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Abstract. We find the exact region of global stability for the 2-periodic Ricker difference
equation, showing that a 2-periodic solution is globally asymptotically stable whenever
it is locally asymptotically stable and the equation does not have more 2-periodic solu-
tions. We conjecture that this property holds for the general p-periodic Ricker difference
equation, and in particular we prove it for p = 3.
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1 Introduction

A basic question in the qualitative theory of dynamical systems is “under what conditions does
local asymptotic stability of a fixed point imply its global asymptotic stability (LAS implies GAS)".
One paradigmatic example from population dynamics is the Ricker map f (x) = xer−x, r > 0.
It is well-known that condition r ∈ (0, 2] is necessary and sufficient for the local asymptotic
stability of the positive equilibrium K = r, and that this condition actually implies the global
stability of K on (0, ∞), that is, if 0 < r ≤ 2 then all solutions of the difference equation
xn+1 = f (xn) starting at an initial condition x0 > 0 converge to K. This statement was first
established by May and Oster [7] using a graphical analysis, and an analytic proof can be
derived from Singer [12]. The result has been extended in [6] to the generalized form of the
Ricker map as derived in Thieme’s book [13]: the positive equilibrium K = r of the map
f (x) = qx + (1− q)xer−x is globally stable whenever it is asymptotically stable (that is, for
0 < (1− q)r ≤ 2).

Two generalizations of the one-dimensional Ricker model have already been suggested in
the pioneering papers of May and co-authors.

On the one hand, Levin and May (1976) argue in their paper [5] that density-dependent
mechanisms may operate with an explicit time delay, and this leads to the delayed Ricker map

xn+1 = xner−xn−T , (1.1)
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where T ≥ 1 is an integer. They suggest that the folklore statement LAS implies GAS also
holds for the positive equilibrium K = r of (1.1).

On the other hand, May and Oster (1976) state in their paper [7] that their graphical
method can be extended to the case where the parameter r is a periodic function: rn = rn+p,
for an integer p ≥ 2. This leads to the periodic Ricker map

xn+1 = xn ern−xn := fn(xn), n = 1, 2, . . . (1.2)

where rn > 0 and rn+p = rn for all n ≥ 1. In this case, one can consider the period map
Fp = fp ◦ fp−1 ◦ · · · ◦ f1, and investigate under which conditions the local stability of a positive
fixed point of Fp implies its global stability. This is equivalent to say that (1.2) has a globally
asymptotically stable p-periodic solution.

For equation (1.1), the conjecture on the global stability remained as an open problem for
years, and it has been recently proved in the 2-dimensional case (T = 1) by Bartha, Garab and
Krisztin [1]. An alternative proof was later given by Franco and Perán [8]. The condition for
local (and global) asymptotical stability of the positive equilibrium K = r in (1.1) is 0 < r ≤ 1
in the case T = 1, while the case T > 1 is still an open problem.

In this paper, we consider the conjecture for equation (1.2). Sacker [10] proved that if
rn ∈ (0, 2) for all n = 1, 2, . . . , p, then (1.2) has a globally asymptotically stable p-periodic
solution. This is a very nice result but, as noticed in [11], this condition is not sharp even
for the 2-periodic case. Elaydi et al. [2] carried out a bifurcation analysis of (1.2) in the case
p = 2, showing the bifurcation curves at which an equilibrium of the period map undergoes a
period-doubling or a saddle-node bifurcation. For some results on a general nonautonomous
Ricker map, we refer the reader to Hüls and Pötzsche [4].

We prove that a unique asymptotically stable positive fixed point of the period map F2

for the 2-periodic Ricker equation (1.2) is globally stable, and conjecture that the same result
remains true for a general p ≥ 3. In particular, we sketch the proof for p = 3. In the 2-periodic
case, we find the exact region of global stability in the parameter plane (r1, r2), which of course
contains the square (0, 2)× (0, 2) given in [10].

Our main tools are a generalization of the so-called Singer’s theorem [12] established by
El-Morshedy and Jiménez-López [3], and some ideas from the paper by Rodriguez [9], who
studied the dynamics of the composition of two Ricker maps in the context of discrete models
for seasonal populations.

2 LAS implies GAS for the 2-periodic Ricker map

We recall some basic properties of the maps fn : [0, ∞)→ [0, ∞) defined in (1.2).

(I) fn is unimodal with a unique critical point x = 1, at which it reaches its global maximum.

(II) (S fn)(x) = (−1/2)(2 + (x − 2)2)/(x − 1)2 < 0 for all x 6= 1, where (S fn)(x) is the
Schwarzian derivative of fn.

As we have mentioned in the introduction, it is clear that p-periodic solutions of equation
(1.2) correspond to fixed points of the period map Fp = fp ◦ fp−1 ◦ · · · ◦ f1. From property
(II) above, it follows using the formula for the Schwarzian derivative of the composition that
(SFp(x)) < 0 whenever F′p(x) 6= 0.

Definition 2.1. We say that a unique fixed point K of Fp is globally stable if it is locally
asymptotically stable and limn→∞ Fn

p (x) = K for all x > 0.
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It is clear that if K is globally stable then the p-cycle {K, f1(K), . . . , fp−1(K)} defines a
globally asymptotically stable p-periodic solution of (1.2).

It follows from Singer’s results [12] that if a unimodal map with negative Schwarzian
derivative has a unique fixed point K which is locally asymptotically stable, then K is globally
stable. We use the following generalization of this result from [3].

Proposition 2.2 ([3, Corollary 2.9]). Let a ≥ 0 and b > a (b = ∞ is allowed), and let g : (a, b) →
[a, b] be a continuous map with a unique fixed point K such that (g(x)− x)(x−K) < 0 for all x 6= K.
Assume that there are points a ≤ c < K < d ≤ b such that the restriction of g to (c, d) has at most
one turning point, and (whenever it makes sense) g(x) ≤ g(c) for every x ≤ c, and g(x) ≥ g(d) for
every x ≥ d. If g is decreasing at K, assume additionally that (Sg)(x) < 0 for all x ∈ (c, d) except at
most one critical point of g, and −1 ≤ g′(K) < 0. Then K is globally stable.

Now we are in a position to state and prove our main result.

Theorem 2.3. Assume that the period map F2 = f2 ◦ f1 has a unique fixed point K on (0, ∞). Then K
is globally stable if it is locally asymptotically stable, that is, if −1 ≤ F′2(K) < 1.

Proof. The map F2 can have either 1 or 3 critical points. Actually, if r1 ≤ 1 then F2 is unimodal;
in this case, the result follows from Singer’s theorem. Thus we assume that r1 > 1 and
hence f1(1) = er1−1 > 1. In this situation, there are two points 0 < q1 < 1 < q2 such that
f1(q1) = f1(q2) = 1 (see Figure 2.1 (a)). Then the map F2 has two local maxima at q1 and q2,
with F2(q1) = F2(q2) = f2(1) = er2−1, and one local minimum at 1 (see Figure 2.1 (b), (c)).

Now we use Proposition 2.2 to deal with the non-unimodal case. We can assume that
qi 6= K for i = 1, 2, because in that case K is obviously a global attractor. There are two
possibilities.

Case 1. The map F2 is decreasing on (K, ∞) (see Figure 2.1 (b)). Then we choose a = 0, c = q2

and b = d = ∞; since the conditions of Proposition 2.2 clearly hold, K is globally stable if it is
locally asymptotically stable.

Case 2. The map F2 reaches at least one local maximum on (K, ∞) (see Figure 2.1 (c)). Then
we choose a = 0, c = 0 if q1 > K, c = q1 if q1 < K, and b = d = q, where q is the first point of
local maximum greater than K. It is clear that the interval I = [0, b] is invariant and attracting
for F2, and therefore we can restrict F2 to I. Again, the conditions of Proposition 2.2 clearly
hold, and we conclude that K is globally stable if it is locally asymptotically stable.
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Figure 2.1: (a): Representation of the curves y = f1(x), y = x and y = 1; (b) and (c): two
possibilities for the period map F2.
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Remark 2.4. It is easy to verify that if ri ≤ 1 for i = 1, 2, . . . , p − 1, then the period map
Fp = fp ◦ fp−1 ◦ · · · ◦ f1 is unimodal and therefore the statement of Theorem 2.3 is still valid in
this situation. We conjecture that Theorem 2.3 is true for an arbitrary integer p ≥ 2. Actually,
we sketch the proof for p = 3 in Section 4; our simulations do not show more complicated
situations in the general case, but we do not have a proof of it.

3 Region of global stability for the 2-periodic Ricker map

Theorem 2.3 allows us to give a precise region for the global stability of (1.2) in the case p = 2.
First we establish when F2 has exactly one fixed point. The proof of the following result can
be derived from the formula given for a more general case in [9, Appendix].

Proposition 3.1. The map F2 has more than one fixed point if and only if r > 4 and

N2

(
1 + er1−N2

)
≤ r ≤ N1

(
1 + er1−N1

)
, (3.1)

where

N1 =
r−
√

r2 − 4r
2

, N2 =
r +
√

r2 − 4r
2

, r = r1 + r2.

Condition (3.1) divides the set of admissible parameters {(r1, r2) : r1 > 0, r2 > 0} into two
open connected regions R1 and R2 represented in Figure 3.1. The set R1 ∪ {(2, 2)} is the region
where the folklore statement “LAS ⇒ GAS” holds, that is, it contains the pairs of parameter
values (r1, r2) for which the local asymptotic stability of the equilibrium implies its global
stability.
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Figure 3.1: The map F2 has more than one fixed point in the region R2 between the two
curves, including the curves but excluding the vertex (2, 2).

Remark 3.2. Similar curves have been plotted numerically (but without an analytical expres-
sion) in [11]. They coincide with the bifurcation curves where a saddle-node bifurcation
takes place in the 2-periodic Ricker equation (1.2); that is to say, when conditions F′2(x) = 1,
F2(x) = x hold simultaneously (see [2]).

Next, to find the region R ⊂ R1 where the 2-periodic Ricker equation has a globally
stable 2-periodic solution, we have to determine the curves where the equilibrium becomes
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unstable. These curves define a period-doubling bifurcation and are characterized by the
equations F′2(x) = −1, F2(x) = x (see [2]).

Proposition 3.3 ([2]). A fixed point K of F2 satisfies F′2(K) = −1 if and only if one of the following
conditions holds

r = u1
(
1 + er1−u1

)
, (3.2)

r = u2
(
1 + er1−u2

)
, (3.3)

where

u1 =
r−

√
r2 − 4(r− 2)

2
, u2 =

r +
√

r2 − 4(r− 2)
2

, r = r1 + r2.

Propositions 3.1 and 3.3 allow us to represent the exact region of the plane of parame-
ters corresponding to a globally stable 2-periodic solution of the 2-periodic Ricker map. See
Figure 3.2.
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Figure 3.2: Region R where the map F2 has a globally stable fixed point. The blue solid lines
correspond to the curves where the equilibrium becomes unstable, and they are included in
the global stability region. The blue dashed lines correspond to the curves where a new fixed
point appears, and they are not included in the global stability region, with the only exception
of the point (2, 2). The square (0, 2)2 is the region of global stability established in [10].

We emphasize that local asymptotic stability of a fixed point of F2 is not enough for its
global stability. Indeed, in region R2 of Figure 3.1 there are three equilibria and two of them
can be locally asymptotically stable at the same time, but of course they cannot be globally
stable. As an example of the possible bifurcation diagrams, we fix r2 = 2.2 and use r1 as the
bifurcation parameter (Figure 3.3). For r1 = 0, F2 has a globally stable equilibrium K1(0) ≈
1.918. The branch of fixed points K1(r1) starting at K1(0) gives globally stable 2-periodic
solutions of (1.2) until two new fixed points K2(r1), K3(r1) of F2 appear at r1 ≈ 2.136. K2(r1) is
unstable, and K3(r1) is asymptotically stable until it becomes unstable at r1 ≈ 2.457. The fixed
points K1(r1) and K2(r1) disappear at r1 ≈ 2.32. Thus, in the interval (2.136, 2.32), equation
(1.2) has two asymptotically stable 2-periodic solutions, and K3(r1) becomes globally stable in
the interval (2.32, 2.457). After that, a route of period-doubling bifurcations to chaos starts.
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Figure 3.3: (a) We fix r2 = 2.2 and use r1 as the bifurcation parameter (red dashed line);
(b) the bifurcation diagram for the period map F2 shows regions of global stability, bistability,
and chaos. A phenomenon of hysteresis is also observed. Discontinuous lines correspond to
unstable equilibria.

4 The 3-periodic Ricker map

In this section, we sketch the proof of Theorem 2.3 for p = 3, that is, we prove the following
result.

Theorem 4.1. Assume that the period map F3 = f3 ◦ f2 ◦ f1 has a unique fixed point K on (0, ∞).
Then K is globally stable for F3 if it is locally asymptotically stable.

Actually, we conjecture that Theorem 2.3 is true for an arbitrary integer p ≥ 2. If all
local maxima of Fp have the same value, then we can easily repeat the arguments in the
proof of Theorem 2.3. In particular, this is the case for F3 if F2 = f2 ◦ f1 is unimodal or
F2(1) ≤ 1. However, if F2 is not unimodal and F2(1) > 1 (Figure 4.1), then F3(1) becomes a
local maximum in such a way that F3 has three points of local maxima q1, 1, q2 (q1 and q2 are
the preimages of 1 by F2), and two points of local minima m1, m2 (corresponding to the local
maxima of F2), with q1 < m1 < 1 < m2 < q2, F3(m1) = F3(m2), and F3(1) < F3(q1) = F3(q2)

(Figures 4.1 and 4.2).
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Figure 4.1: Representation of the curves y = F2(x), y = x and y = 1 when
F2 is not unimodal and F2(1) > 1.
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We only consider the cases where F′3(K) < 0, since the others are easier to address.

• Case (a) in Figure 4.2 occurs if F3 is decreasing on (K, ∞). Then we just choose a = 0,
c = q2, and b = d = ∞ to apply Proposition 2.2.

• Case (b) in Figure 4.2 occurs if the fixed point of F3 lies between the first local maximum
q1 and the first local minimum m1. Then we choose a = 0, c = q1, d = m1, and b = q2 (it
is clear that the interval I = [0, q2] is invariant and attracting for F3).

• Case (c) in Figure 4.2 occurs if the fixed point of F3 lies between 1 and the second local
minimum m2. In this case the interval I = [m1, q2] is invariant and attracting for F3. Then
we choose a = c = m1, b = q2, and d = m2 to apply Proposition 2.2 again.
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Figure 4.2: Representation of the curves y = F3(x) and y = x in three different situations.
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