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Abstract-In this note, we prove a discrete analogue of the continuous Halanay inequality and 
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differential equations is discussed. @ 2002 Elsevier Science Ltd. All rights reserved. 
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1. INTRODUCTION 

In [l, Section 4.51, Halanay proved an asymptotic formula for the solutions of a differential in- 

equality involving the “maximum” functional, and applied it in the stability theory of linear 

systems with delay. Such inequality was called H&nay inequality in several works [2-71, in 

which some generalizations and new applications can be found. In particular, in [6,8], the au- 

thors consider discrete Halanay-type inequalities in order to study some discretized versions of 

functional differential equations. 

As it is pointed out in [6], although there are many numerical schemes to approximate the 

solutions of continuous type systems, the asymptotic behaviour of the two types of systems 

(discrete and continuous) do not often coincide. For other comments on the difference between 

the dynamics of a continuous time delay differential equation and its discrete version, see also [8]. 
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The purpose of this note is to give a simple discrete version of Halanay’s lemma, and to apply it 

to obtain results on the global asymptotical stability of certain generalized difference equations. 

Moreover, we show that the classical criterion on the absolute stability (or delay-independent 

stability) in certain delay equations holds for the discretized equation using the Euler scheme if 

the discretization step is small enough. 

2. DISCRETE HALANAY INEQUALITY 

In this section, we give a discrete version of the original Halanay inequality. Although our 

result could be deduced from [6, Theorem 3.11, we include here our simpler proof in order to 

point out how the constant X0 involved in the asymptotic formula can be easily obtained. 

First, we give some preliminaries on the difference equation 

Ax:, = f(n, x,, G-I,. . . xv,), n E N, (1) 

where Ax, = x,+1 - xn, and f : N x IRrfl + Et. Equation (1) is a class of generalized difference 

equation (see [9, Section 21). The initial value problem for this equation requires the knowledge of 

initial data {x_,, x_~+I,. . . , x0). This vector is called initial string in [8]. For every initial string, 

there exists a unique solution {x~},Q-~ of (1) that can be calculated by the explicit recurrence 

formula 

2 n+1 - - X72 + f(n, Xn, Xv-l,. . . Xcn-r), n 2 0. (2) 

THEOREM 1. Let r > 0 be a natural number, and let {x,),2+ be a sequence of real numbers 

satisfying the inequality 

Axn 5 --ax, + bmax {x,, x,-l,. . . ,x,_,.} , n 2 0. (3) 

If 0 < b < a 5 1, then there exists a constant X0 E (0,l) such that 

2, ~max{O,x~,x_~ ,... z_~}X~, n > 0. 

Moreover, X0 can be chosen as the smallest root in the interval (0,l) of equation 

x ‘+’ + (a - l)Xr - b = 0. (4) 

PROOF. Let {y,} be a solution of the difference equation 

Ayn = --a~, + b max { yn, ~~-1,. . . , y+,.} , n 2 0. (5) 

Since 1 -a > 0, b > 0, it is easy to prove that if {x,} satisfies (3) and x, 5 yn for n = -r, . . , 0, 

then x, < yn for all n 2 0. 

Now, if K > 0, X E (0, l), the sequence {y,} defined by yn = KXn is a solution of equation (5) 

if and only if X is a solution of (4). Define F(X) = XV+’ + (a - 1)X’ - b. F is continuous on 

(O,l], limx_o+ F(X) = -b < 0, and F(1) = a - b > 0. Hence, there exists X0 E (0,l) such 

that F(Xo) = 0 ( we can choose the smallest value of X satisfying this equation since F(X) is a 

polynomial and it has at most r + 1 real roots). 

Thus, for this X0, {KX;} is a solution of (5) for every K > 0. Finally, let K = max{O,x_,, 

. . ) 20). Clearly, y, 2 2, for all n = -r, . . . , 0. Hence, using the first part of the proof, we can 

conclude that x, 5 yn = KX; for all n 2 0. 
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3. ASYMPTOTIC STABILITY OF 
GENERALIZED DIFFERENCE EQUATIONS 

In this section, we consider the following generalized difference equation: 

Ax, = -ax, + f(n,x,,x,-l,~~ .x:n-r), a > 0. (6) 

Although for every initial string {x_,., x+,+1,. . . ,x0}, the solution {x~} of (6) can be explicitly 
calculated by a recurrence similar to (2), in general it is difficult to investigate the asymptotic 
behaviour of the solutions using that formula. The next result gives an asymptotic estimate by 
a simple use of the discrete Halanay inequality. 

THEOREM 2. Assume that 0 < a 5 1 and there exists a positive constant b < a such that 

I.f(n,h... ,xn_r)l < bll(xcn,. ..,xn--T)llco, v(x:n,. ,xn-r) E JF+l. (7) 

Then there exists X0 E (0,l) such that for every solution {xn} of (6), we have 

where X0 can be calculated in the form established in Theorem 1. 
As a consequence, the trivial solution of equation (6) is globally asymptotically stable. 

PROOF. Let {xcn} be a solution of equation (6). From [9, Section 11, we know that 

n-1 

2 71 = x()(1 -a)” + X(1 - a)n-i-1f(i,2i,. . . ,xi-r), 11 2 0. 

i=O 

Thus, using (7), we obtain 

n-1 

Ixnl 5 Ixol(l - CX)~ + x(1 - a)n-2-1bmax{~x,~,. . . , Ix+-/}, n > 0. 
i=O 

Denote v, = )x,1 for n = -T, . . . , 0, and 

n-1 

Y, = lxo/(l - CZ)~ + x(1 - u)n--z-lbmax{lx:iI, 
i=O 

for n > 0. We have that Ix,1 5 II,, and hence, 

Au, = --a~, + bmax{jx,l,. . . , Ix:n_rl} 5 --au, + bmax{v, 

Theorem 1 ensures that 

. . . 

3 . . 

> [Xi-rl}r 

. , %L-T), n > 0. 

with X0 as it was indicated in the statement of the theorem. 

EXAMPLES. Equation (6) covers a variety of difference equations. For instance, we can mention 
equations 

Axe, = -ax, + f(x,-lc), a > 0, (8) 

investigated recently in [lo]. Theorem 2 ensures that if there exists b > 0 such that If(x)1 < blxl 
for all x, and b < a < 1, then all solutions of (8) converge to zero. 
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On the other hand, condition (7) is satisfied by some linear and nonlinear generalized difference 

equations. We can mention equation 

71 

X n+1 = c bixir bi E R, 
i=TL-r 

for which Theorem 2 gives the global asymptotic stability of the equilibrium if 

SUP 2 lbil < 1, 
QeN icn-r 

(9) 

(10) 

since equation (9) can be rewritten in the form 

Axe, = -2, -t- f(x,, . . . , xv,), 

with f(x,, . . . ,x,_,.) = ~~=“=,_, bixi. For example, (10) is satisfied by equation x,+1 = (l/p)(x, 
+... -I- 2,_,) if p > r + 1. 

For more general results on the asymptotic behaviour of generalized difference systems, we 

refer the reader to [9, Section 91. 

We also point out that Theorem 2 applies to the linear difference equation x,+1 = bxn. In this 

case, the condition provided by our theorem is precisely (bl < 1. Thus, with some reservations, 

we can affirm that our result is sharp in some sense. 

REMARKS. A similar result to Theorem 2 can be obtained for systems of difference equations by 

using appropriate norms of vectors and matrices. Moreover, our result can be also extended to 

generalized difference equations with variable coefficients a, using the results in [6]. 

4. DISCRETIZATION OF 
DELAY EQUATIONS 

Let us consider the functional differential equation 

x’(t) = -ax(t) + b(t)f(t,xt), x0 = 4, (11) 

where 4 E C(I), I = [-r,O], xt E C(I) is defined by Q(S) = x(t + s) for s E I, f : IR x C(I) -+ LR 

is a continuous functional, a > 0 and b E L”(R,R). 

Using the continuous Halanay inequality, one can prove (see [4, Corollary 3.21) that if ]f(t, d)] < 

II41 = mwd 14s(s)/ for all 4 E C(I), and esssup]b(t)] = b < a, then all solutions of (11) converge 

to zero. 

We are interested in studying if the delay-independent condition b < a for the global stability 

of (11) is preserved when we use a numerical scheme to approximate the solutions of (11). First, 

we propose the following idea to perform this approximation. We divide the interval I into r 

subintervals of the same length h = T/r (h will be the discretization step), and introduce the 

notations to = 0, t n+i = t, +ih, x(tn) = xn, x(t, +ih) = x n+i, i E Z. Since the initial function 4 

is known, we can calculate x, = $(tn) for n = -r, . . . ,O. On the other hand, given r + 1 points 

p,_, = (tn-r,~C71--T), . . . ,p, = (t%,x,), we define $, : [tn+, tn] -+ I!% as the piecewise linear 

function connecting the points p,_,, . . . ,p,, and cpn(t) = qn(t - t,). Since (Pi E C(I), we can 

evaluate f(tn, cp,). 

Thus, we can use the explicit Euler discretization method to approximate the solutions of (5) 

in the form 
x,+1 - xn 

h 
= -ax, + j((n, x,, . . . , x,-,), n > 0, (12) 
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where f(n, z,, . . . ,x,x-,) = b(kJf(tn, cp,). N ow, we can rewrite (12) in the form AXE = -ahx, + 

he%, xn, . . . ,x,_,). Moreover, 

Ihf(n,x,, . . .,x,&I = lh~(tn).f(~n,ad 5 hW,4 = Wl(xn,. . . ,xn-r)llm. 

Thus, Theorem 2 allows us to ensure that all solutions of (12) converge to zero if bh < ah < 1, 

that is, if b < a and h 1. l/a. Hence, for a sufficiently small size of the discretization step, we can 

affirm that the asymptotic stability properties of equation (11) are preserved for the generalized 

difference equation (12). 
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