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Abstract
We consider two classes of birational maps, or birational difference equations, that have

structural properties defined by algebraic relations. The properties are possession of a rational
integral and having a discrete time-reversal symmetry. We then consider how these algebraic
structures constrain the distribution of orbit lengths of such maps when they are reduced over
finite fields, giving a characteristic signature for each property. This can be exploited to test
for such properties over the continuum.

1 Introduction

In this contribution, I will review very briefly various aspects of our research into algebraic and
arithmetic properties of birational difference equations or birational maps. I refer to the original
references for more details and for extended bibliographies.

It has long been recognized that dynamical systems can be classified according to certain
structural properties they might possess. Such structures strongly affect the dynamics, and an
overarching theme of modern dynamical systems is to identify, characterize and exploit dynamical
structures [4, 7]. Here we deal with discrete-time dynamical systems (birational maps or difference
equations), and the structures we consider are possession of integrals or invariants of motion
and possession of reversing (time-reversal) symmetries. Both structures are defined by algebraic
relations which make sense over fields other than the real or complex numbers. By considering
birational maps with these structures over finite fields, we ask what signatures do these structures
leave on such finite phase spaces.

2 Integrable birational maps

Integrable birational maps of the plane are prominent examples of Discrete Integrable Systems
([1, 21] and references therein). They are birational maps L : (x, y) 7→ (x′, y′) with (x, y) ∈
R2 (or C2) that are measure-preserving1 and preserve a rational integral of motion I(x, y) =

1Recall [15, Chapter 2.2] that L is (anti) measure-preserving with density m(x, y) if the Jacobian determinant
J(x, y) := det dL(x, y) can be written J(x, y) = (−) m(x,y)

m(x′,y′) . The latter is equivalent to
∫
V
m(x, y) dxdy =

(−)
∫
L(V )

m(x′, y′) dx′dy′ for any region V in R2 (anti measure-preservation corresponds to L being measure-
preserving and orientation-reversing).
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n(x, y)/d(x, y), with n(x, y) and d(x, y) coprime polynomials, i.e.

(I ◦ L)(x, y) = I(x′, y′) =
n(x′, y′)

d(x′, y′)
=
n(x, y)

d(x, y)
= I(x, y). (1)

A large 18-parameter class of these were given in [12] and take the form:

x′ =
f1(y)− xf2(y)

f2(y)− xf3(y)
y′ =

g1(x
′)− yg2(x′)

g2(x′)− yg3(x′)
, (2)

where fi and gi are particular quartic polynomials. Let

X :=

x2x
1

 , Y :=

y2y
1

 , Ai :=

 αi βi γi
δi εi ξi
κi λi µi

 , i = 0, 1. (3)

Then the polynomials fi and gi can be neatly expressed as components of cross products:

(f1, f2, f3)(y) = (A0Y )× (A1Y ) , (g1, g2, g3)(x
′) = (AT

0X
′)× (AT

1X
′), (4)

while the integral is the ratio of two biquadratics

I(x, y) = B0(x, y)/B1(x, y) (5)

where

Bi(x, y) = X ·AiY = αix
2y2 + βix

2y + δixy
2 + γix

2 + κiy
2 + εixy + ξix+ λiy + µi, (6)

for i = 0, 1. It follows that the map (2) with (4) preserves the one-parameter family (or fibration)
of algebraic curves

B0(x, y) + tB1(x, y) = 0, (7)

by leaving invariant each curve for a given t, that is, it preserves the family curve-wise, (see Figure
3 (Left) for an example where 3 invariant curves are shown). One can check that 1/B1(x, y) is a
preserved density for the dynamics and 1/B0(x, y) is another one.2

The original proof of the integrability of (2)-(4) builds upon the fact that the map (2) is the
composition H ◦G with H and G being involutions (i.e. H2 = G2 = id):

H : x′ = x , y′ =
g1(x)− yg2(x)

g2(x)− yg3(x)
, G : x′ =

f1(y)− xf2(y)

f2(y)− xf3(y)
, y′ = y. (8)

This is the property of reversibility that we will discuss more in the next section. One checks that
H and G preserve I(x, y) of (5) (which is simplified in each case because H and G preserve one
of the coordinates) and so does their composition. As a byproduct, one realizes that if the matrices
Ai of (3) are taken to be symmetric, then the biquadratics of (6) are symmetric in x and y and so

2In fact, for a measure-preserving map with an integral, multiplying a density by any function of the integral gives
another density. Conversely, for any measure-preserving map which has two densities that are not multiples of one
another, the ratio of the two densities furnishes an integral.
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is I(x, y). The latter can then be preserved by a composition of one of H or G with the switch
S : x′ = y, y′ = x. In particular, we find H ◦ S gives the birational integrable map

x′ = y y′ =
g1(y)− xg2(y)

g2(y)− xg3(y)
. (9)

In the literature, (2) and (9) with (4) are known, respectively, as the asymmetric and symmetric
QRT maps (taking Ai as symmetric matrices in the latter case). The symmetric maps (9) can be
written as a second order difference equation by identifying (x, y) with (xn−1, xn) and (x′, y′)
with (xn, xn+1). A particular example is the Lyness map or difference equation:

x′ = y , y′ =
y + α

x
⇔ xn+1 xn−1 = xn + α, (10)

which is well-known in the difference equation community.
Another way to derive the symmetric and asymmetric QRT maps was provided in [2, 13], via

a process of interchanging a parameter in a map with the value of an integral it preserves. To
illustrate, an early example of an integrable planar map (which can also be written as a difference
equation) is McMillan’s map [8]:

x′ = y y′ = −x− βy2 + εy + ξ

αy2 + βy + γ
, (11)

which is area-preserving and has the symmetric biquadratic integral

B(x, y) = αx2y2 + β(x2y + xy2) + γ(x2 + y2) + εxy + ξ(x+ y) + µ. (12)

McMillan’s map is the special case of (9) when all entries of the matrix A1 are 0 except for µ1.
On the other hand, [2] shows how to obtain (9) directly from (11). Firstly, reparametrize the
parameters in (11) and (12) by making them affine in a new parameter t, so α 7→ α0 + α1t, etc.
This corresponds to forming a one-parameter family of McMillan’s maps. Since B(x′, y′, t) =
B(x, y, t), we can solve B(x, y, t) = 0 for t and substitute it into the reparametrized version of
(11), knowing that the resulting map will preserve the new integral ’t’. The resulting map turns
out to be (9) and the new integral is the negative of (5). This technique can be used to create new
integrable maps from existing ones (e.g. in 3 dimensions, see [16]).

In [3], we gave an algebraic geometric description of birational maps, such as the symmetric
and asymmetric QRT maps, that preserve a family of algebraic curves – they are conjugate to
translations on particular elliptic surfaces (see also [1]). More precisely, let C(t) be the field of
rational functions over C in the indeterminate t, called the function field of the complex line, and
let L be an infinite order birational map defined over C(t) that preserves an elliptic curve over
C(t) (like (7)). Then on the associated Weierstrass curve over C(t), L is conjugate to

P 7→ P + Ω(t) (13)

where “+” is the associated group law on the Weierstrass cubic and P and Ω(t) = (ω1(t), ω2(t)),
ωi(t) ∈ C(t) are points on the cubic (for (2)-(4), the associated Ω(t) can be deduced from [1,
Proposition 2.5.6]). This is a strong characterization of the underlying ordered dynamics with var-
ious consequences, including that the dynamics on compact real level sets is conjugate to rotation.
Studies of the rotation number as a function of the height of the level set can be found in [1]. Peri-
odic orbits of period k occur on curves whose parameter value t satisfies kΩ(t) = O, where O is
the identity element on the Weierstrass cubic. Generically, there will be a finite number of curves
in the preserved fibration that are conics with genus 0 rather than genus 1. A characterization of
these singular curves and their geometry has been given in [11].
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3 Reversible maps

A map L is called reversible if there exists a map G that conjugates it to its inverse:

G ◦ L ◦G−1 = L−1 . (14)

The map G is called a reversing symmetry of L. The conjugation (14) is a discrete version of
time-reversal symmetry [5]. It implies that a trajectory of L leads to another trajectory, its image
under G, followed in the reverse time direction (possibly this is one and the same trajectory, then
called symmetric, i.e. invariant under G). A particular case of (14) is when G is an involution –
in this case, reversibility is equivalent to saying that L is the composition of the two involutions
H := L ◦ G and G. We saw above in (8) that the QRT integrable maps were reversible in this
sense. Indeed, by using the result of [3], it follows that those birational maps preserving algebraic
fibrations that are conjugate to the translation (13), will always be reversible, since (13) is the
composition of the two involutions P 7→ −P + Ω(t) and P 7→ −P .

However, many non-integrable maps are reversible, as the product of involutions, particularly
paradigm examples of symplectic maps like the standard map of the cylinder and Hénon’s area-
preserving map:

Lhen : x′ = y, y′ = −x+ y2 + ε, (15)

which is the composition Hhen ◦Ghen with

Hhen : x′ = x , y′ = −y + x2 + ε, Ghen : x′ = y , y′ = x. (16)

Symmetries and time-reversal symmetries have played a fundamental role in dynamical systems
with discrete time ([5, 15] and references therein), starting with Birkhoff’s foundational studies
into the restricted three-body problem. One advantage of reversibility in a map is that symmetric
periodic orbits must contain two points in Fix(G), the fixed point set of G, two points in Fix(H),
the corresponding fixed point set ofH = L◦G or one point in each of these fixed sets (the first two
possibilities lead to the period being even and the last possibility to the period being odd). This
characterisation often means that many such periodic orbits can be found by searching on these
fixed sets rather than in the dimension of the full phase space. For instance, the fixed sets from
(16) are evidently one-dimensional – Fix(Ghen) is the line y = x and Fix(Hhen) is the parabola
y = (x2 + ε)/2.

4 Reductions of birational maps over finite fields and the signatures
of integrals and reversibility

There has been a recent interdisciplinary development of potentially great significance: the emer-
gence of a dynamical systems perspective in algebra and arithmetic, and the parallel growth in the
use of algebraic and arithmetical methods in dynamics. This interaction is loosely labeled arith-
metic dynamics [20]. A particular aspect of arithmetic dynamics concerns dynamics over finite
fields. The simplest example of a finite field is the set Fp of integers modulo a prime number p,
which contains p points [6]. Rational or birational maps can be represented over any mathematical
field in which their coefficients can be so represented. When this representation can be achieved
over finite fields, the n-dimensional birational map is said to be reduced over the finite space Fp

n
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with structure REDUCTION

and transitions between 

and how to perturb it

combinatorial models

1. Discover universal distributions

2. Understand effect of structure

3. Develop probabilistic and

Map

Figure 1: Our program involves the idea of reduction over finite fields of maps with algebraic structure.
The three topics of investigation on the right feed one into the other.

of pn points. So, for instance, Lhen gives an invertible map, a permutation, of the p2 points of Fp
2

for any rational value of ε whose denominator does not contain the prime p. Reduction of polyno-
mials has been an important part of number theory for hundreds of years, whereas the reduction of
the dynamics of rational maps is in its infancy. A big advantage is that over a finite field, the dy-
namics of a rational map can be described exactly and in full by a complete decomposition of the
finite phase space into its constituent orbits. An important subclass of such orbits are the periodic
orbits. The main dynamical questions relate to (periodic) orbit statistics (their number, length and
distribution). What is lost in reduction is any retention of the topology of the continuum, i.e. the
reduced map is not a spatial approximation of its continuum version.

In recent years, Franco Vivaldi and I have studied the implications upon reduction of key
dynamical structures like integrability and symmetry. Starting in [17], we asked: If a rational map
of the real or complex numbers has a structural property expressible in algebraic terms, like (1)
or (14), does the inherited dynamics of this map over a finite field leave a signature of the property
in the finite phase space? The ensuing program of research is summarised in Figure 1. Knowing
the signature of a property after the reduction to finite fields can be used as a necessary condition
to test for the property in a parametrized family of maps (discussed further below for the property
of possession of a rational integral).

Our results suggest that there are different distributions of periods over finite fields for reduc-
tions of birational maps, dependent upon the algebraic property present and with universal (i.e.
map-independent) aspects. We build period distribution functions via

Dp(x) =
#{z : T (z) 6 κx}
# periodic points

(17)

where T (z) is the minimal period of the periodic point z, and the constant κ is a normalization
parameter to be determined below. ThusDp(x) is the proportion of periodic points of the reduction
of the map to Fp

n that have normalized period T (z)/κ less than or equal to x. One coarse measure
is to consider the number of periodic orbits or cycles. In two dimensions, in the case that the
birational map induces a permutation of the p2 points, Figure 2 (Left) highlights the different
behaviors found. There is a grading of number of cycles from integrable through reversible non-
integrable through to irreversible non-integrable. So the presence of reversibility forces there to
be more cycles than when this property is absent, whereas the presence of an integral forces even
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Figure 2: Left: Growth of the number of cycles of the permutation of p2 points with prime p, for the reduc-
tion of an integrable map of the plane (top curve), a reversible non-integrable map of the plane (middle),
and an irreversible non-integrable planar map (bottom). The curves are conjectured to be asymptotic to
p log(p), p, and 2 log(p), respectively. Right: Period distributions for a reversible map. Shown is the ex-
perimental data for the Hénon map (15) at the prime p = 997 for a single choice of ε (the irregular curve),
the experimental average over all ε-values, and the theoretical distribution (19) (the smooth curves). At this
resolution, the last two curves are indistinguishable.

more cycles to arise than when reversibility is present on its own. Of course, the average length of
cycles follows the opposite grading to the number of cycles.

Summarizing our results in more detail:

(i) Irreversible non-integrable birational maps that induce permutations over finite fields appear
to have period statistics consistent with a random permutation of the finite phase space [18]. The
expected number of cycles in a random permutation of cardinality N is log(N) + γ, where γ is
Euler’s constant, so 2 log(p) + γ when N = p2 as in 2 dimensions. On the other hand, the period
distribution (17) with κ = N = p2 can be shown to be Dp(x) = x.

(ii) Birational reversible maps have a lower bound on the number of cycles on their reduction to
finite fields. If the map L satisfies (14) for some birational involution G and does not commute
with maps other than the powers Li, the number of symmetric cycles can be proved [18] to be
[#Fix(G) + #Fix(L ◦ G)]/2, where #Fix(G) and #Fix(L ◦ G) are the cardinalities of the
reductions of the component involutions. Therefore

#Cycles ≥ #Symmetric Cycles = [#Fix(G) + #Fix(L ◦G)]/2. (18)

For example, for the reduction of Lhen of (15), one sees from (16) and the discussion following
that #Fix(Ghen) = #Fix(Hhen) = p so there are p symmetric cycles, and so at least p cycles.
The result of [18] is one about reversible permutations so it is applicable to reductions of bira-
tional maps in any dimension that yield permutations. Furthermore, we have found that (18) is a
very tight bound, as illustrated for (15) in Figure 2 (Left) which generates the number of cycles
curve very close to the diagonal. There are very few asymmetric cycles, asymptotically none in
percentage in the large p limit so that the inequality in (18) then becomes an equality. The period
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distribution for reductions of the reversible maps considered is found via (17) to be

Dp(x) = R(x) = 1− e−x (1 + x), (19)

in the large p limit, with κ taken to be the average cycle length (see Figure 2 (Right)). Although we
have not proved that (19) is the period distribution for a specific reversible map, [10] has recently
shown experimentally that a particularly simple reversible map of the torus which is piecewise
constant has period distribution R(x) and that this distribution arises as a limit of singular period
distributions. Furthermore, [19] has taken a probabilistic approach to the problem in line with
Topic 3 of Figure 1. There it is shown thatR(x) is the expected period distribution of the compo-
sition of a pair of random involutory permutations of a set of cardinality N under mild conditions
on the growth of the cardinality of the fixed sets of the involutions as N → ∞. Finally, in [9]
we have shown that (19) also governs the period distributions in reversible rational maps, where
singularities arise in the denominators leading to aperiodic orbits as well.

(iii) In two dimensions, if a birational map has a rational integral as in (1) which reduces over a
finite field, the level set becomes, typically, an algebraic curve of genus 1 over Fp

2 (more correctly,
over its projective version). The number of points on such a curve is restricted by the Hasse-Weil
bound [14]

p+ 1 + 2
√
p, (20)

which also represents a bound on the length of orbits of the integrable map over a finite field.
Indeed, orbit length observing the bound (20) provides a very effective necessary condition for the
existence of an algebraic invariant as indicated in Figure 3.

A naive idea in Fp
2 might be that one algebraic integral divides the p2 points into p level sets of

approximately p points, so that there are at least p orbits. Computationally, we find more: p log p
cycles when the integrable map induces a permutation – see Figure 2 (Left). This exceeds the p
(symmetric) cycles expected from the reversibility of the integrable birational map. This excess
comes from asymmetric cycles so these are much more plentiful in two dimensional integrable
reversible maps than in their non-integrable reversible perturbations. This can be understood from
the algebraic geometry we discussed in Section 2 and the conjugation to the translation (13). The
period on each level set is a reflection of the order of the translative element Ω(t) reduced over the
finite field. In the case of non-maximal order, the level curve is filled with copies of cycles of the
same period, most of which are asymmetric. The bound (20) and these considerations explain why
the period distribution function (17) for reduced integrable maps (with κ taken as (20)) is found to
be singular with steps at the reciprocals of the integers [3].

A current research interest of ours is to study reductions over finite fields of birational maps in
higher dimensions with integrals and to develop an understanding of the constraints on orbit length
and the number of orbits (with a view to being able to test birational maps for the possession of
one or more integrals).
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Figure 3: Results for birational maps that reduce to permutations over finite fields F2
p. Left: Part of the real

phase portrait of a planar birational map with a rational integral, showing the orbits of the initial conditions
(1, 0), (1, 1) and (1, 2). Middle: Lengths of the orbit of (1, 1) in P(F2

p), divided by the Hasse-Weil bound
(20), plotted as a function of p for the reduction of a one-parameter family of birational maps in the case
of the integrable parameter value ε = 0, whose phase portrait was shown at left. Right: Normalized length
plot again for (1, 1) as for the Middle figure but now for a non-integrable perturbation ε = 10−4 . Whilst
the phase portrait of this perturbation is virtually indistinguishable from the Left figure, the generic orbit
lengths are now well in excess of the Hasse-Weil bound (there is no contradiction since the invariant KAM
curves in the perturbation are not algebraic curves).
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