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Abstract—In this note, we prove a discrete analogue of the continuous Halanay inequality and
apply it to derive sufficient conditions for the global asymptotic stability of the equilibrium of certain
generalized difference equations. The relation with some numerical schemes for functional delay
differential equations is discussed. (© 2002 Elsevier Science Ltd. All rights reserved.
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1. INTRODUCTION

In [1, Section 4.5], Halanay proved an asymptotic formula for the solutions of a differential in-
equality involving the “maximum” functional, and applied it in the stability theory of linear
systems with delay. Such inequality was called Halanay inequality in several works [2-7], in
which some generalizations and new applications can be found. In particular, in [6,8], the au-
thors consider discrete Halanay-type inequalities in order to study some discretized versions of
functional differential equations.

As it is pointed out in [6], although there are many numerical schemes to approximate the
solutions of continuous type systems, the asymptotic behaviour of the two types of systems
(discrete and continuous) do not often coincide. For other comments on the difference between
the dynamics of a continuous time delay differential equation and its discrete version, see also [8].
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The purpose of this note is to give a simple discrete version of Halanay’s lemma, and to apply it
to obtain results on the global asymptotical stability of certain generalized difference equations.
Moreover, we show that the classical criterion on the absolute stability (or delay-independent
stability) in certain delay equations holds for the discretized equation using the Euler scheme if
the discretization step is small enough.

2. DISCRETE HALANAY INEQUALITY

In this section, we give a discrete version of the original Halanay inequality. Although our
result could be deduced from [6, Theorem 3.1], we include here our simpler proof in order to
point out how the constant A¢ involved in the asymptotic formula can be easily obtained.

First, we give some preliminaries on the difference equation

Az, =f(n,$n7$n—17~--xn—r)s neN, (1)

where Az, = Zp11 — T, and f : Nx R™*! — R. Equation (1) is a class of generalized difference
equation (see [9, Section 2]). The initial value problem for this equation requires the knowledge of
initial data {z_,,Z_p41,...,Zo}. This vector is called initial string in [8]. For every initial string,
there exists a unique solution {z,},>_r of (1) that can be calculated by the explicit recurrence
formula

Tntl :xn+f(na$n,xn—-l7---$n—r)v n2>0. (2)

THEOREM 1. Let r > 0 be a natural number, and let {z,}n>-r be a sequence of real numbers
satisfying the inequality

Az, € —ar, + bmax{z,,Tn_1,...,Tn-r}, n > 0. (3)
If0 < b < a <1, then there exists a constant Ag € (0,1) such that
Zn <max{0,zo,T-1,...Z-r} AT, n > 0.
Moreover, Ao can be chosen as the smallest root in the interval (0,1) of equation

Mt (@a-1DA"=b=0. (4)

ProoF. Let {y,} be a solution of the difference equation
Ayn=‘_ayn+bma‘x{ynayn—17~--7yn—r}a n > 0. (5)

Since 1—a > 0, b > 0, it is easy to prove that if {z, } satisfies (3) and z, < y, forn = —r,...,0,
then z,, <y, for all n > 0.

Now, if K > 0, A € (0,1), the sequence {y,} defined by y, = KA™ is a solution of equation (5)
if and only if A is a solution of (4). Define F(A) = A™*! + (a — 1)A" — b. F is continuous on
(0,1], limy_o+ F(A) = —b < 0, and F(1) = a — b > 0. Hence, there exists Ay € (0,1) such
that F(XAg) = 0 (we can choose the smallest value of A satisfying this equation since F'(A) is a
polynomial and it has at most r + 1 real roots).

Thus, for this Ao, {K A3} is a solution of (5) for every K > 0. Finally, let K = max{0,z_,
...,xo}. Clearly, y, > z,, for all n = —r,...,0. Hence, using the first part of the proof, we can
conclude that z,, <y, = KA} for all n > 0.
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3. ASYMPTOTIC STABILITY OF
GENERALIZED DIFFERENCE EQUATIONS

In this section, we consider the following generalized difference equation:
Az, = —arp + f(N, Tn, Tno1y- - Tnor), a>0. (6)

Although for every initial string {_,,Z_r41,..., %0}, the solution {z,} of (6) can be explicitly
calculated by a recurrence similar to (2), in general it is difficult to investigate the asymptotic
behaviour of the solutions using that formula. The next result gives an asymptotic estimate by
a simple use of the discrete Halanay inequality.

THEOREM 2. Assume that 0 < a <1 and there exists a positive constant b < a such that
|f(naxn»---axn—r)l < b”(l'm---»mn—r)noo» V(Tn,.. ., Tn_r) € R™*, (7)
Then there exists A\p € (0,1) such that for every solution {x,} of (6), we have
< ; n >
|Za| < (_rrllsaigo{lﬂczl}) 3, n=0,

where A\g can be calculated in the form established in Theorem 1.
As a consequence, the trivial solution of equation (6) is globally asymptotically stable.

PROOF. Let {z,} be a solution of equation (6). From [9, Section 1], we know that

n—1
Ty = zo(l —a)™ + Z(l —a)" Gz, Ty, n > 0.
i=0
Thus, using (7), we obtain
n—1
|zn| < lzol(l —a)™ + Z(l —a)" " hmax{|zy,. .., |zi_r|}s n > 0.
i=0
Denote v, = |z,| for n = —r,...,0, and
n—1
Up = |zol(1 — a)™ + Z(l —a)" " hmax{|z,, ..., |zi s}
1=0

for n > 0. We have that |z,| < v,, and hence,
Av, = —av, + bmax{|z,l,...,|Tn=r|} £ —av, +bmax{v,,...,vn-r}, n > 0.

Theorem 1 ensures that
< < . n — . n
Zn] <vp < (-rrné}éo{vl}> Ao (—rrng%)éo{u"}) AT, n >0,

with Ag as it was indicated in the statement of the theorem.

ExAMPLES. Equation (6) covers a variety of difference equations. For instance, we can mention
equations
Az, = —az, + f(Tn_k), a>0, (8)

investigated recently in [10]. Theorem 2 ensures that if there exists b > 0 such that |f(z)| < b|z]
for all z, and b < @ < 1, then all solutions of (8) converge to zero.
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for which Theorem 2 gives the global asymptotic stability of the equilibrium if

sup Z bs) < 1, (10)

neN |

since equation (9) can be rewritten in the form
Az, = —xp + f(mna cee 7xn—7‘)y

with f(Zn, ..., Tn-r) = 2 i, bizi. For example, (10) is satisfied by equation z,+1 = (1/p)(zx
+oitra)ifp>r+ L

For more general results on the asymptotic behaviour of generalized difference systems, we
refer the reader to {9, Section 9].

We also pomt out that Theorem 2 applies to the linear difference equation z,,+1 = bz,. In this

rovided bv our theaorem i raciaaly Bl « 1 Thn
T I T1eCre reciseiy (9 < 1.

Mransamrr A ointlas maga:le 4~ [ PN PR,  cxrcdbane AL 2 RPN . S
IVEMIARRKRD S opinial 1oouly o .LUCUIC & Lall C O 2] b_ybl/b'l 15 O 4ile1enee cquauux S5 U_y
using appropriate norms of vectors and matrices. Moreover, our result can be also extended to
generalized difference equations with variable coefficients a, using the results in [6].
4. DISCRETIZATION OQF
Let us consider the tunctional diflerential equation

ey PR AN 174\ £/ \ — A IEER}

LAL) = —axit) + oL) L, L)y Lo = @, (11)
where (T T:[_ﬂ-n]rrcf'(r\u:r‘nn vm.fe\:m(+.1.o\ Ar el £ v/"(’\_)m’
where ¢ € C(I), I = [-7,0], z; € C(]) is defin zi(s)=z(t+s)forsel, f:RxCI)-R

Using the continuous Halanay inequality, one can prove (see [4, Corollary 3.2]) that if | (¢, ¢)| <
[lo|| = maxser [¢(s)] for all ¢ € C(I), and esssup[b(t)| = b < a, then all solutions of (11) converge
to zero.

We are interested in studying if the delay-independent condition b < a for the global stability
of (11) is preserved when we use a numerical scheme to approximate the solutions of (11). First,
we propose the following idea to perform this approximation. We divide the interval I into r
subintervals of the same length h = 7/r (h will be the discretization step), and introduce the
notations tg = 0, tnyi = tn + 10, 2(tn) = Tp, z{in +ih) = Zp+i, ¢ € Z. Since the initial function ¢

is known, we can calculate z,, = ¢(¢,) for n = — ..,0. On the other hand, given r + 1 points
o — (4 - \ m = (F V' we define o - [ + 1 o B 5¢ the niccewise linear
Pn—r &= \in—rydn—rjy 1 Pn \tnyTnjy WC aenne y, ¢ tbn—ryin} 7 AN dS LS proCTOWIST 1iCal

function connecting the points p,_,,...,pn, and @, (t) = ¥,(t — t,). Since ¢, € C({I), we can
evaluate f(t,,vn).
Thus, we can use the explicit Euler discretization method to approximate the solutions of (5)

in the form
Tnyl — Tn

h = —azp + f(M,Tn, ...y Tner), n>0, (12)
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ere f(n,Zn,...,Tnr) = b(tn)f(tn, prn). Now, we can rewrite (12) in the form Az,, = —ahz, +
(N, Tn,.-.,Ln-r). Moreover,

|hf(n, Tryoos ,zn_r)| = |hb(tn) f(tn, on)| < hbllonll = Bbl|(Tny- .. s Zn-r) | 0o-

Thus, Theorem 2 allows us to ensure that all solutions of (12) converge to zero if bh < ah < 1,
that is, if b < @ and h < 1/a. Hence, for a sufficiently small size of the discretization step, we can
affirm that the asymptotic stability properties of equation (11) are preserved for the generalized
difference equation (12).

—_
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