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Periodic points and stability in Clark’s delayed recruitment model
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Abstract

We provide further insight on the dynamics of Clark’s delayed recruitment equation, depending on the relevant parameters
involved in the model. We pay special attention to the stability and bifurcations from the positive equilibrium, and to the existence
and attraction properties of nontrivial cycles. A detailed analysis is worked out for a three-dimensional example.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Clark’s equation is a simple discrete-time mathematical model to represent the evolution of a population in which
the number of adults each year is calculated as the sum of the survival adults in the previous year and the recruitment,
which is in general a nonlinear function of the size of population of adults a number of k years before. See, e.g., [4,5].
In general, it is written as

xn+1 = �xn + f (xn−k), (1)

where � ∈ [0, 1) is a survival rate, and f : (0, ∞) → [0, ∞) is the recruitment function. Here, we will use a slightly
different form of Clark’s equation, already employed by Fisher [12], and suggested by Botsford [4] to explain an
apparent contradiction between two data tables. Namely, we will consider equation

xn+1 = �xn + (1 − �)h(xn−k). (2)

Notice that, for a fixed � ∈ [0, 1), Eqs. (1) and (2) are equivalent, taking h = (1 − �)−1f . We believe that Eq. (2)
is more convenient to investigate the variation in the dynamics of the solutions as the parameter � varies on [0, 1).
We will try to justify this assertion. One of the key points in Clark’s model is how the stock-recruitment relationship
should be. Form (2) represents well two of the postulates indicated in [4], namely: (a) high fecundity at low stock sizes
(hence, the recruitment should be larger for decreasing �), and (b) increasing pre-recruitment mortality at high stock
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sizes due to compensatory density-dependent effects (thus, the recruitment rate should decrease as � approaches 1).
From the mathematical point of view, form (2) has as an advantage that the equilibria are the same for all values of �,
and they coincide with the fixed points of function h. Another argument was shown in [11] (see also [1,17]): Eq. (1) is
exactly the form of the Euler discretization with step �/k = 1 − � of the well known delay differential equation used
in mathematical biology

x′(t) = −x(t) + h(x(t − �)), � > 0.

Other important point is the shape of the recruitment function h. In most of examples, h is chosen strictly decreasing or
unimodal, with a local maximum. Some properties of (2) were derived in [11] under more general assumptions. Due to
biological reasons, only nonnegative initial conditions will be considered; in particular, if h(0) is not defined and � > 0,
then the admissible initial conditions are those vectors (x−k, . . . , x−1, x0) ∈ Rk+1 such that xi > 0, i = −k, . . . , 0. In
any case, we will only consider solutions corresponding to admissible initial conditions, which will be called admissible
solutions.

Throughout the paper we assume that h : (0, ∞) → [0, ∞) is continuous, has a unique fixed point p, and satisfies
h(x) > x for x < p and h(x) < x for x > p.

The following result on permanence in Eq. (2) can be easily derived from the proof of Theorem 2 in [11]:

Theorem 1 (El-Morshedy and Liz [11]). Assume that either h is bounded on (0, p] or limx→0 h(x) = ∞. Then
Eq. (2) is permanent, that is,

0 < lim inf
n→∞ xn � lim sup

n→∞
xn < ∞

for all admissible solutions (xn) of (2).

We say that p is a global attractor for (2) if all admissible solutions converge to p as n → ∞. On the other hand,
p is called globally stable if it is a stable global attractor.

Theorem 2 (El-Morshedy and Liz [11, Theorem 3]). In the conditions of Theorem 1, define M=sup{h(x) : 0 < x < p}.
If either M = p or h is monotonically increasing on (p, M), then p is globally stable for equation (2).

For example, if h is a unimodal C1 function, Theorem 2 shows that p is globally stable if h′(p)�0 (see also [14]).
The issue of global stability in (2) was widely addressed in the recent literature (see, e.g., [8,10,11,14,17,30] and

references therein). Our aim in this paper is the analysis of some properties of the solutions of (2) when p is not globally
attracting. In view of Theorem 2, we will assume that h′(p) < 0.

Some particular cases of (2) will be of special interest in our discussions. The first one is the one-dimensional
difference equation obtained from (2) by setting k = 0

xn+1 = �xn + (1 − �)h(xn). (3)

We note that Eq. (3) is interesting by itself. For example, for h(x) = �x/(1 + xr), � > 1, r > 0, this equation was
proposed by Milton and Bélair [23] to describe the growth of bobwhite quail populations.

We will also consider the limit case � = 0 in Eqs. (2) and (3), respectively, that is,

xn+1 = h(xn−k); (4)

xn+1 = h(xn). (5)

Since we will refer to Eqs. (2)–(5) quite often within the text, we include Table 1 to make easier their identification.
Note that p is the unique equilibrium of all equations in Table 1.
We have organized our exposition as follows: the second section is devoted to analyze the influence of the parameters

in the local stability of the equilibrium. Although this study was already initiated by Clark himself and continued by
other authors, we think that some new interesting comments may be provided here. In Section 3, we get some results
on the existence of nontrivial periodic solutions for Eqs. (2) and (3). Under some additional assumptions, we may
describe the global attractors of (2) for small �. Finally, in Section 4, a more detailed analysis is worked out for a three
dimensional example.
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Table 1
Main equations cited in the text

Label Description Equation

(2) Clark’s delayed model xn+1 = �xn + (1 − �)h(xn−k)

(3) Clark’s model with k = 0 xn+1 = �xn + (1 − �)h(xn)

(4) Clark’s model with � = 0 xn+1 = h(xn−k)

(5) First order difference equation xn+1 = h(xn)

2. Local stability

One of the important problems in the dynamics consists in finding the values of the involved parameters for which
the equilibrium point is locally stable. For Eq. (2), this study was initiated by Clark [5]. It is well known that p is locally
asymptotically stable if all roots of the characteristic equation

�k+1 − ��k = (1 − �)h′(p), (6)

associated to the linearized equation at x = p, lie in the unit circle in the complex plane. Fortunately, necessary and
sufficient conditions for this to happen are known (see, e.g., [18,24]). We will use the parametric equations given in
[24]. Let us consider two significant parameters involved in the model, namely the survival rate �, and the derivative of
h at p (connected with the recruitment rate). Assuming h′(p) < 0, let us denote c =−h′(p) > 0. We have the following
result.

Proposition 3. The equilibrium p in (2) is locally asymptotically stable if the pair (c, �) is above the parametric curve
defined by

c = sin(�)

sin(k�) − sin((k + 1)�)
; � = sin((k + 1)�)

sin(k�)
,

� ∈ (0, �/(k + 1)).

We represent the border of the asymptotic stability region for k = 0, 1, 2, and 10 in Fig. 1.
Next we briefly discuss the stability properties of the equilibrium depending on the three parameters �, c = −h′(p),

and the delay k, in view of Proposition 3 and Fig. 1:

• For fixed k and c, increasing � is stabilizing: In particular, for � = 0, Eq. (4) is locally asymptotically stable if c < 1.
This condition implies the local asymptotic stability in (2) regardless the value of k�0 and � ∈ [0, 1). Sometimes
this delay-independent stability property is called absolute stability. On the other hand, when � approaches 1,
Eq. (2) tends to be stable for all values of c and k.

• For fixed � and c, adding delay is destabilizing: In fact, the greatest stability region occurs for k = 0, when (2) has
the form (3). In this case, the equilibrium loses its asymptotic stability for � = (c − 1)/(c + 1) (see the first curve
from below in Fig. 1). As k tends to infinity, the equilibrium becomes unstable for all values outside the absolute
stability region.

• Finally, for fixed k and �, increasing c is destabilizing.

Mertz and Myers [22] investigated Eq. (1), and suggested that “increasing � decreases stability”. In view of the above
remarks, we note that the introduction of the term (1 − �) in the recruitment function leads to a different conclusion.

We also emphasize that the stability of p always depends on �. As stated in [22], if one considers Eq. (1) with k = 1,
the equilibrium point is asymptotically stable when 0 < − f ′(p) < 1 regardless the value of �. But, in this case, the
dependence of � is hidden in the equilibrium point itself, which is calculated as the solution of (1 − �)x = f (x), and
thus it should be denoted by p� rather than p. We note that the border of the stability region for Eq. (2) in terms of �
and c when k = 1 is defined by the curve � = (c − 1)/c, and it is shown in Fig. 1.
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Fig. 1. Border of the local stability region in (2) for different values of k.

3. Periodic solutions

In general, the loss of the asymptotic stability of the equilibrium in a discrete model gives place to nontrivial cycles,
that is, periodic solutions with minimal period p�2. For example, for the usual population models governed by the
first order difference equation (5), the equilibrium is locally asymptotically stable for 0 > h′(p) > − 1, and nontrivial
2-periodic points appear as h′(p) crosses the critical value −1 in a supercritical period-doubling bifurcation, see [7,15].
Moreover, for the most common models, it was observed that the equilibrium p is globally stable if |h′(p)|�1. Thus,
in this case, the local asymptotic stability of p implies its global stability (see [19], and also [6,20] for recent results).
The same property was conjectured to be true for (2) (see, e.g., [10,11,14,30]). An interesting result is that in general
p is globally stable in the region of absolute stability.

Theorem 4 (El-Morshedy and Liz [11, Theorem 1]). In the conditions of Theorem 1, if h(x) �= 0 for all x ∈ (0, M]
and p is a global attractor for (5), then p is globally stable for Eq. (2).

We will not discuss here the global stability; we would like to get some new information about what happens beyond
the local stability region. Several authors have addressed this study, mainly from the numerical point of view (see, for
instance, [4,22]). We show that some interesting facts may be derived analytically, at least for relatively simple models.

3.1. Periodic solutions of Eq. (3)

We start with the analysis of the one-parametric family of first order difference equations (3), which can be written
in the form

xn+1 = h�(xn),

with h�(x) = �x + (1 − �)h(x).
It is straightforward to check that p is asymptotically stable if either c < 1 or c�1 and � > (c − 1)/(c + 1), where

c=−h′(p) (see Fig. 1). Moreover, when �=(c−1)/(c+1) we have h′
�(p)=−1. In order to describe the period-doubling

bifurcation, let us fix a value of c = −h′(p) > 1 and define

� = �0 − �

1 + c
, where �0 = c − 1

c + 1
.

Then the family of scalar maps {h�(x)} is equivalent to

F(�, x) = h�0(x) + �(1 + c)(h(x) − x).
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Fig. 2. Period-doubling bifurcation for Eq. (3).

We will assume that h is a C3 function. It is easily seen that:

1. F(0, x) = h�0(x);
2. F(�, p) = p;
3. (�F/�x)(�, p) = −(1 + �);
4. h′

�0
(p) = −1;

5. (h2
�0

)′′′(p) = 2(Sh�0)(p),

where, in the last item, (Sh)(x) = (h′′′(x)/h′(x)) − (3/2)(h′′(x)/h′(x))2 is the Schwarzian derivative of h.
Note also that � < 0 for � > �0, and � > 0 for � < �0. Hence, a direct application of Theorem 3.21 in [15] provides

the following result.

Theorem 5. Assume that h is a C3 function, and c=−h′(p) > 1. Denote �0 = (c−1)/(c+1). Then, if (Sh�0)(p) < 0,
there exists a neighborhood of (�0, p) such that

1. for � < �0 there exists a unique 2-cycle {a�, b�} of minimal period 2 of Eq. (3). Moreover, this 2-cycle is asymptotically
stable;

2. for � > �0 Eq. (3) has no cycle of minimal period 2.

Theorem 5 provides the existence of a local branch of attracting 2-cycles of Eq. (3) for each value of c =−h′(p) > 1
starting at the point �0 = (c − 1)/(c + 1), where p losses its asymptotic stability. (see Fig. 2).

In fact, one can easily prove that, if h meets the conditions of Theorem 1 and is bounded in (0, p), then h� satisfies
the same conditions, and there is at least one nontrivial 2-cycle {a�, b�} of Eq. (3) for all values of � for which p is
unstable. However, in general this 2-cycle will not be stable for all values of �.

Remark 1. Let us note that if h has an attracting or repelling 2-cycle {a, b}, then there is also a 2-cycle {a�, b�}
of (3) such that a� → a and b� → b as � → 0 (see, e.g, [26, Corollary 7.1]). Moreover, if h is a Cr map
and h′(a)h′(b) /∈ {−1, 0, 1}, then h� is locally conjugate to h for � close to 0, due to the structural stability [26,
Theorem 7.4].

3.2. Periodicity in Eq. (2)

Next we try to obtain some information about the periodic solutions of (2) from those of (3).
For a Ricker type nonlinearity h(x) = �xe−qx , �, q > 0, the periods of the oscillations in Eq. (2) were discussed by

Mertz and Myers [22] on the basis of the characteristic equation (6). In particular, they suggest the existence of periodic
solutions of minimal period 2 in Eq. (2) when k is even due to the presence of roots of the characteristic equation on the
negative real axis. Some references showing the empirical evidence of these 2-cycles are included in their discussion.
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It turns out that it is very easy to prove the existence of 2-cycles based on our discussion for Eq. (3) in Section 3.1,
since there is a correspondence between 2-cycles of (2) and (3) when k is even.

Proposition 6. Eq. (2) has a cycle of minimal period 2 if and only if k is even and (3) has a cycle of minimal period 2.

Proof. First we assume that k is even and {a�, b�} is a 2-cycle of (3), that is, h�(a�) = b�, h�(b�) = a�, a� �= b�.
Then the initial vector (a�, b�, a�, b�, . . . , a�) ∈ Rk+1 defines a cycle of period 2 for Eq. (2). Conversely, if {a�, b�} is
2-cycle of (2) with k even then h�(a�) = b�, h�(b�) = a�, a� �= b�, and hence it is also a 2-cycle of (3).

Finally, we show that, for odd k, Eq. (2) does not have cycles of minimal period 2. Indeed, if Eq. (2) has a period 2
solution when k is odd, then this solution is a period 2 solution of the equation

xn+1 = �xn + (1 − �)h(xn−1),

and hence

x2 = �x1 + (1 − �)h(x0); x3 = �x2 + (1 − �)h(x1).

Since x2 = x0 and x3 = x1, the above equations yield

x0 = �x1 + (1 − �)h(x0), (7)

x1 = �x0 + (1 − �)h(x1). (8)

If we assume that x0 > x1, then (7) and (8) yield respectively that x0 < p and x1 > p, a contradiction. A similar
contradiction is obtained if we assume that x0 < x1. This finishes the proof. �

Remark 2. We showed that 2-cycles of (3) appear in a period-doubling bifurcation as � crosses the curve c =
(1 + �)/(1 − �), c > 1. Note that � = −1 is a root of the characteristic equation (6) if and only if k is even and
c = (1 + �)/(1 − �).

The first part of the proof in Proposition 6 can be derived from a more general result.

Proposition 7. If r|k, then (2) has an r-periodic solution if and only if (3) has an r-periodic solution.

Proof. It is a straightforward consequence of Theorem 7 in [9]. �

Here, as usual, r|k means that r divides k.
As mentioned in [22], Ricker was the first to notice long-period endogenous population fluctuations in his simulations

of an age-structured fish stock [25]. He estimated that the natural period of these oscillations (called Ricker oscillations
in [22]) is twice the median time from oviposition to oviposition.

For � = 0, the cycles of period 2(k + 1) in (4) are linked in [22] to the fact that all solutions of (6) are (k + 1)

roots of the unit for c = 1. Using the results of an der Heiden and Liang [1], it is easy to derive the existence of these
oscillations from the existence of 2-periodic points of h; as noticed above, such periodic points do exist for c > 1 under
rather general assumptions on h (in particular, for the Ricker function).

Indeed, from Theorem 1.2 in [1], it follows that if (5) has cycles with minimal periods 1 and 2, then (4) has cycles
with minimal periods 1 and r, where r ∈ Sk+1(2), and

Sk+1(2) = {2r : p ∈ N, r|(k + 1) and ((k + 1)/r, 2) is coprime}.
Recall that the pair of natural numbers (m, n) is called coprime if 1 is the only common divisor of m and n.

In particular, for c > 1, Eq. (4) has always cycles of period 2(k + 1), while it has 2-cycles if and only if k is even.
Moreover, if k > 1 and k + 1 is prime, then Sk+1(2) = {2, 2(k + 1)}.

For � > 0, the existence of periodic solutions of (2) with period approximately twice the mean of the age distribution
as it affects recruitment was suggested by Botsford [4].

The following result shows that under some additional conditions on h, Eq. (2) has cycles of period 2(k+1) for � small
enough. Furthermore, the dynamics of (2) is remarkably simple. By a hyperbolic attracting (respectively, hyperbolic
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repelling) point of a map f we mean a fixed point x such that f is differentiable at x and |f ′(x)| < 1 (respectively,
|f ′(x)| > 1). When we say that an r-cycle of f is hyperbolic attracting or repelling, then we mean that the points of the
cycle are, respectively, hyperbolic attracting or repelling fixed points of f r.

Theorem 8. Assume that h is C1 function having a hyperbolic repelling fixed point p, a hyperbolic attracting 2-cycle
{q1, q2} and no other periodic points. Also assume that either h is unbounded at (0, p] and h2([p, q2]) is well-defined,
or h is bounded at (0, p] and both h4(l) and h4(s) are well defined (here l = lim infx→0 h(x), s = lim supx→0 h(x)).
If ��0 is small enough, then Eq. (2) has exactly as many cycles (with the same periods and local dynamics) as Eq. (4)
(in particular, some attracting 2(k + 1)-cycle) and these cycles attract all solutions of (2).

For convenience of the reader, we include the rather tedious proof of Theorem 8 in Appendix. Examples can be
provided showing that the awkward “well-defined” hypothesis is essential.

Remark 3. Conditions of Theorem 8 hold, for example, if h is strictly decreasing, has a unique fixed point p such that
|h′(p)| > 1, and has negative Schwarzian derivative everywhere (see, e.g., [21]).

4. An example

It would be interesting to understand the variation in the dynamics of (2) as the parameter � ranges between 0 and 1.
When k =0, this task is a matter of bifurcation analysis in a family of one-dimensional discrete dynamical systems. For
general k, Eq. (2) generates a dynamical system in Rk+1, which is much more difficult to manage. See, for example,
the analysis made in [13] for the 2-dimensional case (k = 1).

In this section we consider an example for k = 2 with the hope that our conclusions may be useful in more general
situations.

Maybe the simplest model for (2) corresponds to a strictly decreasing function h. See some examples in [10,14].
A typical function is

h(x) = �e−qx, �, q > 0, (9)

which appears in some models in hematopoiesis. We notice that also the delayed Ricker-type difference equation

yn+1 = yne
−qyn−k , q > 0,

(see, e.g., [19]) can be written in the form

xn+1 − xn = qe−xn−k ,

after the change of variables xn = − log(yn). This is another motivation to consider this form of h. Since we are
interested in taking � as the bifurcation parameter, we will fix q = 1 in (9), and choose a value of � in such a way that
c = −h′(p) > 1 and the calculus of the fixed point is easy. Taking � = 2e2, we have h(x) = 2e2−x , so our equation is

xn+1 = �xn + (1 − �)2e2−xn−2 , (10)

whose unique positive equilibrium is p = 2.

4.1. The one-dimensional model

First we analyze the one parametric family of maps {h�}, or, equivalently, equation

xn+1 = �xn + 2(1 − �)e2−xn = h�(xn). (11)

Function h� has at most one critical point at m� = 2 − log(�/(2 − 2�)), which is a local minimum. In fact, h� is
decreasing for x ∈ (0, m�), and h� is increasing for x > m�. In particular, h� is strictly increasing if m� < 0, that
is, for � > �∗ = 2e2/(1 + 2e2) ≈ 0.936621. Thus, the equilibrium is a global attractor of (11) for � ∈ (�∗, 1) and
the convergence is monotonic. Next, if m� �2 (i.e., ��2/3), then p = 2 is globally stable with eventually monotone
convergence.
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By direct computation, one can check that (Sh�)(x) < 0 for all x �= m�. This property plays a key role in our next
result, which shows that the local situation described in Theorem 5 holds in fact globally.

Theorem 9. Eq. (11) has a globally stable equilibrium if � ∈ [ 1
3 , 1), and a unique 2-cycle if � ∈ [0, 1

3 ).

Proof. In view of our discussion above, we can assume that � < 2
3 . We distinguish two cases.

(a) We first assume that h�(0) > m� (which happens for � > �5 = 2e2/(2e2 + 22e2
) ≈ 5.6437 × 10−6).

In this case, g� = h� ◦ h� has exactly three critical points x1, m�, x2, where h�(x1) = h�(x2) = m�. Moreover,
x1 < p < m� < x2, g� is strictly increasing on (x1, m�) ∪ (x2, ∞), and g� is strictly decreasing on (0, x1) ∪ (m�, x2).

If �� 1
3 then p is asymptotically stable, and hence [27, Theorem 2.1, p. 47] implies that there exists a neighborhood

U = (p − ε, p + ε) of p such that g�(x) > x for x ∈ (p − ε, p). On the other hand, in view of [29, Theorem 9.6], p is
globally stable if and only if g� has no fixed points different from p. Assume, for the sake of contradiction, that g� has
a fixed point different from p. Then, there must exist c ∈ [x1, p) such that g�(c)= c (we may choose the point c closest
to p satisfying this condition). Since d = h�(c) ∈ (p, m�], it follows that c, p, d are three consecutive fixed points of
g�, and g� does not have any critical point on (c, d). Since (Sh�)(x) < 0 for all x �= m�, [28, Lemma 2.6] implies that
g′
�(p) > 1, a contradiction.
If � < 1

3 then p is unstable and hence there is at least a nontrivial 2-cycle of h�. Since |h′
�(p)| > 1, if we assume

that this 2-cycle is not unique, then there must exist two points c1, c2 ∈ (x1, p) such that g′
�(c1) = g′

�(c2) = 1. This
contradicts the result in [28, Proposition 2.4].

(b) If h�(0)�m� then h� is strictly decreasing in the interval I0 = [0, h�(0)], which is invariant and attracting for
(11). Since (Sh�)(x) < 0 for all x ∈ I0, and |h′

�(p)| > 1, the arguments used in the previous case prove that there is a
unique 2-cycle of (11). �

Our next result shows that the unique 2-cycle of (11) attracts all solutions except those starting from 2 or one of its
preimages.

Theorem 10. Let � ∈ [0, 1
3 ). Then the unique 2-cycle of (11) is globally attracting, that is, every orbit (hn

�(x)) either
eventually equals 2 (the unique fixed point of h�) or is attracted by the 2-cycle.

Proof. Let m = m� = 2 − log(�/(2 − 2�)) be the point at which h� attains its minimum value and put a = h�(m),
b=h�(a). If b�m, then the interval [a, m] is invariant by h� and every orbit (hn

�(x)) eventually falls into [a, m]. Since
h� is decreasing on [a, m] every orbit must be attracted either by a 2-cycle or a fixed point. Since 2 is repelling for h�
and h� has exactly one 2-cycle, the statement of the theorem follows. Thus in what follows we can assume, without
loss of generality, that b > m.

To prove the theorem it is sufficient to show |h′
�(a)h′

�(b)| < 1. Indeed, assume that the inequality holds. Since h′
� is

strictly increasing, we get |h′
�(x)h′

�(y)| < 1 whenever x ∈ [a, m], y ∈ [m, b]. Then c = h�(b) < m, for otherwise there
is c′ ∈ [m, b] such that h�(c

′) = m and therefore

|b − a| = |h�(a) − h�(m)| = |h′
�(x)‖a − m| = |h′

�(x)‖h�(m) − h�(c
′)|

= |h′
�(x)‖h′

�(y)‖m − c′| < |h′
�(x)‖h′

�(y)‖b − a|
for some appropriate x ∈ [a, m], y ∈ [m, b], a contradiction. Next, note that

|b − h2
�(b)| = |h2

�(m) − h2
�(b)| = |h�(a) − h�(c)| = |h′

�(x)‖a − c|
= |h′

�(x)‖h�(m) − h�(b)| = |h′
�(x)‖h′

�(y)‖m − b|
for some appropriate x ∈ [a, m], y ∈ [m, b]. Hence |b − h2

�(b)| < |m − b|, which together with c < m implies that
h2

� maps monotonically the interval [m, b] into itself. Since the intervals [m, b] and h�([m, b]) = [a, c] are pairwise
disjoint, each of them contains one of the points of the 2-cycle. Clearly if an orbit does not end at the fixed point, then
it eventually falls into [a, c] ∪ [m, b] and is attracted by the 2-cycle, as we desired to prove.

Thus it only rests to prove that |h′
�(a)h′

�(b)| < 1. A straightforward calculation shows that

h′
�(a) = � − ��(2 − 2�)1−�e2−3�.
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Table 2
Global bifurcation analysis of Eq. (11)

Values of � Behaviour

1 > �> �∗ ≈ 0.936621 Globally stable equilibrium, monotone convergence
�∗ ���2/3 Globally stable equilibrium, eventually monotone convergence
2/3 > ��1/3 Globally stable equilibrium, oscillatory convergence
1/3 > ��0 Unstable equilibrium, globally attracting 2-cycle

Using the obvious inequality � < ��(1 − �)1−� whenever � < 1
3 we get in particular

|h′
�(a)| = −h′

�(a) < ��(2 − 2�)1−�e2−3�.

Further, recall that m < b, that is, h′
�(b) > 0. Since h′

�(x) < � for every x ∈ R we have |h′
�(b)| < �. Thus, in order to

finish the proof, it suffices to demonstrate

��+1(2 − 2�)1−�e2−3� < 1

or, equivalently,

g(�) := log(��+1(2 − 2�)1−�e2−3�)

= (� + 1) log � + (1 − �) log(2 − 2�) + 2 − 3�

< 0

for every � ∈ (0, 1
3 ).

We have

g′′(�) = 2� − 1

�2(1 − �)
,

so g′ is strictly decreasing in (0, 1
3 ). Since

−0.2 < g′(0.2) < 0 < g′(0.19) < 0.2,

we see that the only zero z of g′ in (0, 1
3 ), which is the point at which g attains its maximum, satisfies

g(z) − g(0.2) < 0.2 · 0.01 = 0.002.

This, together with g(0.2) < − 0.15, gives g(z) < − 0.14. We are done. �

A summary of our analysis for Eq. (11) is given in Table 2.

4.2. The three-dimensional model

We begin with the analysis of the characteristic equation (6), which in this case takes the form

�3 − ��2 = −2(1 − �). (12)

We analyze the position of the roots of (12) in the complex plane as � ranges from � = 1 to 0. For � = 1, the roots
are �1(1) = 0, �2(1) = 0, �3(1) = 1. As � varies from � = 1 to 0, �1(�) always remains in the real axis, and its value
decreases from �1(1) = 0 to �1(0) = −21/3.

The behavior of �2(�) and �3(�) is different. For � close to 1, �2(�) and �3(�) remain in the real axis, and they
approximate to each other until (12) has a positive root with multiplicity 2. This value of � can be computed directly by
imposing such a condition. It turns out that � is the real solution of equation 4�3 − 54(1 − �) = 0, with an approximate
value of �1 =0.938725. Thus, for � ∈ (�1, 1), the equilibrium is asymptotically stable and the convergence is monotone
at least locally. For � > �1, Eq. (12) has a pair of complex conjugate roots, whose moduli are increasing as � decreases.
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Table 3
Local stability analysis of Eq. (10)

Values of � Roots of (12) Behaviour

�1 < �< 1 −1 < �1 < 0, 0 < �2 < �3 < 1 Equilibrium with local monotonic damping
� = �1 ≈ 0.938725 −1 < �1 < 0, 0 < �2 = �3 < 1 Border of monotonic and oscillatory damping
�2 < �< �1 −1 < �1 < 0, |�2| = |�3| < 1 Equilibrium with local oscillatory damping
� = �2 ≈ 0.633975 −1 < �1 < 0, |�2| = |�3| = 1 Hopf bifurcation
�3 < �< �2 −1 < �1 < 0, |�2| = |�3| > 1 Unstable equilibrium, no 2-cycles
� = �3 = 1/3 �1 = −1, |�2| = |�3| > 1 Doubling-period bifurcation for h�

0 < �< �3 �1 < − 1, |�2| = |�3| > 1 Unstable equilibrium, 2-cycles

Using Proposition 3, we find that �2(�) and �3(�) reach the unit circle in the complex plane for �=�2=sin(3�)/ sin(2�),
where � ∈ (0, �/3) solves cos(�) = (1 + 31/3)/4. Thus �2 ≈ 0.633975. Between �1 and �2, the equilibrium p = 2
is asymptotically stable with oscillatory damping, and it becomes unstable for � = �2. Moreover, since �2(�) and
�3(�) cross the unit circle in the increasing direction of their moduli, a Hopf bifurcation (also called Naimark–Sacker
bifurcation, see, e.g., [31, Section 3.2C]) occurs, and an invariant curve is born. Next, for �3 = 1

3 , �1(
1
3 ) = −1 and this

gives place to the appearance of 2-cycles of the linearized equation of (10). From Theorem 5, we know that the family
h�(x) = �x + (1 − �)2e2−x experiences a period-doubling bifurcation at this value of �. We show below that Eq. (10)
actually possesses solutions of minimal period 2 if and only if � ∈ [0, 1

3 ).
For convenience of the reader, we summarize our analysis in Table 3. We emphasize that this local analysis does not

depends on the particular form of h. The unique important point is that c = h′(p) > 1.
Next, the particular form of h(x) in our example allows us to get more information on the dynamics of (10).
We have already proved in Theorem 9 that there is a unique 2-cycle {a, b} of h which attracts all solutions of

xn+1 = h(xn) = 2e2−xn , (13)

with initial condition x0 �= 2. The approximate values of a, b are

a ≈ 5.644 × 10−5; b ≈ 14.778. (14)

This means that, for � = 0, equation

xn+1 = h(xn−2) = 2e2−xn−2 (15)

has only periodic solutions with minimal periods 1, 2 and 6. Moreover, it has exactly one periodic solution corresponding
to each one of those periods. The dynamics of the solutions of (15) is easy to describe.

Theorem 11. All solutions of (15) with initial conditions x0, x1, x2 �= 2 converge to the 2-cycle if (x0 −2)(x1 −2) < 0
and (x1 − 2)(x2 − 2) < 0, and converge to the 6-cycle otherwise.

Proof. Let {a, b} be the globally attracting 2-cycle of h. Then, Eq. (15) has a 2-cycle {a, b, a, b, a, b, . . .} and a 6-cycle
{a, a, a, b, b, b, . . .}. Since g =h ◦h is increasing, it is easy to check that gn(x) converges monotonically to a if x < 2,
and it converges monotonically to b if x > 2. Thus,

lim
k→∞ h2k(x) =

{
a if x < 2;
b if x > 2; lim

k→∞ h2k+1(x) =
{

b if x < 2;
a if x > 2.

(16)

The result follows from (16) and the observation that, given an initial vector (x0, x1, x2), it is clear that x3k+i = hk(xi)

for i = 0, 1, 2. �

For � > 0, we can use Proposition 6 and Theorem 8. In particular, this last result shows that the situation described
in Theorem 11 still holds for � > 0 small enough.

Corollary 12. If ��0 is small enough, then Eq. (10) has exactly one repelling equilibrium and two attractors: a 2-cycle
and a 6-cycle. Moreover, they attract all solutions of (10).
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From Proposition 6 and Remark 1, we get the following consequence of Theorem 9:

Corollary 13. Eq. (10) does not have any solution of minimal period 2 if � ∈ [ 1
3 , 1), and it has a unique 2-cycle

{a�, b�} if � ∈ [0, 1
3 ). Furthermore, a� → a, b� → b as � → 0, where {a, b} is the 2-cycle of (15) given in (14).

Remark 4. Numerical simulations indicate that the dynamics of (10) described by Corollary 12 holds for � < �4 ≈
0.067. Also, between �4 and �3 = 1

3 , it seems that there is an attracting invariant curve and an attracting 2-cycle. For �
between �3 and �2 ≈ 0.633975, there is a globally attracting invariant curve. Finally, for � ∈ (�2, 1), the equilibrium
seems to be globally attracting. We note that the observed invariant curve might hide a more complicated attractor for
some values of the parameter. For example, for a range of values between � = 0.34 and 0.35, it is observed a period
7 sink. However, there is probably a complicated invisible attractor associated to a resonance in the invariant curve.
See [2] for further discussion.
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Appendix

In this appendix we provide a detailed proof of Theorem 8. We begin by stating two well-known results that will be
useful in the sequel. See, e.g., [3, pp. 121–122 and Lemma 3, p. 26] for the proofs.

Proposition 14. Let I be a compact interval and let f : I → I be a continuous map. Suppose that all periodic points of
f are fixed points. Then f (x) > x (respectively, f (x) < x) for a point x ∈ I implies f n(x) > x (respectively, f n(x) < x)
for every positive integer n.

Remark 5. In fact Proposition 14 implies that every orbit (f n(x)) converges to a fixed point of f. The reason is the
following. Say, for instance, that the orbit is neither monotone nor eventually a fixed point and f (x) > x. Let n1 be the
first number n such that f n+1(x) < f n(x). Next, let n2 be the first number n larger than n1 such that f n+1(x) > f n(x),
let n3 be the first number n larger than n2 such that f n+1(x) < f n(x), and so on. After applying Proposition 14 to
f n1−1(x), f n2−1(x), f n3−1(x), . . . we get

x < f (x) < · · · < f n1−1(x) < f n2(x) < f n2+1(x) < · · ·
< f n3−1(x) < f n4(x) < · · · < · · · < f n4−1(x) < · · ·
< f n3+1(x) < f n3(x) < f n2−1(x) < · · · < f n1+1(x) < f n1(x). (17)

Thus the orbit of x accumulates around two points a�b satisfying f (a) = b and f (b) = a. Since f has no 2-cycles, we
conclude that a = b is a fixed point and that the sequence (f n(x)) converges to a.

Furthermore, notice that a consequence of the ordering described in (17) is that if a neighborhood U of the set of
fixed points of f is given, then there is a number u with the property that if x ∈ I , then f n(x) ∈ U for some n�u.

Proposition 15. Let I be an interval and let f : I → Cl(I ) be a continuous map. Let J and K be compact subintervals
of I intersecting at most at one point. Suppose that there is some positive integer r such that hi(J ∪ K) ⊂ I for each
0� i < r and hr(J ) ∩ hr(K) ⊃ J ∪ K . Then h has cycles of arbitrarily large minimal periods.

In what follows we assume that h has a hyperbolic repelling fixed point p, a hyperbolic attracting 2-cycle {q1, q2}
with, say, q1 < p < q2, and no other cycles. We also assume that either h is unbounded at (0, q1] and h2([p, q2])
is well-defined, or h is bounded at (0, q1] and both h4(l) and h4(s) are well-defined (with l = lim infx→0h(x),
s = lim supx→0h(x)). Presently, no global differentiability assumptions are made on h.
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Lemma 16. We have h2(x) > x (respectively, h2(x) < x) for every x ∈ (0, q1) (respectively, for every x ∈ (q2, ∞)

such that h2(x) is well-defined).

Proof. The statement h2(x) > x for every x ∈ (0, q1) follows from the fact that h2(x) �= x for every such x and
h2(q1 − 	) > q1 − 	 whenever 	 > 0 is small because the cycle {q1, q2} is attracting. The other statement can be proved
similarly.

Let e = max h([q1, p]). Then two possibility arise that must be separately considered:

(a) 0 /∈ h([q1, e]). Then we define a = min h([q1, e]), b = max h([a, e]).
(b) 0 ∈ h([q1, e]). Then we define d = sup h((0, p]).

Lemma 17. We have

(i) If possibility (a) holds, then h([a, p) ∪ (p, b]) = [a, p) ∪ (p, b].
(ii) If possibility (b) holds, then d < ∞, {l} ∪ h((0, p) ∪ (p, d]) ⊂ [0, p) ∪ (p, d], and there is c > 0 such that

hn((0, q1]) ⊂ [c, d] for every n�1.

Proof. We prove (i). If b = e, then h([a, b]) = [a, b] trivially. If e < b, then we have again h([a, b]) = [a, b] unless
there is y ∈ [b, e] such that h(y) < a. But then we get that h2(x) < x for the point x ∈ [a, q1) such that h(x) = y,
which contradicts Lemma 16.

Thus, to conclude the proof of (i) we must show that if a�x < p (respectively, p < x�b), then h(x) > p (respectively,
h(x) < p). Assume that h(x)=p for some x < p and let y be the closest point to the left of p with this property. Note that
there is such a point y because p is repelling. If y < q1, then h2([y, p]) ⊃ [a, p] and we arrive at a contradiction with
Proposition 15. If y > q1 and we want to avoid contradicting Proposition 15 again, then we must have h([y, p]) ⊂ [y, q2)

and h(K) ⊂ K for the interval K =[y, p] ∪h([y, p]). This is impossible because while p is repelling, it should attract
the orbits of all points from K due to Remark 5 (p is the only periodic point of the restriction of h to K). One can prove
that h(x) �= p for every x ∈ (p, d] in similar fashion. We just emphasize that if h(y) = p for some q2 < y�b, then
a ∈ h3([p, y]) so h4([p, y]) ⊃ [p, b] contradicting Proposition 15.

We prove (ii). First we show that d < ∞. In fact if d = ∞, then we have 0 /∈ h([p, q2]) by hypothesis. Thus, since
possibility (b) holds, there is y ∈ (q2, e] such that h(y)=0. Now we use that h is unbounded at (0, q1) to find x ∈ (0, q1)

such that h(x) = y and hence h2(x) = 0 < x, contradicting Lemma 16.
Trivially we have [0, d) ⊂ h((0, d]) ⊂ [0, d]. Moreover, arguing similarly as in (i) we get that h((0, p) ∪ (p, d)) ⊂

[0, p)∪ (p, d], hence l�p. Suppose l =p. If s =p, then h can be extended to a continuous map h̃ : [0, ∞) → [0, ∞)

by writing h̃(0) = p. Hence h̃2([0, p]) covers [0, p]. Since h̃ has finitely many cycles, this contradicts Proposition 15.
Say s − p = s − l = 
 > 0. We use that p is repelling to find an iterate f r([p, p + 
/2]) of [p, p + 
/2] containing

0. In particular, if 	 > 0 is small enough, then hr([p + 	, p + 
/2]) covers [0, q1]. Find small disjoint intervals J and K
close to 0 so that h(J ) = h(K) = [p + 	, p + 
/2]. Then hr+1(J ) ∩ hr+1(K) ⊃ J ∪ K , contradicting Proposition 15.

Now we prove that h(d) < p. Suppose h(d)=p. By Proposition 15 we can assume l < d=s. Then lim infx→0 h2(x) <

lim supx→0 h2(x) = p and we argue to a contradiction as in the previous paragraph.
Only the proof of the last statement in (ii) is pending. We first show that

if x ∈ (0, q1), then hn(x) is well-defined and hn(x) > x for every n�1. (18)

We prove (18) inductively. Due to the inclusion h((0, p)∪(p, d]) ⊂ [0, p)∪(p, d] it suffices to show that if x ∈ (0, q1),
then h2m(x) is well-defined and satisfies h2m(x) > x for every m�1. The statement follows from Lemma 16 for m=1.
Assume now that h2r (x) > x for some r. Then h2(r+1)(x) is well-defined. Moreover, if h2(r+1)(x)�x, then we use that
h2(r+1)(q1 − 	) > q1 − 	 for a very small 	 > 0 (recall that the cycle {q1, q2} is attracting) to find a point y ∈ [x, q1 − 	)
satisfying h2(r+1)(y) = y. This is impossible, so (18) is proved.

Indeed, if x ∈ (0, q1], then the behavior of the orbit (hn(x)) is further restricted by the fact that the map g : [0, d] →
[0, d] defined by g(y) = h(x) if y�x and g(y) = h(y) otherwise has p, q1, and q2 as its only periodic points. More
precisely, notice that both orbits (hn(x)) and (gn(x)) coincide because of (18). Then, after applying Proposition 14
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and Remark 5 to g2, we see that h2m(x)� min{h2(x), h4(x)} for every m�1. Therefore hn(x)� min{h2(x), h4(x)}
for every n�1.

Thus, in order to finish the proof it only rests to show that 0 belongs to the closure neither of h2((0, q1]) nor of
h4((0, q1]). This easily follows from the facts that neither h2((0, q1]) nor h4((0, q1]) contain 0, and hn(l), hn(s) �= 0
for every n�3 by the hypothesis on h. �

Lemma 18. Fix small neighborhoods Up, Vq1 , and Wq2 of the points p, q1, and q2. Then there is a number u such
that if possibility (a) holds (respectively, possibility (b) holds) and x ∈ [a, b]\Up (respectively, x ∈ (0, d]\Up and the
orbit of x is well-defined), then hn(x) ∈ Vq1 ∪ Wq2 for some n�u.

Proof. We assume that possibility (b) holds; in the other case the argument is much simpler.
Let g : [0, d] → [0, d] be the continuous map defined by g(x)=h(c) if x�c and g(x)=h(x) otherwise, with c > 0

the number defined in Lemma 17(ii). We emphasize that the property hn((0, q1]) ⊂ [c, d] for every n�1 implies that
the only periodic points of g are the fixed point p and the 2-cycle {q1, q2}.

Since {l}∪h((0, p)∪(p, d]) ⊂ [0, p)∪(p, d] (Lemma 17(ii)) and p is repelling, there is a neighborhood O of p such
that if x /∈ O, then its orbit never visits O. Note that if x ∈ O\Up, then there is a number u1 such that hn(x) escapes
from O for some n�u1. Also, recall that there is a number u2 such that if x ∈ [0, d], then gn(x) ∈ Up ∪ Vq1 ∪ Wq2 for
some n�u2 (Remark 5).

Assume that x ∈ (0, d]\Up has a well-defined orbit under h. Then hn1(x) ∈ (0, d]\O for some minimal number
n1 �u1. If hn+n1(x) /∈ [0, c) for every n�u2, then we have hn2+n1(x) = gn2+n1(x) ∈ Vq1 ∪ Wq2 for some n2 �u2.
If hi+n1(x) ∈ [0, c) for some i�u2, then hn+i+n1+1(x) = gn(hi+n1+1(x)) for every n and there is a number n′

2 �u2

such that hn′
2+i+n1+1(x) ∈ Vq1 ∪ Wq2 . We have shown that u = u1 + 2u2 + 1 does the job. �

After recalling all the information we need about h we start dealing with Eq. (2). Observe that in the limit case �= 0
the solutions of Eq. (4) can only accumulate at p, q1, and q2 due to Lemma 18. If 0 < � < 1, then it is still possible to
get some useful information about the limiting behavior of the solutions of (2).

Lemma 19. Let 0 < � < 1. Then Eq. (2) is permanent. Moreover, every solution of (2) eventually falls into [a, b] (if
possibility (a) holds), or into (0, d] (if possibility (b) holds).

Proof. First we show that (2) is permanent. If h((0, p]) is bounded, then (2) is permanent by Theorem 1. Hence we can
assume that h((0, p]) is unbounded, when Lemma 17 implies that possibility (a) holds and h([a, b])=[a, b]. Moreover,
if 0 < x < a, then the interval h([x, a])∪ [x, b] is invariant by h, that is, it is mapped by h into itself (Lemma 16). Since
h is unbounded in (0, p] we can construct an increasing sequence (Jm) of invariant compact intervals covering (0, ∞),
which immediately implies that (2) is permanent (because the initial vector of a given solution must be contained in
some Jm and hence, by the nature of (2), the whole solution is contained in Jm).

Let (xn) be a solution of (2) and write L = lim infn→∞ xn, S = lim supn→∞ xn. Find subsequences (nj ) and (n′
j )

and numbers L�L0, Lk, S0, Sk �S satisfying

lim
j→∞ xnj +1 = L; lim

j→∞ xnj
= L0; lim

j→∞ xnj −k = Lk ,

lim
j→∞ xn′

j +1 = S; lim
j→∞ xn′

j
= S0; lim

j→∞ xnj −k = Sk .

Eq. (2) implies L = �L0 + (1 − �)h(Lk) which, in view of L�L0, gives h(Lk)�L. Similarly, h(Sk)�S. Note that
L�Sk �p�Lk �S.

Assume that possibility (a) holds. Suppose L < a and recall that the interval J = [L, b] ∪ h([L, a]) is invariant
by h. Moreover, notice that L is the left endpoint of J. Since Sk �p and h(Sk)�S, we get that S ∈ J . Then Lk �S

implies Lk ∈ J . In fact h(Lk)�L forces Lk > b (because [a, b] is invariant and L < a) so there is x ∈ [L, a) such
that h(x) = Lk , which contradicts Lemma 16. We have shown L ∈ [a, b]. Since L�Sk �p and h(Sk)�S, we also get
S ∈ [a, b].

Now we prove that the solution (xn) eventually falls into [a, b]. Since L, S ∈ [a, b] this is clearly the case if it
accumulates at some interior point of [a, b] (recall that� > 0). Now, suppose that (xn)only accumulates at {a, b}={L, S}.
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Then S =S0 =h(Sk)=b. Furthermore, if the sequence (xn′
j
) is chosen so that (xn′

j +r ) converges for every 1 < r �k+1,

then the limit of each of these sequences is b, hence b=�b+ (1−�)h(b). We have arrived at the contradiction h(b)=b.
Assume finally that possibility (b) holds. Since h((0, d]) ⊂ [0, d], we get h((0, x]) ⊂ [0, x) for every x > d. Now,

S > d implies the existence of a number Sk �p satisfying h(Sk)�S > d, a contradiction. We prove that the solution
(xn) eventually falls into (0, d] similarly as before (d is not a fixed point of h). �

In what follows we use the notation B	(x) := (x − 	, x + 	).

Lemma 20. Let 	 > 0 be small enough. If ��0 is very small and (xn) is a solution of (2), then every subsequence
(x(2k+2)m+r )m, 0�r < 2k + 2, eventually falls into one of the intervals B	(p), B	(q1), B	(q2).

Proof. To begin with we fix 	 > 0 taking advantage of the hyperbolicity of the 2-cycle {q1, q2} to ensure that
h2(Cl(B	(qi)) ⊂ B	(qi). Next we define u after applying Lemma 18 to the neighborhoods Up=B	/2(x), Vq1 =B	/2(q1),
Vq2 = B	/2(q2).

We prove that if � is very small and the sequence (x(2k+2)m+r )m accumulates outside B	(p), then it eventually falls
into B	(q1) or B	(q2). We again assume that the more difficult possibility (b) holds.

Suppose that x(2k+2)t+r ∈ (0, q1] for some t. Then Lemma 17(ii), Lemma 18, the uniform continuity of h|[c/2,d],
and the fact that � is very small, imply that x(2k+2)(t+j)+r ∈ B	(q1) for some j �s/(2k + 2) and hence x(2k+2)m+r ∈
B	(q1) for every m� t + j . If x(2k+2)m+r ∈ [q1, d] for every m, then we find t such that x(2k+2)t+r /∈ B	(p) and reason
analogously to find j �s/(2k + 2) such that x(2k+2)m+r ∈ B	(q1) or x(2k+2)m+r ∈ B	(q2) for every m� t + j . �

We are ready to demonstrate Theorem 8. Let F� : K� ⊂ [0, ∞)k+1 → [0, ∞)k+1 be defined by

F�(u0, u1, . . . , uk) = (u1, . . . , uk, �uk + (1 − �)h(u0)),

whenever the right-side expression makes sense. Note that there is a natural correspondence between the solutions of
(2) and the orbits of the discrete dynamical system associated to F�. Namely if u = (x−k, . . . , x−1, x0) and (xn) is the
solution of (2) with initial vector u, then Fn

� (u) = (xn−k, . . . , xn−1, xn) for every n. Hence (2) and F� have the same
dynamics. In particular, in order to finish the proof, it suffices to show that if ��0 is small enough, then G� = F 2k+2

�
has finitely many fixed points (some of them becoming (2k + 2)-periodic points for F�) and every orbit under G�
converges to one of these fixed points.

We immediately see that the only periodic points for G0 are those of the form (a0, a1, . . . , ak) with ai ∈ {p, q1, q2}
for every i. All these points are fixed points for G0 (and, for instance, (q1, q1, . . . , q1) is a (2k+2)-periodic point for F0).
Now we fix a very small 	 > 0 and correspondingly assume that ��0 is small enough. Let (Gn

�(u)) be an arbitrary orbit
under G�. We already know (Lemma 20) that this orbit eventually falls into a set O = B	(v0) × B	(v1) × · · · × B	(vk)

for some v = (v0, v1, . . . , vk) ∈ {p, q1, q2}k+1. This immediately implies that (Gn
0(u)) converges to v and also that if

n is large enough, then the ith coordinate of Gn
0(u) is zero whenever ai = p. In other words, for all large numbers n

the points Gn
0(u) belong to the local stable manifold Ws

0 (v) of the fixed point v of G0, this manifold being defined by
Ws

0 (v) = W0 × W1 × · · · × Wk with Wi = {vi} or Wi = B	(vi) according to whether vi = p or vi ∈ {q1, q2}.
If � > 0 is small enough, then, starting from the hyperbolic fixed point v, the implicit function theorem applies to

guarantee that O contains exactly one fixed point v� of G� (which has the same minimal period as v for respectively
F� and F0) and no other periodic points. Moreover, the stable manifold theorem (see, e.g., [16, Chapter 5]) ensures that
every orbit under G� not escaping from O must eventually fall into the local stable manifold of v� and then converge
to v�. This finishes the proof.
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Although they do not affect the main results, it is necessary to fix two incorrect assertions concerning the example
investigated in Section 4.2 of the above-referenced paper.

In this example we considered the following difference equation (labelled as (10) in the paper):

xn+1 = αxn + (1 − α)2e2−xn−2 , n = 2, 3, . . . , (1)
with α ∈ [0, 1), and initial conditions (x0, x1, x2) ∈ R3

+ = [0,∞)3.
The statement of Corollary 12 in page 785 is incorrect. It should be replaced by the following one:

Corollary 12. If α ≥ 0 is small enough, then Eq. (1) has exactly one repelling equilibrium, one attracting 2-cycle, and four 6-cycles
(three saddles and one node). They attract all solutions of (1).

The reason is that Eq. (1) with α = 0, that is,

xn+1 = 2e2−xn−2 , n = 2, 3, . . . , (2)
has four solutions of minimal period six. One of them is an attractor defined by {a, a, a, b, b, b, . . .}, where {a, b} is the unique
cycle of the map h(x) = 2e2−x with minimal period two. The other three are saddles, which combine the points a, b and the
unstable fixed point p = 2 of h. Namely, they are given by {a, b, 2, b, a, 2, . . .}, {a, a, 2, b, b, 2, . . .}, and {a, 2, 2, b, 2, 2, . . .}.

In fact, the region of attraction of these three cycles, considered as 6-periodic orbits of the map F : R3
+ → R3

+ defined by
F(x, y, z) = (y, z, h(x)), is the set

W = {(x, y, z) ∈ R3
+ : (x − 2)(y − 2)(z − 2) = 0} \ {(2, 2, 2)}.

The set W is formed by the union of the stable manifolds of each point of these three orbits under the 6th iterate of F.
We emphasize that these periodic saddles are missing in the two lines preceding the statement of Theorem 11 in p. 785

of our paper. However, the statement of Theorem 11 is correct, because it excludes the solutions of (2) belonging to W.
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