple, ¢. maps orbits of (2) to orbits of (3), and
O = {z1,...,zp} is a p-periodic orbit of (2) if and
only if ¢.(O) = {¢pc(z1), ..., ¢c(xp)} is a p-periodic
orbit of (3); moreover, if f is differentiable then the
multipliers coincide and therefore the stability prop-
erties of O and ¢.(O) are the same. In particular, K.
is an equilibrium of (2) if and only if P, = ¢.(K,) is
an equilibrium of (3), and they have the same stabil-
ity properties. The following relationship between
K. and P. will be useful:

K. = g(Kc) - f(¢c<Kc>) - f(Pc> <4>

Finally, we notice that P, is globally asymptotically
stable for (3) if and only if K. = f(P.) is globally
asymptotically stable for (2).

3. Equilibria

It is easy to provide a geometric interpretation of
the equilibria of (2) and (3), and how they change as
c ranges from 0 to 1, for a fixed value of T'. Since in
this paper we will have in mind population models,
we will assume the following condition holds:

(A1) f:1]0,b] — [0,b] (b= oo is allowed) is contin-
uously differentiable, f(0) = 0, and f(z) >0
for all z € (0,b).

In most usual models from population dynamics,
(A1) holds for maps defined on [0,00) such as the
Ricker map f(z) = 2”7 7 > 0, and the gen-
eralized Beverton—Holt map f(x) = rz/(1 + z7),
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r > 0,7 > 0. In other cases, such as the quadratic
function f(z) = rz(1l — x), r € (0,4], the map is
defined on a compact interval [0, 1].

A positive real number P. is an equilibrium
of (3) if it satisfies

P.—cT
1—c
(5)
Thus, if ¢ € [0,1), the equilibria of (3) are given

by the intersections between the graph of f and
the line

Pc:CT+(1_C>f<Pc) <~ f(Pc):

x—cl
1—c

y= (6)
In the limit case ¢ = 1, the line is defined by
x = T. Notice the line (6) has slope 1/(1 — ¢), and
passes through the point (7, T'). Thus, the fam-
ily of lines whose intersection with the graph of
f give the positive equilibria of (3) are obtained
by rotating continuously a line passing through the
point (T, T) from the line y = = to the vertical line
x =T. For each ¢ € (0,1), the positive equilibria P,
of (3) are given by the projection over the horizon-
tal axis of the intersection points of f with the line
defined by (6).

Now it follows from (4) that if P. is a positive
equilibrium of (3), then K. = f(P.) is a correspond-
ing equilibrium point of (2). This means that the
positive equilibria of (2) are the projection over the
vertical axis of the intersection points of f with
the line defined by (6). In Figs. 1 and 2, we show
how to visualize the equilibria of (2) and (3) for a
unimodal map with a unique positive equilibrium
K in cases T' > K and T < K, respectively.

An interesting remark is that, under some mild
assumptions, both (2) and (3) have at least a
positive equilibrium, and it becomes asymptotically
stable if a sufficiently strong control is implemented.
In view of the previous discussion, it is enough to
consider the MTOC method.

Lemma 1. Assume that (A1) holds and there exists
a positive constant M such that f(x) < x for all
x> M. Let T € (0,b] be arbitrarily fized, and define

B =max{M, T}, C= max {|f(z)]}.
z€[0,B]
Then there exists at least an equilibrium P, of (3)

in (0,B] for every ¢ € (0,1). Moreover, P, is
asymptotically stable for all c € (1 —1/C,1).
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Fig. 1. Representation of a unimodal map f with a positive
fixed point K. The fixed points K¢ of the TOC method (2)
with 7" > K are a decreasing function of ¢, and take values
between Ko = K and K; = f(T). For the MTOC method
(3), the fixed points are an increasing function of ¢, ranging
between Py = K and P, =T.

AT

Fig. 2. Representation of a unimodal map f with a positive
fixed point K. The fixed points K¢ of the TOC method (2)
with 7' < d < K are a unimodal function of ¢, first increasing
between Ko = K and f(d), and then decreasing from f(d)
to K1 = f(T). For the MTOC method (3), the fixed points
are a decreasing function of ¢, ranging between Py = K and
P =T.

Proof. Recall that the equilibria of (3) are the fixed
points of G.(z) = ¢.(f(z)) = T + (1 — ¢)f(z).
Assume that ¢ € (0, 1). Notice that G.(0) = ¢T" > 0
and

G.(B)=cT'+(1-¢)f(B)<¢B+(1—-¢)B=B.

Thus, either G.(B) = B or there is a fixed point of
G. in (0, B).

Finally, from the definition of C| it is clear that
if P. € [0,B] is an equilibrium of (3) then, for all
ce(1-1/C,1),

GL(P)l = (1= olf (P)| < (1-¢)C <1,

implying that P. is asymptotically stable. W

In the following sections, we provide much sharper
stability results for some classes of maps usually
employed in population dynamics.

4. Overcompensatory Models

In this section, we consider maps f satisfying the
following assumptions, besides (A1):

(A2) f hasonly two non-negative fixed points z = 0
and z = K >0, f(x) >z for 0 < z < K, and
f(z) <z for x> K.

(A3) f has a unique critical point d < K in such a
way that f'(z) > 0 for all z € (0,d), f'(x) <0
for all x > d, and f”(x) < 0 on (0,d).

The graph of a map satisfying (A1)—(A3) is a
so-called overcompensatory curve [Clark, 1990,
Chapter 7). This class of functions is often employed
in discrete-time population models, and it includes
the Ricker map, the Hassel map, and the gener-
alized Beverton—Holt map considered in [Dattani
et al., 2011], among others. For more discussions
about these assumptions, see [Liz, 2010a; Liz &
Franco, 2010].

For the PF method (that is, TOC with 7" = 0),
a result of global stabilization for maps satisfy-
ing (A1)-(A3) was proved in [Liz, 2010a]. We next
demonstrate how such result can be extended for
the general TOC and MTOC methods, with an
arbitrary T € (0, b).

Theorem 1. Assume that (A1)—(A3) hold, and let
us fir T € (0,b). Then both (2) and (3) have
a unique positive equilibrium for each ¢ € [0,1).
Moreover, there exists ¢1 € [0,1) such that the pos-
itive equilibria of (2) and (3) are asymptotically
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stable for all ¢ € (c1,1). If the following additional
assumption is required:

(A4) (Sf)(z) <0 for all x # d, where

-58-3(58)

is the Schwarzian derivative of f,

(5f) (=)

then the positive equilibria of (2) and (3) are glob-
ally asymptotically stable for all values of ¢ for
which they are locally asymptotically stable.

Proof. Based on the conjugacy relationship dis-
cussed in Sec. 2, it is enough to prove the result
for MTOC. We recall that (3) can be rewritten as

Yn+1 = GC(yn)v

where Ge(x) = ¢.(f(x)) =T + (1 —¢) f(z).

It follows from Lemma 1 that there is at least
a positive equilibrium of (3) for every ¢ € (0,1).

It is clear that G, satisfies (A3) for all ¢ € [0, 1)
because GL(z) = (1 — ¢)f'(z) and G/(z) = (1 —
¢)f"(z) for all x € [0,b]. Thus G, is concave and
increasing on (0,d), and decreasing on (d, b). These
properties imply that G. cannot have more than
one positive fixed point (otherwise, by the Mean
Value Theorem, there should be a point z, such
that G.(x4) =1 and G%(x,) > 0).

Applying Lemma 1 again, we know that there
is a value ¢; € (0,1) such that |GL(P.)| < 1 for all
¢ € (¢1,1), and hence P, is locally asymptotically
stable for ¢ > ¢;.

Next, since G, = ¢.of, and (S¢.)(x) = 0 for all
x € R, Theorem 2.1 in [Singer, 1978] ensures that
(SG.)(z) = (Sf)(x) < 0 for all z # d. Since G,
is unimodal, it follows that P. is globally asymp-
totically stable for all values of ¢ for which it is
locally asymptotically stable (see, e.g. [Liz et al.,
2003, Proposition 3.3]). W

Some remarks are in order.

Remark 4.1

e We recall that many usual maps employed in
discrete-time models of population dynamics sat-
isfy the technical assumption (A4); see, e.g.
[Singer, 1978; Schreiber, 2001; Thunberg, 2001].

e If 7" > 0 then the positive equilibrium K. of (2)
does exist for all values of ¢ € (0,1). This is
a difference with the limit case ' = 0 (PF

Chaos Control and Targeting

method), where the equilibrium only exists for
¢ € (¢1,1 —=1/f(0)). This means that if T > 0
and conditions (A1)—(A4) hold, then the TOC
method is not only stabilizing, but also, extinc-
tion is not possible if ¢ € (0, 1).

e Assuming that f/(K) < —1 [otherwise, K
is asymptotically stable for the uncontrolled
Eq. (1)], the positive equilibrium P, of (3)
becomes asymptotically stable after a period-
halving bifurcation when

(1—c)f' () =-1. (7)
Thus, in the statement of Theorem 1 we can

choose ¢; as the supremum of ¢ € (0,1) for
which (7) holds.

Although the dynamical properties of (2)
and (3) are equivalent, there is an important dif-
ference between them regarding the response to
control in the size of the stabilized equilibrium.
This fact has important implications when choos-
ing one of the two control methods either in the
management of exploited populations or in control
of plagues. From the geometric interpretation of the
equilibria of (3), it is clear that if (A2) and (A3) hold
then the equilibrium P, increases with c if T > K,
and decreases if 0 < T < K. Of course, if T' = K,
the equilibrium remains constant for any value of
¢ € 10,1]. See Figs. 1 and 2.

For the TOC method (2), the equilibrium K.
decreases with ¢ if T' > K, increases with ¢ if d <
T < K, and it is first increasing and then decreasing
if 0 <T < d. Notice that P. ranges monotonically
from Py = K to P, = T, while K. ranges from
Ky = K to K1 = f(T), but it does it in a monotone
way only if T' > d.

Based on the results of Theorem 1 and the pre-
vious discussion, we may generalize another feature
of the PF method stated in [Liz, 2010a] to the TOC
scheme. Indeed, if 0 < T < d then Eq. (1) can
be globally stabilized with (2) at about any value
between f(T) and f(d) = max{f(z) : x € (0,d)}.
See Fig. 2.

Next we illustrate our results with a case of
study.

Example 4.1. Consider the generalized Beverton—
Holt map
3z
o) =1

which is chaotic and satisfies (A1)—(A4). The global
maximum of f is attained at d ~ 0.76472, with a
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C
Fig. 3. Border of asymptotic stability for (2) and (3) in

the plane (¢, T') for the generalized Beverton—-Holt map
f(2) = 32/(1 +2°).

value of f(d) ~ 1.91181. The unique fixed point of
fis K = 2Y/6 ~ 1.12246.

From Theorem 1, we can ensure that, for each
T > 0andc € (0,1), the control schemes (2) and (3)
have a unique positive equilibrium, and that it is
globally stabilized for a sufficiently large value of the
control parameter c. In Fig. 3, we plot the border of
the asymptotic stability region for both methods in
the plane of parameters (¢,T), with ¢ € (0,1) and
T € (0,2). It reveals that the strength of the control
parameter ¢ necessary to stabilize the system should
be greater for intermediate values of T

A very important issue that one should take
into account before applying these control methods
is the size of the equilibrium about which the sys-
tem is stabilized. As shown in Fig. 4, the response
to control is very different for both methods and for
the different choices of the target parameter 1. As
discussed in this section, when MTOC is applied,
the size of the positive equilibrium is a monotone
function of ¢, decreasing if 7' < K, and increasing if
T > K. If T'= K then the equilibrium remains con-
stant for any value of c. The response is completely
different if the intervention takes place before repro-
duction. In this case, some counterintuitive effects
are observed. For example, if g < f(d), then a
value of T greater than f(d) means that population
is supplied at each intervention, but this results in
a decrease of the population size; this phenomenon

can be interpreted as a form of the paradox of
enrichment [Rosenzweig, 1971]. Conversely, low val-
ues of T' mean that part of the population is usually
removed when control is applied, but the response

0.0 0.2 0.4 0.6 0.8 1.0

» Stable \ ]
0.5+ \ J
\
\\\ }QO
N N . /
0.0 Cu L TR L L L
0.0 0.2 0.4 c 0.6 0.8 1.0
(b)
Fig. 4. (a) Representation of the positive equilibria of (2) for

different values of T in the plane (¢, K¢). (b) Representation
of the positive equilibria of (3) for different values of T in
the plane (¢, P:). In both cases, the solid line is defined by
Eq. (7), and represents the border of asymptotic stability. We
use the generalized Beverton-Holt map f(z) = 3z/(1 + z°).
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of the system is an increase in its size; this phe-
nomenon has been termed the hydra effect [Abrams,
2009; Liz & Ruiz-Herrera, 2012]. It is important to
notice that the geometric interpretation given in the
previous section allows us to know the effect of the
control intervention depending on the relative posi-
tion of the target parameter 1" with respect to the
natural equilibrium of the system and the critical
point at which the reproduction rate is maximum.
For example, if we use the TOC method, values of
T smaller than the critical value d allow to reach
the maximum production rate f(d); if we choose
T close to zero, then this value is attained with a
smaller control strength, but then the equilibrium
drops suddenly to very low values; however, a value
of T close to d requires a stronger control inter-
vention to stabilize the system about f(d), but this
strategy reduces the risk of leading the system to
undesired low values; compare the cases T' = 0.1
and T'= 0.75 in Fig. 4(a).

5. Models with Allee Effect

In the previous sections, we have shown that both
TOC and MTOC methods are a good tool to stabi-
lize a positive equilibrium in usual unimodal maps
with a unique positive equilibrium. Not only is
global asymptotic stability achieved, but also the
method is very flexible from the point of view of
targeting. However, Theorem 1 does not apply to
models with Allee effect. This effect is crucial in
conservation and management, and it is attracting
much interest in recent years [Courchamp et al.,
2008; Eskola & Parvinen, 2010]. Most usual control
methods fail to prevent Allee effects; for example,
the CF control method induces an Allee effect,
rather than preventing it [Parthasarathy & Sinha,
1995; Schreiber, 2001; Liz, 2010b]. On the other
hand, both PBC and PF methods are not suit-
able for this type of models (see [Liz, 2010a; Liz &
Franco, 2010]). Although Theorem 3 in [Carmona &
Franco, 2011] goes in this direction, its applicability
is limited.

In this section, we demonstrate that TOC offers
good chances to tackle the problem of control in
models with Allee effect, both avoiding this unde-
sirable effect, and stabilizing the system about a
positive equilibrium. Although we will restrict our
discussion to the TOC method, everything can be
easily applied to the MTOC method too.

Throughout this section, we will assume that
f satisfies (A1). Instead of (A2) and (A3), we will

Chaos Control and Targeting

require the following condition:

(A5) f has several non-negative fixed points 0 =
ko < K1 < -+ < K, and there is a unique
critical point d < kK, in such a way that
f'(z) > 0 for all z € (0,d), and f'(z) < O
for all x > d.

Our first result concerns the case T" > d.

Lemma 2. Assume that (A1) and (A5) hold. If
T > d then there exists co € (0,1) such that (2)
has a unique positive equilibrium for all ¢ € (cg,1).
Moreover, we can take

0= max {J{EB%;} (8)

Proof. First, let us notice that, since k., 1 < d <
Km, condition T' > d implies that f(z) < T for all
x € [0, Km—1]-

Having in mind the geometric interpretation of
the equilibria of (2), to ensure that there is only a
positive equilibrium, it is enough to prove that

x —cl
1—c’

flx) > Ve|0,km_1]

Since f(x)—T < 0, the previous inequality is equiv-
alent to

flx) —=
fla) =T"

that is to say ¢ > co. N

c > Ve [O,I{mfl],

Now we can state a theorem for models with
Allee effect.

Theorem 2. Assume that (A1) and (A5) hold, and
let us fix T € (d,b). Then there exists c3 € (0,1)
such that (2) has a unique positive equilibrium,
which is asymptotically stable for all ¢ € (c3,1).
Moreover, if (A4) holds, then the positive equilib-
rium is globally asymptotically stable for all values
of ¢ for which it is locally asymptotically stable.

Proof. 1t is enough to choose c3 = max{cy,ca},
where ¢ is the supremum of ¢ € (0, 1) for which (7)
holds, and ¢y was defined in (8). W

When T € [ky—1,d), it is still possible to pre-
vent the Allee effect and stabilize the system about
a globally stable positive equilibrium. In particu-
lar, if we choose T' = K;,,—1 and (Al), (A5) hold,
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then ky,—1 is an equilibrium of (2), and it is glob-
ally asymptotically stable for all ¢ € (e4,1), where
¢y = max{Mi, M}, and

i =sup { LT e o)
1
My=1-— 7.]”(,%1_1).

Indeed, it is easy to check that k,,_1 is the only
equilibrium of (2) if ¢ > Mj, and 0 < f/(kpm-1) < 1
for all ¢ > Ms. From these facts, and having in mind
that g.(z) = f(cT 4 (1 — ¢)x) is either increasing or
unimodal if T" < d, the global stability of x,,_1 for
¢ > cy4 follows.

Remark 5.1. The previous result makes a difference
with PBC method. It is easy to check that it is
impossible to stabilize a fixed point K of (1) using
the PBC scheme

Tni1 = ctn + (1 — ) f(zn)
if c€ (0,1) and f'(K) > 1.

Example 5.1. We illustrate the results in this sec-
tion using a generalization of the quadratic map
(see, e.g. [Clark, 1990; Boukal & Berec, 2002]). Con-
sider the map f : [0,1] — [0, 1] defined by

fla) =2

The map f has two positive fixed points 0 < k1 <
Ko given by

(1 — ). (9)

9-33

~ 0.1 :
K1 T 0.180858;
Ky = MT V33 0.819142.

See Fig. 5 for a graphic representation of f. The
fixed points are the intersections between the graph
of f and the line x = y.

It is easy to check that (A1) and (A5) hold. The
only critical point of f is d = 2/3, and f(2/3) = 1.
Hypothesis (A4) also holds, since

6(1 — 4z + 622)

(Sf)(z) = — (2= 32)222

which is negative for all z € (0,1], x # d.

Equation (1) with this function exhibits a
strong Allee effect, since f”(0) > 0 [Eskola &
Parvinen, 2010]; moreover, its dynamics is essential

Fig. 5. Representation of the map f defined in (9), which
exhibits a strong Allee effect. There are two positive fixed
points k1 = (9 —v/33)/18, ka = (94 +/33)/18, which are the
intersections between the graph of f and the line y = .

extinction, i.e. for a randomly chosen initial con-
dition, extinction occurs with probability one
[Schreiber, 2003].

We apply the control scheme (2) with two dif-
ferent choices of T: T'=d and T = k1.

In the first case, Theorem 2 can be applied to
prove that the controlled Eq. (2) has a globally
stable positive equilibrium for all ¢ > ¢3, where
c3 = max{cy, co}. In this case,

max JI®) =7 ~ 0.0652648,
0<a<ki | f(z) —d

and ¢ &~ 0.472728 is the value at which f/(K.,) =
—1, leading to a period-halving bifurcation. Thus,
c3 = c1. A bifurcation diagram is shown in Fig. 6.

Cy =

1.0
Xn [
0.8

0.6

04

02/

o

0.4 C 0.6 0.8 c 1.0

Fig. 6. Bifurcation diagram for the controlled equation
Zpt1 = f(T + (1 — ¢)zyn), where f is defined in (9), and
T = 2/3. A random initial condition was chosen for each
value of ¢ € (0,1). The dashed lines represent unstable equi-
libria. Notice that there is a unique positive equilibrium for
c > c2, and it is globally asymptotically stable for ¢ > ¢;.
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Fig. 7. Bifurcation diagram for the controlled equation
Tnt1 = f(T + (1 — ¢)zn), where f is defined in (9), and
T = k1 ~ 0.180858. A random initial condition was cho-
sen for each value of ¢ € (0,1). The dashed lines represent
unstable equilibria. As c¢ is increased, the system ranges from
essential extinction to bistability and then to global stability
of k1.

Notice that the system is stabilized about an equi-
librium greater than ko, reaching the maximum
value f(d) =1 at ¢ = 1.

Next we consider the case T' = k1. Accord-
ing to our discussion below Theorem 2, ki is an
equilibrium of (2) for all ¢ € (0,1), and it is glob-
ally asymptotically stable for all ¢ € (¢4,1), where
¢y = max{Mj, M5}, and

M —sup { HLZL o e ol ()
~ 0.531023;
My=1-— % ~ 0.437953.

Thus, ¢4 = M;. A bifurcation diagram is shown in
Fig. 7. Notice that the system is stabilized about
k1, for all ¢ > My, after a tangent bifurcation.

6. Discussion

In a recent paper, Dattani et al. suggested a method
for controlling chaos called target-oriented control
(TOC). This method is based on the introduction
of two external parameters ¢, 7', in such a way
that control interventions are proportional to the

Chaos Control and Targeting

difference between T' and the current state of the
system, with a control strength given by c. Dat-
tani et al. [2011] gave some numerical results using
one-dimensional maps from models of population
dynamics, and discussed how the method could be
implemented, and analyzed the relationship of TOC
with other control schemes.

Our aim in this paper was to provide some rig-
orous results on the ability of the method to convert
chaotic behavior into periodic orbits for a family
of one-dimensional maps usually employed in pop-
ulation dynamics. For unimodal maps with nega-
tive Schwarzian derivative, like the quadratic and
the Ricker maps, we proved that for each choice
of the parameter T the controlled equation has a
globally attracting positive equilibrium for ¢ large
enough (Theorem 1). The method proves to be not
only efficient to drive chaotic maps towards a sta-
ble equilibrium, but it is also flexible for target-
ing; that is, a suitable choice of T allows us to
carry the system into a desired objective. Moreover,
a geometric interpretation of the control given in
Sec. 2 is very helpful to choose the appropriate value
of T. In the context of population dynamics, the
TOC method involves interventions at each repro-
duction period, prior to breeding; we introduced a
modified TOC method (MTOC) which acts after
reproduction. Although both methods are topo-
logically conjugated (and so they share the same
stability properties), the size of the stable equilib-
rium attained after control is different. We have
explained how the equilibrium varies depending on
the method and the parameter T, increasing in this
way the flexibility of control to reach the desired size
of the population (a low size in control of plagues or
a high size if our aim is to increase production in an
exploited population). An interesting remark is that
some counterintuitive effects appear if control acts
before reproduction; these paradoxical phenomena
include the so-called hydra effect (an increase in
population size in response to an increasing mortal-
ity [Abrams, 2009; Liz & Ruiz-Herrera, 2012]), and
a form of the paradox of enrichment [Rosenzweig,
1971].

It is worth emphasizing that both TOC and
MTOC methods can be considered as a general-
ization of the proportional feedback (PF) control
(obtained for 7' = 0). Since the PF method is still
used as a model in ecology (see, e.g. [Yakubu et al.,
2011] and its references), the methods investigated
in the present paper may provide a new framework
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for control programs in which population can be
either reduced or increased through external inter-
ventions. In this regard, we showed in Sec. 5 that
TOC and MTOC methods work well in population
models exhibiting the Allee effect, both avoiding
this effect and stabilizing the system about a pos-
itive equilibrium. We recall that Allee effects can
lead to threshold population densities, below which
the population growth is negative, making extinc-
tion possible; the most usual cause of Allee effects
is the difficulty of finding mates at low population
sizes. There has been an increasing interest in the
study of these effects in recent years (see [Eskola &
Parvinen, 2010] and references therein).

We point out that prevention of extinction is
one of the main motivations for chaos control in
ecology [Hilker & Westerhoff, 2007]. Sometimes,
disappearances might occur after transient chaos
[Schreiber, 2003]; control of transient chaos in ecol-
ogy is therefore an important issue that has been
addressed in a variety of works, e.g. [Dhamala &
Lai, 1999; Shulenburger et al., 1999]. For new
interesting control strategies in this direction, see
[Sabuco et al., 2010].

Finally, we feel that this paper is only a first
step in making a rigorous study of the properties of
TOC and MTOC methods in chaos control prob-
lems. An interesting direction for further research
is the application of these control techniques to dis-
crete maps of dimension higher than one, such as
the Hénon map [Hénon, 1976]. From the point of
view of applications in population control, we find it
is relevant to study how these methods work when a
pulse strategy of interventions is used (generalizing
in this way recent work for the PF control [Braver-
man & Liz, 2012]), and how robust are the meth-
ods in the presence of environmental noise; for some
comments in this direction, see the supplementary
material to [Dattani et al., 2011].
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