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Abstract
We present a new formula that makes it possible to get sharp global stability results for
one-dimensional discrete-time models in an easy way. In particular, it allows to show
that the local asymptotic stability of a positive equilibrium implies its global asymptotic
stability for a new family of difference equations that finds many applications in
population dynamics, economic models, and also in physiological processes governed
by delay differential equations. The main ingredients to prove our results are the
Schwarzian derivative and some dominance arguments.

Keywords Global stability · Discrete-time model · Mackey–Glass equation ·
Gamma-model · Schwarzian derivative

Mathematics Subject Classification Primary 39A10 · 39A30; Secondary 34K20

1 Introduction

One of the central problems in dynamical systems modeling population or economic
growth is the study of the existence and uniqueness of a positive equilibrium, and
finding sufficient conditions under which all solutions converge to that equilibrium.
For one-dimensional discrete-time models, existence and uniqueness are generally
proved by elementary methods, and conditions for the local asymptotic stability are
also easy to find in terms of the model parameters. In many cases, the local asymptotic
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stability of a unique positive equilibrium implies its global asymptotic stability (the
folklore statement LAS implies GAS). However, although this property has already
been suggested for some relevant population models in 1976 [12,20], the graphical
analysis proposed theremaywork for particular examples but it does not provide a valid
criterion to establish global stability conditions for a dynamical system depending on
one or several parameters. After the pioneering results of Coppel [4], a very important
step was given by Allwright [1] and Singer [26], with the use of the Schwarzian
derivative: roughly speaking, for a C3 map f decreasing or unimodal, with negative
Schwarzian derivative and a unique fixed point, LAS implies GAS; for a precise
statement, see [10, Theorem 1]. We recall that the Schwarzian derivative of a C3 map
F is defined by the expression

(SF)(x) =
(
F ′′′(x)
F ′(x)

)
− 3

2

(
F ′′(x)
F ′(x)

)2

,

whenever F ′(x) �= 0.
However, not all maps in population or economic models satisfy these conditions.

Other useful tool is dominance or enveloping, which consists of comparing amapwith
another one that has the same equilibrium and it is known to be globally attracting.
In this direction, see [5]. The approaches in [7,13] combine both tools (Schwarzian
derivative and dominance).

Our main aim in this note consists of proving sharp global stability results for a
family of difference equations which finds many applications in different fields such
as population dynamics, economics, or physiological processes. We will refer to this
family of difference equations as gamma-models, and they have the following general
expression:

xn+1 = xγ
n F(xn), n = 0, 1, 2, . . . , (1.1)

where γ ≥ 0, and F : [0,∞) → (0,∞) is a smooth function. Equation (1.1) defines
a sequence {xn}n≥0 starting at any initial condition x0 > 0.

The case γ = 1 has attractedmuch attention in the framework of population dynam-
ics, and in this case F represents the per capita production function. In compensatory
or overcompensatory models, F is strictly decreasing (see, e.g., [11]). Sharp global
stability criteria in this particular case can be found in many papers. Our results in this
note follow the approach in [13], using also some tools from [7].

For 0 ≤ γ < 1, and assuming that F is decreasing, it is clear that (1.1) has a unique
positive equilibrium. For γ = 1, the existence of an equilibrium requires the extra
assumptions F(0) > 1, F(∞) < 1. If γ > 1, then Eq. (1.1) can have more than one
positive equilibria; in the latter case, it is a suitable model for populations with Allee
effects (see, e.g., [14]). We will not consider this case, and will restrict ourselves to
the case 0 ≤ γ ≤ 1. For these values of γ , the use of Eq. (1.1) in population dynamics
is intended to gain flexibility to fit population data. When F(x) = βe−δx , β, δ > 0,
(1.1) provides the gamma-model included in the list of spawner-recruit models in the
book of Quinn and Deriso [22].1 For example, Zheng and Kruse [28] found that this

1 For this reason we use the name gamma-models for (1.1).
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model fits well the stock–recruitment data for three Alaskan crab stocks; for more
references, see [14].

Another interestingmotivation comes from economics. Day [6] proposed tomodify
Solow’s neoclassical growth model [27] introducing a production lag, which led him
to express the model as a difference equation for the capital-labor ratio xn :

xn+1 = s p(xn) f (xn)

1 − λ
, (1.2)

where λ is the natural rate of population growth, s is the (constant) savings ratio, p(x)
is the per capita production function, and f (x) is a decreasing function which repre-
sents a “pollution effect” that reduces the productivity, and it is caused by increasing
concentrations of capital.

Using the Cobb–Douglas production function p(x) = Bxγ (B > 0, 0 < γ < 1),
we arrive at Eq. (1.1) with F(x) = Bs(1 − λ)−1 f (x).

It is worth mentioning that the global stability results for (1.1) provide sharp condi-
tions for the global absolute stability of the positive equilibrium of the related family
of delay differential equations

x ′(t) = −μx(t) + xγ (t − τ)F(x(t − τ)), (1.3)

with μ, τ > 0. By absolute stability, we mean stability for all values of the delay (see
[3] and references therein). We provide an example in Sect. 2.

The main finding in this paper is a new formula—stated as Eq. (2.1)—which pro-
vides sharp global stability results in an easy way. This formula works in many cases
when the criterion of the Schwarzian derivative does not work. In this way, it extends
the classical Allwright–Singer result. To illustrate this fact, consider the following
equivalent form of (2.1) suggested by Víctor Jiménez López:

(SF)(x) <
F(x) − xF ′(x)
2(xF(x))2

(xF(x))′, ∀ x > 0. (1.4)

According to our Theorem 1, condition (1.4) ensures the global asymptotic stability of
the unique equilibrium p of (1.1) if F : [0,∞) → (0,∞) is decreasing, 0 ≤ γ ≤ 1,
and p is locally asymptotically stable. For γ = 0, condition (1.4) is strictlyweaker than
the classical condition (SF)(x) < 0 when F is decreasing but xF(x) is increasing.

For example, consider the map F(x) = a/(1 + x)m , with a > 0, m > 0, for
which (SF)(x) = (1 − m2)/(2(1 + x)2). If m > 1, then (SF)(x) < 0 for all x > 0,
and therefore the Allwright–Singer result applies. However, if 0 < m ≤ 1, then
(SF)(x) ≥ 0 for all x > 0, so this classical result cannot be applied. In this case,
(1.4) holds because xF(x) is increasing; thus our results ensure the global stability of
the unique positive equilibrium p (notice that 0 > F ′(p) = −mp/(1 + p) > −1 if
0 < m ≤ 1).

Two important features of the central result in this note are the following: on the
one hand, it is quite general, allowing to recover some known results in a unified and
simpler way, and to prove some new relevant results for applications. On the other
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hand, it is easily verifiable, as we show in the applications. Therefore, we think it will
be a useful tool for researchers interested in the global stability of difference equations
and delay differential equations.

2 Main Result and Examples

For the main result in this section, we consider Eq. (1.1) with 0 ≤ γ ≤ 1. Next we
state the main assumptions for the map F .

(H) F : [0,∞) → (0,∞) is C3-differentiable and F ′(x) < 0 for all x > 0. For
γ = 1, we also assume that F(0) > 1, F(∞) < 1.

If (H) holds, then there is a unique p > 0 such that F(p) = p1−γ , that is, p is the
unique positive equilibrium of (1.1).

We say that p is a global attractor for (1.1) (or that p is globally stable) if it is
asymptotically stable and all solutions of (1.1) starting at an initial condition x0 > 0
converge to p. We recall that an attracting fixed point of a continuous map of the real
line is always stable [23, Corollary 2.1.3].

Theorem 1 Assume that 0 ≤ γ ≤ 1, F satisfies (H), and the following condition
holds:

x2
(
2(SF)(x) +

(
F ′(x)
F(x)

)2
)

< 1 ,∀ x > 0. (2.1)

Then the local asymptotic stability of the unique positive equilibrium p in Eq. (1.1)
implies its global stability. This stability condition is

− pγ F ′(p) ≤ 1 + γ. (2.2)

Remark We notice that the stability condition (allowing for the non-hyperbolic cases)
is−1 ≤ γ + pγ F ′(p) ≤ 1, but γ + pγ F ′(p) is always less than 1 because 0 ≤ γ ≤ 1
and F ′(p) < 0. In this way, the stability condition is reduced to (2.2).

We provide the proof of Theorem 1 in Sect. 4. Now we show its applicability with
two classical examples from the literature about population dynamics. The second
one gives absolute stability results for a generalization of the Mackey–Glass equation
[18].

Example 1 Consider the gamma-Ricker difference equation [14]:

xn+1 = βxγ
n e

−δxn , (2.3)

where β, δ > 0, 0 ≤ γ ≤ 1. In this case, we easily get:

F(x) = βe−δx , (SF)(x) = −δ2

2
,

F ′(x)
F(x)

= −δ.
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Thus,

2(SF)(x) +
(
F ′(x)
F(x)

)2

= 0, ∀ x > 0,

and (2.1) trivially holds.

Next, condition (2.2) is equivalent to pδ ≤ 1 + γ , which in turn is equivalent to
the global stability condition (see [14]):

β ≤ eγ+1
(

γ + 1

δ

)1−γ

.

Thus, an application of Theorem 1 provides Theorem 1 (A) in [14]. For γ = 1, we
need the extra condition β > 1, so we have the well-known global stability criterion
1 < β ≤ e2 for the Ricker map.

Example 2 In this example we prove a global stability result for the difference equation

xn+1 = βxγ
n

1 + δxmn
, (2.4)

where β, δ,m > 0, 0 ≤ γ ≤ 1. Equation (2.4) is a generalization of the population
model proposed by Maynard Smith and Slatkin [21,25] (which is (2.4) with γ = 1).
We prove the following sharp global stability result:

Proposition 2 Assume that β, δ,m > 0 and 0 ≤ γ ≤ 1. If m ≤ 1+γ , then the unique
positive equilibrium p of (2.4) is globally asymptotically stable. If m > 1+ γ , then p
is globally asymptotically stable if and only if

β ≤ m

m − 1 − γ

(
1 + γ

δ(m − 1 − γ )

)(1−γ )/m

. (2.5)

For γ = 1, we have to assume that β > 1 to ensure the existence of a positive
equilibrium.

Proof Equation (2.4) is of the form of (1.1) with F(x) = β/(1 + δxm). Since

(SF)(x) = 1 − m2

2x2
,

F ′(x)
F(x)

= −δmxm−1

1 + δxm
,

we get

x2
(
2(SF)(x) +

(
F ′(x)
F(x)

)2
)

= 1 − m2 + m2
(

δxm

1 + δxm

)2

< 1, ∀ x > 0.



818 E. Liz, S. Buedo-Fernández

Thus, Theorem 1 ensures that p is globally asymptotically stable if (2.2) holds. In this
case, (2.2) is equivalent to

mδ pm

1 + δ pm
≤ 1 + γ. (2.6)

It is obvious that (2.6) is fulfilled if m ≤ 1 + γ . Next, we assume that m > 1 + γ .
Solving (2.6) for p, we get the equivalent form

p ≤
(

1 + γ

δ(m − 1 − γ )

)1/m

. (2.7)

Since p ≤ x if and only if F(x) ≤ x1−γ , (2.7) holds if and only if

F

((
1 + γ

δ(m − 1 − γ )

)1/m
)

≤
(

1 + γ

δ(m − 1 − γ )

)(1−γ )/m

,

which is equivalent to (2.5). 	

In the particular case m = 1, Eq. (2.4) has been recently studied in [15], where it

has been proved that the positive equilibrium is globally stable for all β, δ > 0 and
0 < γ < 1. Thus, Proposition 2 provides a simpler proof of Theorem 3.1 in [15], and
extends it to any m ≤ 1 + γ .

For γ = 1, we get the sharp global stability condition 1 < β ≤ m/(m − 2) for the
Maynard Smith and Slatkin model.

As an application to delay differential equations, we obtain a global stability result
for the following generalization of the Mackey–Glass equation considered in [19]:

x ′(t) = −μx(t) + βxγ (t − τ)

1 + xm(t − τ)
, (2.8)

where 0 ≤ γ ≤ 1. A well known result (see, e.g., [9]) establishes that if p is a global
attractor for the map

H(x) = βxγ

μ(1 + xm)
,

then p is a global attractor for all positive solutions of (2.8) for all values of τ .
Thus, we get the following corollary from Proposition 2:

Corollary 3 The positive equilibrium of (2.8) is a global attractor for all values of the
delay if either m ≤ 1 + γ , or m > 1 + γ and

β ≤ μm

m − 1 − γ

(
1 + γ

m − 1 − γ

)(1−γ )/m

. (2.9)

For γ = 1, we have to assume that β > μ to ensure the existence of a positive
equilibrium.
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In the classical paper [18], Mackey and Glass considered (2.8) with γ = 0 and γ = 1.
In [8], Gopalsamy, Trofimchuk and Bantsur proved, among other results, the global
stability criterion in Corollary 3 for these two particular cases. It is worth mentioning
that they needed four auxiliary results [8, Lemmas 1 to 4] to get such a result, while
we have stated and proved them in a unified way; furthermore, we have extended it
for the whole parameter range 0 ≤ γ ≤ 1.

3 The Case � = 0

For the case γ = 0, condition (2.1) gives a new formula to prove global stability when
the sign of the Schwarzian derivative is not constant. Hence, it is worth formulating a
more general result for this case. The proof is also given in Sect. 4.

Theorem 4 Assume that the C3 map F : (0,∞) → (0,∞) is either decreasing or
unimodal (with a unique critical point c, which is a local extremum), and has a unique
positive fixed point p, such that F(x) > x if x < p and F(x) < x if x > p. If
F ′(p) ≥ −1 and (2.1) holds for all x > 0 such that F ′(x) �= 0, then p is a global
attractor for

xn+1 = F(xn), n = 0, 1, 2, . . . (3.1)

We give an example that shows the applicability of Theorem 4:

Example 3 In [17], the study of the absolute global stability of the positive equilibrium
of a commodity market model governed by a delay differential equation was reduced
to the global stability of the positive equilibrium of the following difference equation:

xn+1 =
(

−b + a(d + xmn )

cxmn

)1/k

=: F(xn), (3.2)

where a, b, c, d,m > 0, k ≥ 1, and bc < a. The map F : (0,∞) → (0,∞) is
decreasing, and Lemma 2.5 in [17] ensures that (SF)(x) < 0 holds for all x > 0 if
and only if m > k.

However, F satisfies (2.1) also in the case m ≤ k, so a direct application of The-
orem 4 proves that the local asymptotic stability of the equilibrium implies its global
stability. Indeed, direct computations lead to

x2
(
2(SF)(x) +

(
F ′(x)
F(x)

)2
)

− 1 = − (a − bc)m2xm(2ad + (a − bc)xm)

(ad + (a − bc)xm)2
< 0,

since, by hypothesis, a − bc > 0. In [17], the case m ≤ k was solved using Coppel’s
theorem [4].

The previous example corresponds to amonotonemap F . A simple example involv-
ing a unimodal map is given by F(x) = β

√
xe−x (a particular case of (2.3)). It is easy

to check that (SF) does not have constant sign on (0,∞). However,
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x2
(
2(SF)(x) +

(
F ′(x)
F(x)

)2
)

= 1 − 8x

(1 − 2x)2
< 1, ∀ x > 0, x �= 1/2.

Hence, Theorem 4 guarantees that the condition β2 ≤ 3e3/2 for the local asymptotic
stability of the positive equilibrium implies its global stability.

An important remark is that for some difference equations both Theorem 1 and
Theorem 4 can be applied. In these cases, Theorem 1 is usually easier to use. An
additional example showing that Theorem 1works in some situations which do not fall
into the scope of Theorem 4, let us consider the generalized gamma-Ricker difference
equation (see, e.g., [13] for the case γ = 1):

xn+1 = xγ
n

(
α + (1 − α)er(1−xn)

)
=: xγ

n F(xn), (3.3)

where r > 0, 0 ≤ γ ≤ 1, 0 ≤ α < 1. Since the map f (x) = xγ F(x) can have two
critical points, Theorem 4 does not always apply. However, one can check that

2(SF)(x) +
(
F ′(x)
F(x)

)2

= −r2 + r2
(

(1 − α)er(1−x)

α + (1 − α)er(1−x)

)2

≤ 0, ∀ x > 0,

and therefore (2.1) holds.

4 Proofs

Themain ingredient to proveTheorem1 is the following generalization of Theorem2.3
in [13], where the case γ = 1 has been considered.

Theorem 5 Assume that 0 < γ ≤ 1 and there exist constants a > 0, b ≥ 0 such that

r(y) < g(y) < 0, ∀ y > 0 and 0 < g(y) < r(y), ∀ y ∈ (−1/b, 0), (4.1)

where r(y) = −ay/(1 + by), and we mean −1/b = −∞ in case b = 0.
If γ − a ≥ −1, then the equilibrium y = 0 is globally stable for equation

yn+1 = γ yn + g(yn). (4.2)

Proof Assume first that b > 0. By using the change of variables tn = byn , we can
suppose without restriction that b = 1; thus, we assume that r(y) = −ay/(1 + y).
Next, we consider the auxiliary equation

yn+1 = γ yn + r(yn) := R(yn), (4.3)

where the map R(x) = γ x − ax/(1 + x) is defined for all x > −1. It is easy to
check that R has a unique critical point z = −1 + √

a/γ , at which it attains a global
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minimum. To ensure that (4.3) is well defined, we have to prove that R(z) > −1.
After some computations, we have

R(z) = − (√
a − √

γ
)2

.

Since, by hypothesis, γ − a ≥ −1, we get

1 + √
γ >

√
1 + γ ≥ √

a ⇒ √
a − √

γ < 1 ⇒ R(z) > −1,

where we have used that 1 + √
x >

√
1 + x for all x ∈ (0, 1].

Next, we have

(SR)(x) = −6aγ

(a − γ (1 + x)2)2
< 0 , ∀x �= z.

Since R′(0) = γ − a, then −1 ≤ R′(0) < 1 and therefore Corollary 2.10 in [7]
ensures that 0 is a global attractor for Eq. (4.3).

Now, (4.1) implies that

R(y) < γ y + g(y) < γ y ≤ y, ∀ y > 0 and

y ≤ γ y < γ y + g(y) < R(y), ∀ y ∈ (−1, 0).

The result in case b > 0 follows from Theorem B in [7].
Next we assume that b = 0. Then condition (4.1) implies that

(γ − a)y < γ y + g(y) < γ y ≤ y, ∀ y > 0,

and

y ≤ γ y < γ y + g(y) < (γ − a)y, ∀ y ∈ (−1, 0).

Since −1 ≤ γ − a < 1, it is easy to check that the map γ x + g(x) cannot have
2-periodic points different from 0, and hence 0 is globally stable for (4.2) (see, e. g.,
the main theorem in [4]). We notice that, although this global stability criterion is
usually stated for maps ϕ : [A, B] → [A, B], where [A, B] is a compact interval,
in this case, for any initial condition x0 ∈ R it is clear that all iterations of the map
ϕ(x) = γ x + g(x) starting at x0 remain in the interval [−x0, x0], so we can apply
Coppel’s result. 	


To prove Theorem 1, we use a change of variables which transforms (1.1) into (4.2),
with g(x) = − ln(pγ−1F(pe−x )). Actually, formula (2.1) comes from this change of
variables, as the following result shows.
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Proposition 6 Assume that 0 ≤ γ ≤ 1 and F satisfies (H). Let p be the unique positive
equilibrium of (1.1), and define

g(x) = − ln(pγ−1F(pe−x )). (4.4)

Then, condition (2.1) is equivalent to (Sg)(x) < 0 for all x ∈ R.

Proof We use the formula for the Schwarzian derivative of the composition of two
maps (see, e.g., [26]):

(S(φ ◦ ψ))(x) = (Sφ)(ψ(x))(ψ ′(x))2 + (Sψ)(x). (4.5)

It is clear that (Sg)(x) < 0 if and only if (Sh)(x) < 0, where h(x) = ln(F(pe−x )).
Using (4.5), and taking into account that (S f1)(x) = −1/2 for f1(x) = e−x , and
(S f2)(x) = 1/(2x2) for f2(x) = ln(x), we get

(Sh)(x) = −1

2
+ (pe−x )2

[
(SF)(pe−x ) + 1

2

(
F ′(pe−x )

F(pe−x )

)2
]

.

Hence, writing pe−x = y, we have:

(Sh)(x) < 0 ,∀ x ∈ R ⇐⇒ −1

2
+ y2

[
(SF)(y) + 1

2

(
F ′(y)
F(y)

)2
]

< 0, ∀ y > 0,

and the last inequality is equivalent to (2.1). 	

Now we are in a position to prove Theorems 1 and 4.

Proof of Theorem 1 The change of variables yn = − ln(xn/p) transforms (1.1) into
(4.2), with g(x) = − ln(pγ−1F(pe−x )). By Proposition 6, condition (2.1) implies
that (Sg)(y) < 0, for all y ∈ R. Since F is decreasing, it is clear that g is decreasing.
In order to apply Theorem 5, we distinguish three cases:

– Case 1: If g′′(0) = 0, then (Sg)(0) = g′′′(0)/g′(0) < 0, and therefore g′′′(0) > 0.
The negativity of the Schwarzian derivative ensures that 0 is the unique inflexion
point of g (see, e. g., [24, Property 3, p. 141]); moreover, g′ decreases on (−∞, 0)
and increases on (0,∞). Then, it follows that (4.1) holds with a = −g′(0) > 0
and b = 0.

– Case 2: If g′′(0) > 0, then Lemma 2.1 in [16] implies that (4.1) holds with
a = −g′(0) > 0 and b = −g′′(0)/(2g′(0)) > 0. Thus, the result when g′′(0) ≥ 0
follows from Theorem 5, having in mind that γ −a = γ + g′(0) = γ + pγ F ′(p).

– Case 3: If g′′(0) < 0, then the change of variables zn = −yn transforms (4.2) into

zn+1 = γ zn + h(zn), (4.6)

with h(z) = −g(−z). Then, Lemma 2.1 in [16] can be applied to the map h (see
[13, Corollary 2.7] for more details). In this way, case 3 is reduced to case 2, and
the proof is complete. 	
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Finally, the proof of the case γ = 0 (and of Theorem 4) follows easily:

Proof of Theorem 4 The change of variables yn = − ln(xn/p) transforms (3.1) into

yn+1 = g(yn), (4.7)

with g(x) = − ln(p−1F(pe−x )). It is easy to check that g is decreasing or unimodal.
Since (2.1) ensures that (Sg)(x) < 0 for all x different from the critical point c′ =
ln(p/c), Corollary 2.10 in [7] ensures that 0 is a global attractor for Eq. (4.7) if
−1 ≤ g′(0) < 0, which is equivalent to −1 ≤ F ′(p) < 0. If F ′(p) ≥ 0, then the
global stability of p follows from the negative feedback condition F(x) > x if x < p,
and F(x) < x if x > p. 	


5 Discussion

There are two issues that we would like to emphasize. First, we have introduced a
new family (1.1) of difference equations that provide great flexibility to fit population
data and are also suitable as discrete-time models in economics; moreover, they can
display a very rich dynamics (see, e.g., [6,14,15]). In particular, it seems that the
issue of global stability for equation (2.4) has been studied for the first time in this
paper; other properties have been stated in [19] in the framework of delay differential
equations. Since the model of Maynard Smith and Slatkin has been already proved to
be very flexible in population dynamics [2], we think that (2.4) has a great potential
use in applications.

Second, we have been able to prove a global stability result valid for many different
choices of the map F , including, for the case γ = 1, many classical models. Our
examples show that the conditions of Theorem 1 are easily verifiable. Thus, although
Theorem 1 was already known in the case γ = 1, the new formula (2.1) and its
equivalent form (1.4) make the result more friendly. Even in the case γ = 0, this
formula provides a useful tool for proving the folklore statement LAS implies GAS
in some cases where the Schwarzian derivative has not constant sign, and therefore
Singer’s result does not apply. To finish, we include the expression of (2.1) without
invoking the Schwarzian derivative:

x2
(
2
F ′′′(x)
F ′(x)

− 3

(
F ′′(x)
F ′(x)

)2

+
(
F ′(x)
F(x)

)2
)

< 1,

for all x > 0 such that F ′(x) �= 0.
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