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Abstract Population abundance of many species is con-
trolled by a combination of density-dependent processes
during different periods of the annual cycle. In the con-
text of population exploitation or conservation programs,
sequential density dependence has the potential to dramat-
ically change population responses to harvesting. Looking
for a better understanding of the potential effects of harvest-
ing on the dynamics of seasonal populations, we carry out
a theoretical analysis of a discrete model for a semelparous
population with an annual cycle involving three discrete
density-dependent events: breeding, natural mortality, and
harvesting. Our study reveals how the interplay between
the model parameters determines the importance of harvest
timing on stability and population abundance, especially
when two nontrivial stable equilibria coexist. We address the
possibility for compensatory mortality and report different
forms of the hydra effect, including non-smooth ones due to
catastrophic shifts. These drastic switches may include hys-
teresis, which has important implications for conservation
goals. Regarding variability, we show that increasing the
harvesting effort may either stabilize or destabilize the pop-
ulation, and these effects strongly depend on harvest timing
and natural mortality rates. Our results also emphasize the
importance of sampling populations after every discrete
event occurs during one cycle. Indeed, though the dynam-
ics are not affected by census timing, the model shows that
changes in population abundance in response to changes
in harvesting pressure are substantially different depending
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on when population is sampled. Thus, a manager would
receive different (and sometimes contradictory) messages
depending on census time, which could lead to managing
mistakes.
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Introduction

Population abundance of many species is influenced by
density-dependent events that operate at different periods
of the annual cycle. For example, migratory waterfowl
have life cycles consisting of breeding and non-breeding
seasons, and they are subject to commercial and sport
hunting. It is known that both the intensity and timing of
hunting have a strong influence on population abundance.
In most countries, the legal hunting season of migratory
birds is autumn, which is sometimes argued as prefer-
able because density-dependent processes will compensate
for hunting losses (McCulloch et al. 1992). In Canada
and USA, pre-breeding hunting of greater snow geese was
prohibited by the Migratory Bird Convention, and the pop-
ulation of these birds experienced a rapid growth during
the late twentieth century, becoming overabundant. Thus,
managers introduced control actions, including a special
spring hunt season (Calvert and Gauthier 2005; Juillet et al.
2012). Anadromous salmonids constitute another migratory
species subject to density-dependent processes of repro-
duction and mortality and substantial human exploitation.
For some populations, commercial and recreational fishing
for anadromous salmon kills over 80–90 % of individu-
als (Hilborn and Walters 1992; Hard et al. 2008). Apart
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from migratory animals, annual plants experience seasonal
density-dependent events (Watkinson 1980) and can be sub-
ject to human and herbivory harvest. For example, fennel
pondweed is a submerged macrophyte that survives the win-
ter in the form of tubers, which are harvested by Bewick’s
swans in the Netherlands every autumn. Jonzén et al. (2002)
analyzed the potential effects of this seasonal harvest on
mean densities and variability of tubers using a discrete
model of sequential density dependence.

The mathematical modeling approach used by Jonzén
et al. (2002) consists of a discrete-time model involving a
breeding and a non-breeding season. This approach goes
back at least to Fretwell (1972) and has been recently used
for migratory birds (Ebbinge et al. 2002; Norris 2005). From
a theoretical perspective, it has been shown that the dynam-
ics of discrete models with density regulation in two seasons
within the same annual cycle can be more involved that
the dynamics of simple models without temporal separa-
tion between events, and one important difference is the
possibility of multiple positive equilibria (Kot and Schaffer
1984; Rodriguez 1988). Multistability opens the door for
boundary collisions, catastrophic shifts between attractors,
and hysteresis, which are responsible for dramatic changes
in the dynamics in response to smooth changes in the model
(May 1977; Scheffer et al. 2001; Vandermeer and Yodzis
1999).

In the context of population harvesting or conserva-
tion programs, a seasonal model incorporates a harvesting
event during each life cycle. Jonzén and Lundberg (1999)
considered a discrete model with three different seasons
(corresponding to three discrete events: breeding, survival
to the non-breeding season, and constant effort harvesting).
They showed that population stability is strongly affected
by the temporal structure of density dependence, and yield
varies depending on when harvesting occurs in the annual
cycle. The importance of the order of events in these types
of models had already been highlighted by Åström et al.
(1996). The population model proposed by Jonzén and
Lundberg (1999) has also been used to show how seasonal-
ity can result in compensation, that is, increasing harvesting
effort can increase annual survival (Boyce et al. 1999), and
how these compensatory effects depend on harvest timing
(Ratikainen et al. 2008).

The ecological questions that drive our work are related
to the management of seasonal populations and, in partic-
ular, the relevance of harvest timing. A biological example
of the different times of harvest is autumn hunting versus
spring hunting; Kokko (2001) concludes that a simple mist-
iming of harvesting may cause drastic declines in population
abundance. Autumn harvest is typically argued as prefer-
able, as it removes individuals who might have died anyway
(Ratikainen et al. 2008). However, some examples using the
population model proposed by Jonzén and Lundberg (1999)

suggest that spring harvest may result in a higher mean pop-
ulation density. In regard to stability, the results in (Jonzén
and Lundberg 1999) suggest that increasing harvesting is
stabilizing, and the stabilizing effect also depends on harvest
timing.

This repertoire of complicated dynamics in discrete sea-
sonal models stresses the need for a deeper analysis of
population responses to harvesting, accounting for changes
in population abundance, stability properties, and resilience
(Holling 1973). In this paper, we follow the approach in
Jonzén and Lundberg (1999) and consider a discrete model
of an annual cycle that includes three seasons: mortality,
harvesting, and reproduction. We make a thorough exam-
ination of the dynamics, putting special emphasis on the
possibility for compensatory effects, for which we use
the term hydra effect coined by Abrams (2009), that is,
an increase in mean population density in response to an
increase in its per-capita mortality rate. Our numerical sim-
ulations show typical hydra effects for parameter regions
where the model has a global attractor, conditional hydra
effects (a hydra effect for one attractor in regions of bista-
bility), and non-smooth hydra effects, that is, the average
population size undergoes a sudden jump leading to a hydra
effect of large magnitude (Sieber and Hilker 2012). Non-
smooth hydra effects sometimes lead to hysteresis, which
may have important implications for conservation goals.

Our results help to understand how harvest timing deter-
mines the responses of population size to increasing har-
vesting not only for the possibility of hydra effects but also
for population variability. Although previous work (e.g.,
Jonzén and Lundberg (1999)) suggests that increasing har-
vesting is stabilizing, we report the possibility for bubbling
effects (which means that a stable equilibrium can be desta-
bilized and then stabilized again by increasing harvesting
effort), and these effects may occur both when harvesting
precedes or follows reproduction. Actually, an important
novelty of our study is that we analyze how the influ-
ence of harvest timing—both on stability and population
abundance—depends in a subtle way on other parameters of
the model.

Finally, census time is another important factor. Although
census time does not influence the dynamics, the mes-
sage that a manager receives from the mathematical model
strongly depends on when the population is censused.

Mathematical model and dynamical analysis

We consider a single-species discrete-time population
model involving an annual cycle divided into a breeding and
a non-breeding season. In each of these seasons, a discrete
event occurs, which in general is assumed to be density-
dependent: reproduction (R) during the breeding season,
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and mortality (M) during the non-breeding season. In addi-
tion, we assume a third discrete event, harvesting (H), that
can occur before or after breeding.

The annual cycle begins during the non-breeding sea-
son. Denoting by Nb(n), Nnb(n), and Nh(n), the population
sizes at the end of the breeding, the non-breeding, and
the harvesting seasons after n generations, respectively, we
arrive at two systems of difference equations that govern
the population dynamics, depending on the relative order
of events (see Fig. 1). If harvesting occurs before repro-
duction, the order of events is mortality → harvesting →
reproduction (we refer to it as MHR), and the model is
defined by

Nb(n + 1) = R(Nh(n + 1)), (1)

Nh(n + 1) = H(Nnb(n + 1)), (2)

Nnb(n + 1) = M(Nb(n)). (3)

Thus, if we census the population at the end of the breed-
ing season, the difference equation for the MHR model
comes from the composition of the three maps involved in
system (1)–(3), that is

Nb(n + 1) = R(H(M(Nb(n)))). (4)

Using the same simple argument, the difference equation for
the HMR model (harvesting → mortality → reproduction)
is

Nb(n + 1) = R(M(H(Nb(n)))). (5)

Next, we define the maps H,M,R involved in models
(4) and (5).

– For the recruitment function R we use the classical
Ricker map R : [0, ∞) → [0, ∞) defined by R(x) =
xer(1−x) (Ricker 1954; May and Oster 1976). Note that,
for simplicity, the map is normalized so that the posi-
tive equilibrium is K = 1; this is not a restriction for
the qualitative study of the model. The parameter r is
related to the birth rate, and it is assumed to be positive.

– For the density-dependent mortality, we also use an
exponential function M(x) = xe−ax , where a > 0 is a
mortality rate during the non-breeding season.

– Finally, we assume a constant effort (proportional) har-
vesting defined by H(x) = (1 − h)x, where h ∈ [0, 1)

is a measure of the harvesting strength (for simplicity,
we will refer to h as to the harvesting rate).

Using these functions, the explicit equation for the MHR
model is

Nb(n + 1) = (1−h)Nb(n) exp
(
−aNb(n) + r(1− (1 − h)

× Nb(n)e−aNb(n))
)

:= f (Nb(n)),

(6)

with a > 0, r > 0, 0 ≤ h < 1.
Analogously, the explicit equation for the HMR model is

Nb(n + 1) = (1 − h)Nb(n) exp
(
− a(1 − h)Nb(n)

+ r(1 − (1 − h)Nb(n)e−a(1−h)Nb(n))
)

:= g(Nb(n)). (7)

We emphasize that models (6) and (7) assume that popula-
tion is measured after reproduction. With this convention,
HMR and MHR are the only possible relative positions for
the three involved discrete events, but allowing census at the
end of each discrete event, there are six possible combina-
tions. We only pay attention to this aspect in our discussion
about the importance of census timing.

Next, we discuss some basic properties of functions f

and g defined in Eqs. 6 and 7, respectively. An interesting
observation is that the only difference between maps f and
g is that parameter a in the expression of g is multiplied by
(1 − h). This simple fact allows us to easily translate the
properties of one map to the other and also to analyze the
difference between them. This difference becomes crucial,
because it explains (theoretically) the different dynamical
consequences between harvesting after or before breeding.

It is easy to check that maps f and g do not have any
positive fixed point if R0 := r + ln(1 − h) ≤ 0, so popula-
tions are doomed to extinction if h exceeds the critical value
h∗ := 1 − e−r . Next, we assume that h < h∗ (equivalently,
R0 > 0). An elementary analysis (see, e.g., (Rodriguez
1988) for a related study) shows that f can have either one
or three critical points. Indeed, if r(1 − h) ≤ ae then f is

Fig. 1 Schematic
representations of the MHR
model (left) and the HMR model
(right)

a b
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Fig. 2 Representation of the
curve y = f (x) defined by the
right-hand side of the MHR
model (6) (solid line) and the
line y = x (dashed line) for
r = 5, a = 0.3, and three
different values of the
harvesting rate h

a b c

unimodal, with a unique critical point (a local maximum) at
c2 = 1/a. If r(1 − h) > ae then the point c2 becomes a
local minimum, and f has two local maxima at c1, c3, with
0 < c1 < c2 < c3 and f (c1) = f (c3) = er−1/r .

If f is unimodal, then it has a unique positive equilibrium
K , which is a global attractor if it is locally asymptotically
stable. Otherwise, there is a nontrivial attractor that can be
a periodic orbit or a chaotic attractor, but bistability is not
possible. However, if f has three critical points, the pos-
sibility for coexistence of two nontrivial attractors appears
if r is large enough (see, e.g., Fig. 4). Analytic conditions
for the existence of more than one positive equilibrium are
available (using the Appendix by Rodriguez (1988)). A nec-
essary condition is R0 ≥ 4, and therefore, r cannot be
small.

An interesting outcome of the existence of three positive
equilibria is that increasing harvesting can either promote or
prevent bistability and also lead to an abrupt change of the
attracting equilibrium. For an illustration, see Fig. 2, where
the map f is represented for r = 5, a = 0.3, and three
different values of h. For h = 0.2, there is only one pos-
itive equilibrium; for h = 0.45, f has three positive fixed
points; and, for h = 0.6, there is again only one positive
equilibrium, but it is much larger than the one for h = 0.2.
We notice that when f has only one positive equilibrium, it
attracts all solutions of Eq. 6 with positive initial conditions
(the same arguments from Liz (2016) are valid). Thus, an
increasing mortality due to harvesting leads to a non-smooth
hydra effect. This effect was formally defined by Sieber and
Hilker (2012), and it means that the average population size
undergoes a sudden jump leading to a hydra effect of large
magnitude (see also Schreiber and Rudolf (2008), Abrams
(2009)).

In order to understand the influence of the involved
parameters on the dynamics of model (6), we fix r = 5 and
plot the stability diagram in the plane of parameters (h, a);
see Fig. 3. The solid lines correspond to the border of the
region where there are three positive equilibria; these curves
can be determined analytically by a procedure similar to

the one reported in the Appendix by Rodriguez (1988). The
dashed lines determine the regions where one of the equilib-
ria loses its asymptotic stability; if we denote the equilibria
by K1, K2, K3, with 0 < K1 < K2 < K3, then K2 is always
unstable. The stability boundaries for K1 and K3 are plotted
numerically.

Figure 3 is especially useful to understand the changes in
the dynamics of Eq. 6 as the harvesting rate h is increased.
To further illustrate this item, we plot the bifurcation dia-
grams for the values a = 0.3 and a = 0.37. See Fig. 4.

From Fig. 4, we can report some interesting phenomena
in the population responses to increasing harvesting.

1. First, increasing harvesting can either promote or pre-
vent coexistence of two nontrivial attractors. For a =
0.3 (Fig. 4a), two stable positive equilibria coexist for
h ∈ (0.405, 0.495), while for h > 0.495 there is a
globally attracting equilibrium. For a = 0.37 (Fig. 4b),
coexistence of two nontrivial attractors occur for h ∈

Fig. 3 Stability diagram for the MHR model defined by Eq. 6, with
r = 5. In the region enclosed by the two solid lines, the equation
has three equilibria. The red dashed lines are the stability boundaries
where the lower equilibrium K1 or the higher equilibrium K3 undergo
stability switches. The horizontal black dashed lines correspond to the
values of parameter a for which a bifurcation diagram is plotted in
Fig. 4; namely, a = 0.3 in Fig. 4a, and a = 0.37 in Fig. 4b
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Fig. 4 Two bifurcation diagrams for the MHR model defined by Eq. 6,
using the harvesting rate h as the bifurcation parameter (red dashed
lines correspond to unstable equilibria). a For a = 0.3 and h = 0, there
is an unstable equilibrium K1, and Eq. 6 exhibits chaotic behavior; as
h increases, the equilibrium becomes stable at h ≈ 0.302 and remains
stable until it disappears after a tangent bifurcation at h ≈ 0.495. At

h ≈ 0.405, two new equilibria K2 < K3 arise; while K2 is unstable,
K3 is asymptotically stable until it disappears at h∗ = 1−e−5 ≈ 0.993.
b For a = 0.37 and h = 0, there are three positive equilibria
K1 < K2 < K3, but only K3 is stable. K1 becomes stable at h ≈ 0.1,
and remains stable until it disappears at h ≈ 0.307. K3 undergoes two
stability switches, being unstable between h ≈ 0.501 and h ≈ 0.897

(0, 0.307); on the interval (0, 0.1), the equilibrium K3

coexists with a two-periodic cycle, while for h ∈
(0.1, 0.307), two attracting positive equilibria coex-
ist. Thus, the long-term behavior of population size
depends on the initial size, being the unstable equi-
librium K2 the boundary between the two basins of
attraction.

2. The second phenomenon is a conditional hydra effect.
This means that a population increase in response to
increasing mortality is observed depending on popula-
tion size. For a = 0.3, the equilibrium K1 is attracting
and exhibits a hydra effect for harvesting rate values in
the interval (0.302, 0.495). However, the upper attractor
K3 only exhibits a hydra effect in a small range of val-
ues. For a = 0.37, we observe a similar phenomenon,
and in this case no hydra effect is observed for large
values of the population size. As far as we know, condi-
tional hydra effects do not seem to have been reported
in the literature, although they are observed in other
models; for example, in a structured consumer resource
model studied by Schreiber and Rudolf (2008).

3. The third phenomenon is a non-smooth hydra effect.
Non-smooth hydra effects occur in the two examples
showed in Fig. 4, and they are due to tangent bifurca-
tions where the lower equilibria K1 and K2 disappear.
Moreover, for a = 0.3, the model exhibits hysteresis
(Scheffer et al. 2001; Schreiber and Rudolf 2008). A
dramatic consequence of the hysteresis is that if the har-
vesting strength is reduced, there is a dramatic drop in
population size at some critical value (h ≈ 0.405 in
Fig. 4a).

4. Other phenomena that are not due to the existence of
more than one positive equilibrium are a period-halving
route from chaos to stability in Fig. 4a, and a bubbling
phenomenon in Fig. 4b, that is, increasing harvesting is
able to destabilize the positive equilibrium K3, although

higher values of the harvesting rate stabilize it again
(see Liz and Ruiz-Herrera (2012)).

The influence of harvest timing

A biological example of the different times of harvest
is autumn hunting versus spring hunting (Kokko 2001;
Ratikainen et al. 2008). Thus, assuming that the breed-
ing season corresponds to summer and the non-breeding
season to winter, it can be illustrative to identify spring
hunting (more generally, spring harvest) with harvesting
before reproduction and after mortality (MHR model (6)),
and autumn hunting with harvesting after reproduction and
before mortality (HMR model (7)).

Assuming that population size is measured after recruit-
ment, to analyze the differences between both harvesting
strategies, we have to look at the relationship between maps
f and g defined in Eqs. 6 and 7, respectively.

In regard to the existence of more than one positive
equilibrium, the qualitative study is similar, but there are
important differences. Figure 5a shows the regions where
the maps f and g have more than one positive fixed
point for r = 5. The symmetry of these regions has
two consequences: first, the HMR model is more likely to
exhibit bistability for larger mortality rates; second, the shift
between alternative attractors that produces a non-smooth
hydra effect in model MHR has the opposite effect in model
HMR, that is, increasing harvesting can produce an abrupt
decline of population abundance (see Fig. 5b, where the
bifurcation diagram is shown for HMR with r = 5 and
a = 0.5). Analogously, the sudden drop in population abun-
dance observed in Fig. 4a due to hysteresis has the contrary
effect for the MHR model. Indeed, there is a sudden increase
in population size if h is reduced below a critical value
h ≈ 0.137.



240 Theor Ecol (2017) 10:235–244

a b

Fig. 5 a Regions where the MHR model defined by Eq. 6 and the
HMR model defined by Eq. 7 have more than one positive equilib-
ria for r = 5. The MHR model corresponds to the region enclosed
by the solid lines, and the HMR model to the region enclosed by
the dashed lines. Notice that the ranges of values for the parameter
a where harvesting induces bistability in the two models are disjoint.
Namely, increasing harvesting in the MHR model leads to bistabil-
ity for a ∈ [0.25, 0.35], while for the HMR model bistability due
to harvesting occurs for a ∈ [0.48, 0.68]. For a ∈ (0.35, 0.48) and
h = 0, the system exhibits bistability, and increasing harvesting leads

the dynamics towards a unique attractor, regardless of harvest timing
(see, e.g., Fig. 4b). b Bifurcation diagram for the HMR model (7) with
r = 5 and a = 0.5 (red dashed lines correspond to unstable equilibria).
Increasing harvesting promotes coexistence of two nontrivial attrac-
tors. A dramatic consequence of this fact is observed at h ≈ 0.397,
where a tangent bifurcation produces a sudden population decrease
from the upper stable equilibrium K3 ≈ 9.927 to the lower stable equi-
librium K1 ≈ 2.842. Hydra effects, hysteresis, and a bubbling effect
are also observed

Next, we use models (6) and (7) to make a theoreti-
cal interpretation of the differences between autumn and
spring harvest both in regard to population abundance and
stability. We notice that our model is very similar to the
one proposed by Jonzén and Lundberg (1999); although
we use Ricker-type functions for reproduction and mortal-
ity instead of the quadratic ones used in that reference, this
fact is not crucial for the general result. According to their
numerical simulations, Jonzén and Lundberg (1999) suggest
that increasing harvesting is stabilizing, and the stabiliz-
ing effect is stronger for the HMR model (autumn harvest).
This means that harvesting may stabilize a population that
cycles in the absence of harvesting, and the necessary har-
vesting strength to achieve stabilization is lower if harvest
occurs after reproduction but before the density-dependent
mortality (HMR model). However, there is a lack of analy-
sis of the influence of other model parameters (such as the
strength of the density dependence in birth and mortality
rates) in Jonzén and Lundberg (1999). This is one of the
main contributions of our study, because we will show that
the influence of harvest timing is parameter-dependent both
for the occurrence of hydra effects and for the stabilizing
role of harvesting.

As we have already observed, the difference between
maps f and g defined as the right-hand sides of Eqs. 6
and 7, respectively, is that the parameter a in g is multiplied
by (1 − h), which makes it smaller. Hence, for stable pop-
ulations, we can estimate the influence of harvest timing on
population size by looking at the rate of change of the equi-
librium K for Eq. 6 with respect to the mortality parameter

a. This rate of change is formally represented by the partial
derivative of K with respect to a and can be calculated using
implicit differentiation. A negative value of ∂K/∂a means
that smaller values of a make K larger, and therefore, HMR
is more favorable. Analogously, a positive value of ∂K/∂a

means that MHR is better if we look for higher population
abundance. Our results show that ∂K/∂a is negative if either
a is large enough, r is small, or h is close to 1. But for small
values of a and h, ∂K/∂a is positive if r is not very small.
See Fig. 6.

Roughly speaking, we can conclude that spring harvest
MHR benefits population abundance for small values of
the mortality parameter a and small to moderate values of
the harvesting rate h. Curiously enough, we obtain similar
results for stability: the stabilizing effect of harvesting is
stronger for the MHR model if a is sufficiently small, and
vice versa. In Fig. 7, we represent the stability boundaries
for r = 4 (obtained numerically); notice that, for small val-
ues of a, harvesting stabilizes the MHR model first, and a
bubbling effect is only possible for HMR; the opposite sit-
uation is observed for larger values of a. This observation
follows from the fact that a bubbling effect is only possi-
ble if the corresponding stability boundary is not monotone.
Other values of r lead to similar results.

To better visualize the influence of a in the dynamics
of Eqs. 6 and 7 as harvesting rate is increased, we show
the bifurcation diagrams for r = 4 and different values of
a in Fig. 8. For a = 0.4, harvesting can destabilize the
equilibrium (via a bubbling phenomenon) if it occurs after
reproduction and before mortality (HMR), and the average
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Fig. 6 Variation of the positive
equilibrium K with respect to
the mortality rate a in Eq. 6. a, b
K is decreasing for
r = 1, h = 0, and
r = 3, h = 0.9, respectively. b,
c For r = 4, h = 0, the profile
of the equilibrium points is
increasing for small values of a,
and decreasing for larger values

a b c

population size is higher in the MHR model (spring har-
vest), except for large values of h. For a = 0.55, the
equilibrium is stable for all values of h, and the response of
the population size to increasing harvesting is dramatically
different for both models when h is small, in agreement with
Fig. 6c. Finally, for a = 0.75, the bubbling effect occurs for
the MHR model, and average population size is larger in the
HMR model (autumn harvest).

We also notice that the profile of the equilibrium size as
harvesting rate increases may exhibit several turning points
(e.g., see Fig. 8c), making hydra effects more subtle; this
behavior is a direct consequence of the fact that map g can
have several critical points (the profile of g with h = 0
determines the shape of the equilibrium curve, as explained
in Liz (2010)).

The importance of census timing

Many of the bifurcation diagrams showed in the previous
sections exhibit a hydra effect in different ways (smooth,

Fig. 7 Stability boundaries for the MHR model (6) (solid lines), and
the HMR model (7) (dashed lines), with r = 4. For a given value of a,
the positive equilibrium becomes stable at the corresponding stability
boundary. Successive stability switches as h increases are possible for
some values of a

non-smooth, conditional). For it to exist, the fact that pop-
ulation density is measured after reproduction is crucial,
because in this way harvesting precedes density-dependent
compensatory natality (Abrams 2009; Boyce et al. 1999).
Clearly, a hydra effect due to harvesting cannot be apparent
in a stable population if the population is censused just after
the harvest season; in this case, hydra effects occur, but they
are “hidden” if only spawners are measured (Hilker and Liz
2013).

In models of sequential density dependence, census tim-
ing is crucial, and populations should be measured as many
times as a discrete event occurs during one year (Åström
et al. 1996). The MHR and HMR models studied in this
paper provide good examples of the different messages for
management depending on census time. Recall that each
of the two possible relative orders produces three different
models depending on census time, although so far we have
only considered one of them.

In Fig. 9, we consider the M→H→R model, correspond-
ing to spring harvest, with r = 4 and a = 0.75. The bifur-
cation diagram exhibits a bubbling phenomenon regardless
of census time because the dynamics do not change if the
relative order of events is the same (Åström et al. 1996).
However, regarding population abundance, there are impor-
tant differences. Census after reproduction (MHR) shows a
population decline due to an increasing harvesting rate, but
population size does not reach too low values due to the
compensatory natality, unless harvest pressure is too high.
Thus, a manager would find acceptable moderate harvesting
rates. If census takes place at the end of the non-breeding
period and prior to harvest (HRM), we observe a hydra
effect for low to moderate values of h, so that the manager
can decide that increasing harvest is beneficial to increase
population abundance. However, if we census after har-
vesting and before reproduction, the bifurcation diagram
for the RMH model shows a population decline with very
low population abundance, so that a manager would prob-
ably conclude that spring harvest is not a good strategy for
this population because even low harvest rates can lead the
population to extinction due to stochastic perturbations.
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Fig. 8 Bifurcation diagrams for
Eqs. 6 (blue solid lines) and 7
(black dotted lines), with r = 4.
Red dashed lines correspond to
unstable equilibria. a a = 0.4, b
a = 0.55, c a = 0.75. See the
text for more comments

a b c

Discussion

A big challenge in harvesting and management theory is
predicting population responses to the removal of individ-
uals (Ratikainen et al. 2008). Here, we aimed to address
this challenge by using mathematical models to understand
population responses to harvesting. Our motivation comes
from seasonal populations, which are regulated by sev-
eral density-dependent mechanisms operating at different
seasons within the annual cycle.

We have used a time-structured discrete-time model,
which is a common approach to model seasonality (Åström
et al. 1996; Boyce et al. 1999; Jonzén and Lundberg 1999;
Jonzén et al. 2002), and has been argued to be more intuitive
than other approaches, such as the use of differential equa-
tions with periodic coefficients (Xu et al. 2005). The con-
sideration of seasonality in discrete models not only leads
to a larger repertoire of complicated dynamics (Kot and
Schaffer 1984; Rodriguez 1988; Vandermeer and Yodzis
1999) but also helps to understand the influence of harvest
timing, a relevant issue that has been highlighted in previ-
ous papers using other models (e.g., Kokko and Lindström
(1998), Kokko (2001), Seno (2008), Cid et al. (2014)). In
our approach, the consequences of different harvest timing

can be easily explored by changing the relative order in
which we choose to model the discrete events that oper-
ate within an annual cycle (following Åström et al. (1996),
Jonzén and Lundberg (1999)). Not only harvest timing, but
also the moment at which populations are censused is very
relevant because some important effects might remain hid-
den if population abundance is only measured one time
during each annual cycle (Hilker and Liz 2013); in a dis-
crete model of sequential density dependence, the dynamics
do not change if the relative order of events in the model is
the same (Åström et al. 1996), but we have shown that it is
crucial to look at the predictions given by the model con-
sidering all possible cyclic permutations for a given order,
which corresponds to sampling the population after every
process within the annual cycle.

Density-dependent processes of breeding and mortality
may produce different forms of compensation if they occur
after harvesting (Boyce et al. 1999), which leads popula-
tions to exhibit the so-called hydra effect (Abrams 2009).
The possibility of hydra effects is one important question
when managing populations, which include fishing, hunt-
ing, or control of plagues, among others. One of the more
interesting outcomes of our study is to show that sea-
sonal populations may exhibit different forms of the hydra

Fig. 9 Bifurcation diagrams for harvest after mortality and prior to
reproduction, depending on census time. We fix r = 4, a = 0, 75, and
use h as the bifurcation parameter. a Census after reproduction(MHR).
b Census after mortality (HRM). c Census after harvesting (RMH).
Notice the difference in the vertical scale; while HRM and RMH

coincide when there is no harvest (h = 0), MHR is not comparable in
magnitude. Moreover, it is worth mentioning that the only difference
between panels b and c is that census occurs after harvesting in panel
c, so that the values for population size in b are multiplied by (1 − h)

in c
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effect. In particular, the possibility of non-smooth hydra
effects reveals that there might be some critical values of
the harvesting effort that induce dramatic changes in pop-
ulation abundance. We would like to add some cautionary
words here: as it has been stressed by Abrams (2009), math-
ematical models usually predict that the harvest rate that
maximizes population stock is slightly less than that which
lead to a fast decrease in population abundance. This fact is
illustrated by Fig. 5b for values of h close to one. But it is
worth noticing that even for lower harvest rates (h less than
0.4), a smooth hydra effect maximizing population stock is
very close to a sudden and large decline.

The phenomenon of hysteresis is also very relevant from
a management point of view. For a manager who were to
reduce harvest in an attempt to increase population size, the
possibility of hydra effects coupled with hysteresis reveals
to be crucial. For example, Fig. 4a shows that, when har-
vest occurs before reproduction and after natural mortality
(MHR), for moderate values of h we observe that a decrease
in the harvest strength would initially result in an increase
in population size, but a further reduction of h leads to
a dramatic drop due to hysteresis. In the opposite case,
Fig. 5b shows that if harvest occurs after reproduction, then
a decrease in h would result in a decrease in population
abundance due to the hydra effect, but hysteresis could lead
to an unexpected and dramatic increase for lower values
of h.

Thus, hydra effects together with hysteresis and harvest
timing must be taken into account for the management of
populations that are affected by sequential density depen-
dence. Our results emphasize that an important question in
a seasonal population with a breeding (say summer) and a
non-breeding season (say winter) is whether autumn harvest
(HMR) is preferable to spring harvest (MHR). Our sim-
ulations (see Figs. 6, 7 and 8) reveal that the strength of
density dependence in the mortality rate during winter plays
an important role. Spring harvest seems to be better for
increasing population abundance and decreasing variability
if mortality rates are low. However, for larger values of the
mortality rate a, autumn harvest is preferable (as argued in
previous works). This fact may be explained because a mod-
erate value of a together with high population abundance
lead to a greater mortality due to the exponential term e−ax

in the equation; thus, reducing the population individuals
who enter the non-breeding season will increase the number
of individuals surviving it Kokko (2001).

We notice that the effects we have described are stage-
specific, because we have considered a semelparous pop-
ulation model without age- or stage-structure. Of course,
age structure can further complicate the study; for example,
even if seasonality does not play a role, in a population with
two age classes (juveniles and adults), it may happen that
hydra or bubbling effects occur when adults are targeted, but

not in a strategy of juvenile-only harvest (Zipkin et al. 2009;
Liz and Pilarczyk 2012). The importance of harvest timing
in structured populations has been discussed by Ratikainen
et al. (2008) using the control of European rabbits as an
example (e.g., see Angulo and Villafuerte (2004)).

Finally, we would like to stress that the interplay between
sequential density dependence and other effects affecting
population fitness can further complicate the dynamics. On
the one hand, the introduction of carry-over effects in a sea-
sonal model (Norris 2005; Ratikainen et al. 2008) influence
population abundance and stability, and carry-over effects
can interact with seasonal harvesting (Juillet et al. 2012);
moreover, it has been recently shown that changes induced
by carry-over effects in harvesting models may strongly
depend on harvest timing (Liz and Ruiz-Herrera 2016). On
the other hand, the consideration of Allee effects due to
mate limitation in simple discrete single-species models can
lead to chaotic transients and sudden collapses (Schreiber
2003). Our simulations with models (6) and (7) using—for
the breeding season—a modified Ricker model with mate
limitation introduced by Schreiber (2003) show that the pos-
sibility of boundary collisions producing catastrophic shifts
is even higher than for the models without Allee effect con-
sidered here. We also expect a very complicated dynamics
if constant quota harvesting is used instead of proportional
harvesting. These issues require further study, and they will
be considered in future work.
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