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Abstract We analyze the effect of increasing mortality in usual delayed recruitment
models of the form x ′(t) = −δx(t) + f (x(t − τ)). We consider constant effort har-
vesting, and discuss the phenomenon of bubbling, which appears when for parameters
δ in an interval I there exists a unique positive stationary point K (δ) in the phase
space C([−τ, 0], R), and there exist δ1 < δ2 in I such that K (δ) is locally stable for
δ ∈ I\[δ1, δ2], and K (δ) is unstable for δ ∈ (δ1, δ2). We give a definition of bubbling
in a more abstract setting, and show that it naturally appears in a variety of equations.
For some nonlinearities rigorous proofs are available for the description of bubbles, for
other nonlinearities we give numerical results to indicate the phenomenon of bubbling.

Keywords Delay differential equation · Periodic solutions · Nicholson’s blowflies
equation · Bubbling · Hopf bifurcation
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1 Introduction

Many processes result from the interaction between production and destruction. Actu-
ally, there are a variety of biological systems (see, e.g., [16]) characterized by a time
dependent quantity x = x(t) in which the rate of change x ′(t) results from the balance
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between the production rate and the destruction rate. In some cases, the production
rate at a time t is a function of the quantity x at a previous time t − τ , where τ is a
maturation period. This leads to a simple delay-differential equation

x ′(t) = −δx(t) + h(x(t − τ)), (1)

where δ is the destruction rate and h is the production function. Equation (1) has a long
tradition, especially in population dynamics [4,6,12,19,30,31,34], and physiological
processes [10,11,24–27].

In some situations, the destruction rate is a parameter that can be controlled, whereas
the other parameters involved in the process are much more difficult to modify. A typ-
ical example is a model of population dynamics, where the destruction parameter δ

means the mortality rate; thus, in a fishing or harvesting model, the mortality rate can
be controlled by enhancing or reducing the harvesting effort [4,5,30,32].

One of the most famous examples of (1) in the framework of population dynamics is
the Nicholson’s blowflies equation, which has the form (1) with the recruitment func-
tion given by h(x)= pxe−γ x , p > 0, γ > 0. This equation has been used by Gurney
et al. [12] to explain the data obtained by Nicholson [33] in his famous experiments
with Australian-sheep blowfly. If x(t) represents the size of a population at time t , the
delay parameter τ is a maturation time, and the positive coefficient δ stands for the
mortality rate. In [34], a nice explanation is given for deriving Eq. (1) to model the
growth of a structured population with two stages, juveniles and adults. In this case,
δ stands for the adult per capita death rate.

Other well known example is the model of erythropoiesis introduced by Mac-
key [24] (see also [10]), who examined the role of peripheral red blood cells (RBC)
destruction rate on the onset of auto-immune hemolytic anemia in rabbits. The delay
differential equation (1) was used to model the rate of change of the circulating density
of RBC. In this case, the parameter δ is the peripheral RBC destruction rate, and can be
increased by administration of RBC antibodies. A monotone decreasing Hill function
is used for the production rate.

These examples show that it is natural to use δ as a bifurcation parameter in (1) in
order to understand the changes in the dynamics when the destruction rate is varied.
Although many aspects of the dynamics of Eq. (1) are well understood (see, for exam-
ple, [18] and references therein), as far as we know, a detailed analysis of the changes
in the dynamic behaviour of the solutions of (1) in response to an increasing mortal-
ity has not been addressed. In particular, a very important question is if increasing
mortality can generate instability; this phenomenon was observed in Mackey’s hema-
tological model, but in population dynamics is traditionally assumed that increasing
the effort harvesting tends to stabilize the equilibrium [4]. However, we show that this
is not always the case, and harvesting can induce sustained oscillations in the Nichol-
son’s blowflies model of population dynamics; this is in agreement with some recent
empirical studies that have demonstrated the potential for increasing mortality to lead
to instability in plant, insect, and fish populations; see [2,7,40] and references therein.

In one-dimensional discrete population models, the phenomenon of destabilization
due to an increasing mortality was explained using the concept of bubbling [22]. For a
family of maps { fλ} depending smoothly on a parameter λ ∈ %, this means that there
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exists an interval J = (λ1, λ2) such that fλ has a continuous branch of equilibria Kλ

satisfying | f ′λ(Kλ)| > 1 for all λ ∈ (λ1, λ2), and | f ′λ(Kλ)| < 1 for all λ ∈ %\(λ1, λ2).
Under some additional assumptions, this situation leads to an structure in the bifurca-
tion diagram as λ is increased which is called bubble; this phenomenon was observed
in several papers in an ecological context (see [22] for more references). When a
bubble exists, the equilibrium typically losses and regains its stability in two period-
doubling bifurcations, where f ′λ(Kλ) = −1 (see, e.g., [1,3] for more examples and
discussions). As far as we know, in the literature there are not similar studies for con-
tinuous population models; even a concept of bubble similar to the one described for
discrete models does not seem to have been introduced.

Our main aim in this paper is explaining a similar phenomenon in the framework
of delay-differential equations, which will also be referred to as bubbling.

We show that linearization and Hopf bifurcation explain locally the phenomenon
of bubbling; in particular, we found the following situation in several examples. For a
fixed τ > 0, there is an open interval I ⊂ (0,∞) such that:

– equation (1) has a unique positive equilibrium k(δ) for every δ ∈ I ;
– there exist δ1, δ2 in I with δ1 < δ2 so that &λ < 0 holds for all zeros of the charac-

teristic function

λ + δ − h′(k(δ))e−λτ = 0

associated to the linearized equation of (1) about k(δ) provided δ ∈ I\(δ1, δ2);
– for δ1 < δ < δ2 there is at least a complex conjugate pair of zeros of (1) with

positive real part.

For the dynamics of equation (1), this means that k(δ) is locally stable for δ ∈
I\[δ1, δ2], and at δ1, under additional conditions, k(δ) loses its stability via a super-
critical Hopf bifurcation, where a stable periodic orbit is born, and at δ2 another
supercritical Hopf bifurcation takes place, where a stable periodic orbit disappears.
Concerning the global dynamics for δ ∈ I , we are interested in the consequences of
this phenomenon for the long-time behaviour of most solutions of (1). Although this is
a too ambitious question, for some particular cases it can be done, as shown in Sect. 2.
We give an example for which 0 is globally attractive provided δ ∈ I\[δ1, δ2], and
most orbits approach a unique slowly oscillating periodic orbit O(δ) for δ ∈ (δ1, δ2).
Recall that a periodic solution x of Eq. (1) is called slowly oscillatory if |t1 − t2| > τ

for any pair of zeros t1, t2 of x . In this case, the subset

⋃

δ∈(δ1,δ2)

(δ,O(δ))

looks like a bubble in I × C , and it plays a dominant role in the global dynamics.
Here and throughout the paper, C denotes the Banach space of continuous functions
C([−τ, 0], R) equipped with the maximum norm || · ||.

But for the general case a similar result does not hold. A more modest approach
consists of studying where do most solutions go starting from a small neighbourhood
of k(δ) as t tends to infinity, and how the answer depends on δ.
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Our results in Sect. 4 imply that for δ1 < δ < δ2 the slowly oscillatory solutions
of (1) leave a neighbourhood of k(δ). For the case of decreasing h, this means that
most solutions of (1) satisfy this property [29,38]. Moreover, we provide an explicit
estimate for the size of this neighbourhood, thus proving the existence of bubbling.

When h is unimodal, some numerical results also suggest bubbling phenomena,
but in this case the shape of the bubbles seems to be much more complicated.

The paper is organized as follows. In Sect. 2, we present an example for which
the global picture of the dynamics is known, and it is easy to describe a bubble. In
Sect. 3, we introduce suitable definitions for bubbling in a more general framework.
In Sect. 4 we prove two theorems about slowly oscillating periodic solutions. These
results can be applied, for Eq. (1) in the above described situation for the linearization,
to construct explicit neighbourhoods Nδ, δ ∈ (δ1, δ2), of the unstable stationary point
such that there are no slowly oscillatory periodic orbits in Nδ . This fact combined
with estimations for the global attractor can give results for the location of bubble-like
structures. Section 5 contains upper bounds for bubbles. In Sect. 6 we apply the results
in Sects. 4 and 5 to the equations of Mackey and Gurney et al. In particular, some
numerical examples are given to explain how an increasing mortality influences the
dynamics, depending on the length of the delay parameter τ . We include a comparison
with the limiting difference equation formally obtained as τ → ∞ in (1).

This paper is only the first attempt to understand bubbling for delay differential
equations. Rigorous proofs are not available for most of the numerically observed
phenomena. There are many open problems even for simple looking nonlinearities.

2 An Example

In this section, we show an example for the existence of a bubble. Consider

x ′(t) = −δx(t) − bβ(δ) arctan (x(t − 1)) , (2)

where δ > 0, b > 0, and a smooth function β : (0,∞) → (0,∞) will be specified
later. It is easy to check that the unique equilibrium is x = 0. The linearized equation
of (2) about 0 is

y′(t) = −δy(t) − αy(t − 1) (3)

with α = bβ(δ).
The characteristic equation is

λ + αe−λ + δ = 0. (4)

Equation (4) is well studied (see [8, Chapter XI]). It is known that the border of
asymptotic stability is given by the curve implicitly defined by

arccos
(−δ

α

)
=

√
α2 − δ2.
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Fig. 1 The solid lines represent
the values of (α, δ) ∈ (0, 4)
× (0, 10) for which the first and
second branches of eigenvalues
of Eq. (3) cross the imaginary
axis. The equilibrium is
asymptotically stable below the
lower solid line; otherwise, it is
unstable. The numbers between
the curves indicate how many
roots the characteristic equation
has with positive real part. The
dashed line is the graph of
α(δ) = 7β(δ) = 7δ2e−δ
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This curve is determined by the values of (α, δ) in (0,∞) × (0,∞) for which the
first branch of eigenvalues of (3) crosses the imaginary axis. It is represented by the
lower solid line in Fig. 1, for δ ∈ (0, 4) and α ∈ (0, 10). The equilibrium of Eq. (2)
is asymptotically stable for the values (δ, α) below this curve. The points (δ, α) for
which the second branch of eigenvalues crosses the imaginary axis is defined by

arccos
(−δ

α

)
+ 2π =

√
α2 − δ2.

Such a curve is the upper solid line in Fig. 1. Between this pair of curves, Eq. (4) has
exactly two eigenvalues with positive real part.

An application of the implicit function theorem gives that there are C1-smooth
functions γi : (0,∞) → (0,∞), i ∈ {1, 2}, such that the above two curves have the
graph representations

)i = {(δ, γi (δ)) : δ > 0}, (i ∈ {1, 2}),

respectively. In addition, γ2(δ) > γ1(δ) > 0 for all δ > 0, and γ1(δ) → π/2 as δ →
0+. Then it is an elementary exercise to construct a smooth function β : (0,∞) →
(0,∞) such that, for a range of values of b, the graphs of bβ and γ1 have exactly two
intersections at some δ1, δ2 with δ1 < δ2, and bβ has no intersection with γ2. With this
choice of β, clearly, bβ(δ) < γ1(δ) for all δ ∈ (0, δ1) ∪ (δ2,∞), and bβ(δ) > γ1(δ)

for all δ ∈ (δ1, δ2).
Recent results of the first author [17,18] show that the equilibrium of (2) is glob-

ally asymptotically stable whenever it is locally asymptotically stable, i.e., for δ ∈
(0, δ1) ∪ (δ2,∞), and, for δ ∈ (δ1, δ2), (2) has exactly one periodic solution (up
to time translation) which is slowly oscillating. The periodic orbit defined by this
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Fig. 2 a Stability chart of Eq. (2) with β(δ) = δ2e−δ, δ ∈ (0, 4) and b ∈ (0, 10). b First branch of
eigenvalues in the complex plane for b = 7 and δ ∈ (0.6, 3.2)

slowly oscillating periodic solution attracts all points of the phase space C except the
equilibrium.

If an intersection of β and γ2 is allowed in (δ1, δ2) then there is still a unique slowly
oscillating periodic orbit, and more (rapidly oscillating) periodic orbits may appear.
However, the unique slowly oscillatory periodic orbit attracts all points of an open and
dense subset of the phase C , see [29].

Choose β(δ) = δ2e−δ. The dashed curve in Fig. 1 is the graph of 7β(δ), which
meets the requirements stated above.

In Fig. 2a, we represent the stability chart of Eq. (2) in the plane (δ, b), with
β(δ) = δ2e−δ, δ ∈ (0, 4) and b ∈ (0, 10). The lower curve represents the boundary
of the asymptotic stability region of the equilibrium of (2), and it is defined by the
implicit equation

arccos
( −δ

bβ(δ)

)
=

√
b2(β(δ))2 − δ2,

that is,

arccos
(−eδ

bδ

)
= δ

√
b2δ2e−δ − 1.

For b = 7, there are two intersections (δ1, 7), (δ2, 7) with this curve, and empty
intersection with the second curve, defined by

arccos
(−eδ

bδ

)
+ 2π = δ

√
b2δ2e−δ − 1.

We show in Fig. 2b a parametric representation of the first branch of roots λ(δ) of
(4), with α = 7δ2e−δ , in the complex plane for δ ∈ (0.6, 3.2) (only the roots with

Author's personal copy



Bubbles for a Class of Delay Differential Equations 175

Fig. 3 Representation of a
bubble in Eq. (5) as δ is
increased. For each δ, the
amplitude of the attracting
periodic solution is shown
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positive real part are plotted). The arrows show the direction of increasing δ. The equi-
librium loses its asymptotic stability in a supercritical Hopf bifurcation at δ1 ≈ 0.845,
and becomes stable again after a second Hopf bifurcation occurs at δ2 ≈ 2.587. The
values of β1i ≈ 1.975i, β2i ≈ 2.395i for which the curve crosses the imaginary axis
can be obtained by the formula

βk =
√

α2 − δ2
k = δk

√
49δ2

k e−2δk − 1, k = 1, 2.

In Fig. 3, we show a numerical bifurcation diagram for equation

x ′(t) = −δx(t) − 7δ2e−δ arctan (x(t − 1)) (5)

as δ is increased. A “bubble” appears as we plot the minimum and the maximum
reached by the periodic solutions between the two Hopf bifurcation points (so it gives
an approximation of the amplitudes of the periodic solutions); the unstable equilib-
rium between the two Hopf bifurcation points is indicated by a dashed line. A formal
definition of bubble is given in the next section.

3 Definition of Bubbles

In this section we give a formal definition of the bubbling phenomenon and bubbles in
a class of delay differential equations more general than (1). We recall that for τ > 0,
we denote by C the Banach space C([−τ, 0], R) equipped with the maximum norm
|| · ||. For a continuous map u : J → R defined on an interval J , and for t ∈ J with
t − τ ∈ J , define ut ∈ C by ut (s) = u(t + s),−τ ≤ s ≤ 0.

Consider the delay-differential equation

x ′(t) = f (δ, xt ) (6)
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for parameter values δ in an open interval I ⊂ (0,∞). Let an open set U ⊂ I ×C be
given so that I × {(0)} ⊂ U . Suppose that f : U → R is continuously differentiable,
and f −1(0) = {(δ, 0) ∈ U : δ ∈ I }. For δ ∈ I , define Uδ = {φ ∈ C : (δ, φ) ∈ U }.

We assume that for all δ ∈ I every φ ∈ Uδ uniquely determines a solution x =
xφ : [−τ,∞) → R of (6), i.e., a continuous function x : [−τ,∞) → R such that x
is differentiable on (0,∞), x0 = φ, and x satisfies (6) with δ for all t > 0. Then the
solutions of Eq. (6) generate the semiflow

Fδ : [0,∞) × Uδ , (t, φ) -→ xφ
t ∈ Uδ

for all δ ∈ I . We have Fδ(t, 0) = 0, t ≥ 0, and 0 is the only stationary point.

Remark 1 We notice that Eq. (1) fits to this setting in the most usual examples. Indeed,
assume h : [0,∞) → R is a smooth function with h((0,∞)) ⊂ (0,∞). In addi-
tion, suppose that, for parameters δ > 0 in an interval I , the map (0,∞) , ξ -→
−δξ + h(ξ) ∈ R has a unique zero denoted by k(δ). Then for positive solutions x via
the transformation y = x − k(δ) we get the equivalent equation

y′(t) = −δy(t) + h(y(t − τ) + k(δ)) − h(k(δ)) (7)

for δ ∈ I . With f (δ, φ) = −δφ(0) + h(k(δ) + φ(−τ)) − h(k(δ)) and

U = {(δ, φ) ∈ I × C : δ ∈ I, min
s∈[−τ,0]

φ(s) + k(δ) > 0},

equation (1) will be of the form of (6).

The derivatives D2 Fδ(t, 0), t ≥ 0, form a strongly continuous semigroup, and
D2 Fδ(t, 0)ψ = v

ψ
t where vψ is the solution of the linear variational equation

v′(t) = D2 f (δ, 0)vt (8)

with v
ψ
0 = ψ ∈ C , and D2 denotes the partial derivative with respect to the second

variable. The linearization of Eq. (7) at 0 gives the characteristic function

C , λ -→ λ − D2 f (δ, 0)eλ· ∈ C (9)

where eλ· ∈ C([−τ, 0], C) is given by eλ·(s) = eλs, s ∈ [−τ, 0]. The location of
zeros of (9) gives information about the dynamics near the stationary point 0. As it
was shown for Eq. (2), for fixed τ > 0, the number of zeros of characteristic function
(9) as a function of δ in the set {λ ∈ C : &λ > 0} may change in a nonmonotone way
due to the δ-dependence of the term D2 f (δ, 0).

We assume that for all δ ∈ I the semiflow Fδ has a global attractor A(δ), that is a
nonempty, compact, invariant subset of Uδ so that A(δ) attracts all bounded subsets
of Uδ . We refer to [14] for sufficient conditions for the existence of global attractors.
Under this condition, for δ ∈ I and φ ∈ Uδ the ω-limit set ωδ(φ) of φ exists, and it is
a nonempty, compact, invariant subset of A(δ).
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Such concepts as equilibrium, periodic orbit, attractor, invariant set, and bifurca-
tions are introduced in a natural way; for precise definitions, we refer to the classical
monograph of Hale and Lunel [15], or the recent book of Smith [35].

For a set S ⊂ C the distance of 0 from S is defined by dist(0, S) = infφ∈S ||φ||.
Let cl(S) denote the closure of S in C . For r > 0 set Cr = {φ ∈ C : ||φ|| < r}.

We will use the following hypothesis on the characteristic function (9).

(H) There exist δ1, δ2 in I with δ1 < δ2 so that, for all δ ∈ I\[δ1, δ2], all zeros λ

of the characteristic Eq. (9) satisfy &λ < 0, and, for δ1 < δ < δ2, the character-
istic function (9) has at least one pair of complex conjugate zeros λ0, λ0 with
&λ0 > 0 and /λ0 0= 0.

Definition 1 We say that Eq. (6) exhibits bubbling if (H) holds and for all δ ∈ (δ1, δ2)

there exist rδ > 0 and an open and dense subset Vδ of Crδ such that

inf
φ∈Vδ

dist(0, ωδ(φ)) > 0.

In this case the set

B =
⋃

δ1<δ<δ2



δ,
⋂

r>0

cl




⋃

φ∈Vδ∩Cr

ωδ(φ)









is called a bubble.

Notice that if a bubble exists for Eq. (6) then, for any r > 0 and δ ∈ (δ1, δ2), the
set

cl




⋃

φ∈Vδ∩Cr

ωδ(φ)





is a nonempty and closed subset of the global attractor A(δ), and its distance from 0
is positive. Then the set

⋂

r>0

cl




⋃

φ∈Vδ∩Cr

ωδ(φ)





is nonempty with a positive distance from 0.
From the discussion in the previous section, we can ensure that Eq. (5) has a bubble

as δ is increased. In fact in this case, according to Definition 1, the bubble B is given
by

B =
⋃

δ∈(δ1,δ2)

(δ,O(δ))

where O(δ) denotes the unique periodic orbit. See Fig. 3 for a graphic representation
of B.
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4 Location of Slowly Oscillating Periodic Orbits

We recall that a solution x : J → R, defined on an interval J , of the delay-differential
equation (6) will be called slowly oscillatory if |z1 − z2| > τ holds for each pair of
zeros z1, z2 of x .

In this section we assume the unstable situation of hypothesis (H) for an equation
and first prove the nonexistence of slowly oscillating periodic solutions in a neigh-
bourhood of 0. Then we estimate the distance of slowly oscillating periodic orbits
from 0. This information can be applied to show the existence of bubbles provided
slow oscillation dominates the dynamics. In particular this is the case for Eq. (1) when
h is monotone decreasing due to the results of Mallet-Paret and Walther [29] (see also
[18,38]). The result below is an extension of [37].

Assume that a > 0, A > 0, B > 0, J ⊂ R is an open interval with [−A, B] ⊂ J ,
and g : J → R is a C1-smooth function with g(0) = 0 and g′(ξ) > 0 for all
ξ ∈ [−A, B]. There is a unique ω ∈ (π/2, π) with ω = −a tan ω. Set b =

√
a2 + ω2.

Consider the equations

x ′(t) = −ax(t) − g(x(t − 1)) (10)

and

y′(t) = −ay(t) − by(t − 1). (11)

Clearly, for all k ∈ R\{0} and τ ∈ R the function y(t) = k sin(ωt + τ), t ∈ R, is a
periodic solution of Eq. (11) with minimal period 2π/ω ∈ (2, 4).

Theorem 1 If

g′(ξ) > b for all ξ ∈ [−A, B] (12)

then Eq. (10) has no slowly oscillatory periodic solution x with x(R) ⊂ [−A, B].

Proof Suppose that x is a slowly oscillatory periodic solution of (10) with x(R) ⊂
[−A, B]. From [28] we know that if T > 0 is the minimal period of x , then there are
t0, t1 in R so that x(t0) = mint∈R x(t), t0 < t1 < t0+T, x(t1) = maxt∈R x(t), x ′(t) >

0 for all t ∈ (t0, t1), x ′(t) < 0 for all t ∈ (t1, t0+T ), moreover t1−t0 > 1, t0+T−t1 >

1.
It follows that the image of

X : [0, T ] , t -→ (x(t), x ′(t)) ∈ R2

is a simple closed curve with (0, 0) in its interior. We denote by |X | = X ([0, T ]) the
trace of X . Recall that by the Jordan curve theorem R2\|X | consists of exactly two
connected components, one bounded and the other unbounded; we denote them by
int(X) and ext(X), respectively.
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For k > 0 define the curves

Yk :
[

0,
2π

ω

]
, t -→ k(sin(ωt), ω cos(ωt)) ∈ R2.

Clearly, the trace |Yk | of Yk is the ellipse {(u, v) ∈ R2 : u2 + v2/ω2 = k2}.
There exists k0 > 0 so that

|X | ⊂ ext(Yk) for all k ∈ (0, k0)

and

|X | ∩ |Yk0 | 0= ∅.

Then

|X | ⊂ ext(Yk0) ∪ |Yk0 | (13)

follows. Set z(t) = k0 sin(ωt), t ∈ R, and Z = Yk0 .
By the definition of k0, there are t∗, t∗∗ in R such that X (t∗) = Z(t∗∗) ∈ |X | ∩ |Z |.

Replacing x(·) by x(· + t∗) and z(·) by z(· + t∗∗), we may assume t∗ = t∗∗ = 0, i.e.,

x(0) = z(0), x ′(0) = z′(0).

Suppose x ′(0) = z′(0) = 0. The fact (0, 0) /∈ |X |∪|Z | gives x(0) = z(0) = c 0= 0.
We consider only the case c > 0 as the case c < 0 is analogous. Clearly, c = k0. From
the above properties of the slowly oscillatory periodic solutions x and z,

x ′(s) > 0, z′(s) > 0 for all s ∈ [−1, 0).

Equations (10), (11) and x ′(0) = z′(0) = 0, x(0) = z(0) = k0 > 0 combined yield

g(x(−1)) = −ax(0) = −az(0) = bz(−1) < 0 and x(−1) < 0, z(−1) < 0.

By the mean value theorem, g(x(−1)) = g′(ξ)x(−1) for some ξ ∈ (x(−1), 0).
Applying (12),

z(−1) < x(−1) < 0 (14)

follows.
Let

τx : [x(−1), c] → [−1, 0], τz : [z(−1), c] → [−1, 0]

denote the inverses of x |[−1,0], z|[−1,0], respectively. The functions

φx : [x(−1), c] , u -→ x ′(τx (u)) ∈ R, φz : [z(−1), c] , u -→ z′(τz(u)) ∈ R
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satisfy φx (c) = φz(c) = 0, and φx (u) > 0 for all u ∈ [x(−1), c), φz(u) > 0 for all
u ∈ [z(−1), c). The arcs

.x = {X (t) : t ∈ [−1, 0]} and .z = {Z(t) : t ∈ [−1, 0]}

coincide with the graphs

{(u, φx (u)) : u ∈ [x(−1), c]} and {(u, φz(u)) : u ∈ [z(−1), c]},

respectively. The inclusion (13) and inequality (14) imply

0 < φz(u) ≤ φx (u) for all u ∈ [x(−1), c). (15)

The equation x ′(s) = φx (x(s)), s ∈ [−1, 0], and x ′(s) > 0 for s ∈ [−1, 0) combined
yield

1 = lim
ε→0+

(1 − ε) = lim
ε→0+

∫ −ε

−1

x ′(s)
φx (x(s))

ds =
∫ c

x(−1)

du
φx (u)

where the last integral is improper. Similarly,

1 =
∫ c

z(−1)

du
φz(u)

.

Consequently,

∫ c

x(−1)

du
φx (u)

=
∫ c

z(−1)

du
φz(u)

.

This is impossible by (14), (15) and φz(u) > 0 for u ∈ [z(−1), c). Therefore, x ′(0) =
z′(0) 0= 0.

We have x ′(0) = z′(0) 0= 0. Set d = x(0) = z(0). By continuity, x and z have
inverses in small t-intervals containing 0. Choose a sufficiently small δ > 0 so that

tx : (d − δ, d + δ) → R and tz : (d − δ, d + δ) → R

are the inverses of restrictions of x and z to some open intervals around 0, respectively,
and x ′(tx (u)) 0= 0, z′(tz(u)) 0= 0 for all u ∈ (d − δ, d + δ). Setting

ηx : (d − δ, d + δ) , u -→ x ′(tx (u)) ∈ R, ηz : (d − δ, d + δ) , u -→ z′(tz(u)) ∈ R,

the sets

{(u, ηx (u)) : u ∈ (d − δ, d + δ)}, {(u, ηz(u)) : u ∈ (d − δ, d + δ)}
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are graph representations of the restrictions X |I , Z |J to the open intervals I = tx ((d−
δ, d +δ)), J = tz((d−δ, d +δ)), respectively. Applying |X | ⊂ |Z |∪ext(Z), ηx (d) =
ηz(d), and the C1-smoothness of ηx and ηz , it follows that

ηx
′(d) = ηz

′(d).

We have

ηx
′(u) = x ′′(tx (u))

x ′(tx (u))
, ηz

′(u) = z′′(tz(u))

z′(tz(u))
.

Consequently, by tx (d) = 0 = tz(d),

x ′′(0)

x ′(0)
= z′′(0)

z′(0)
.

Hence, by x ′(0) = z′(0), one gets x ′′(0) = z′′(0).
Consequently, using (10), (11) and their derivatives at t = 0, we obtain

g′(x(−1))x ′(−1) = bz′(−1) (16)

and

g(x(−1)) = bz(−1). (17)

Assume x(−1) = 0 or z(−1) = 0. From (17), x(−1) = z(−1) = 0 follows. Then
x ′(−1) 0= 0, z′(−1) 0= 0 since both x and z are slowly oscillating periodic solutions
of (10) and (11), respectively. From g′(0) > b and (16), either

0 < x ′(−1) < z′(−1)

or

z′(−1) < x ′(−1) < 0.

In either case, X (−1) ∈ int(Z), a contradiction. This shows x(−1) 0= 0 and z(−1) 0=
0.

If x ′(−1) = 0 or z′(−1) = 0, then, by (16), x ′(−1) = z′(−1) = 0. Hence
x(−1) 0= 0, z(−1) 0= 0, and by (12) and (17), either

0 < x(−1) < z(−1)

or

z(−1) < x(−1) < 0.
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In both cases, X (−1) ∈ int(Z), a contradiction. Thus, x ′(−1) 0= 0, z′(−1) 0= 0.
Therefore, x(−1) 0= 0, z(−1) 0= 0, and x ′(−1) 0= 0, z′(−1) 0= 0. Equalities (16),

(17), and condition (12) on g imply one of the following cases:

0 < x(−1) < z(−1), 0 < x ′(−1) < z′(−1);
0 < x(−1) < z(−1), z′(−1) < x ′(−1) < 0;
z(−1) < x(−1) < 0, 0 < x ′(−1) < z′(−1);
z(−1) < x(−1) < 0, z′(−1) < x ′(−1) < 0.

In each case X (−1) ∈ int(Z) holds, a contradiction. This completes the proof. 56

Let a, b, A, B, g be given as before. Suppose that the C1-smooth map g : J → R
is defined on the larger interval J instead of (−A, B), and g satisfies condition (12)
and

ξg(ξ) > 0 for all ξ ∈ J\{0}. (18)

Denoting the inverse of g|[−A,B] by g−1, we define G : R → R by

G(u) =






−A if u < g(−A)

g−1(u) if g(−A) ≤ u ≤ g(B)

B if u > g(B)

Set

g− : [0, A] , u -→ u − g(−u) ∈ R, g+ : [0, B] , u -→ u + g(u) ∈ R.

Clearly, g− and g+ are injective, and g−([0, A]) = [0, A − g(−A)], g+([0, B]) =
[0, B + g(B)]. Let g−1

− and g−1
+ denote the inverses. Define

G−(u) =
{

g−1
− (u) if 0 ≤ u ≤ A − g(−A)

A if u > A − g(−A)

and

G+(u) =
{

g−1
+ (u) if 0 ≤ u ≤ B + g(B)

B if u > B + g(B).

Theorem 2 Assume the above conditions on a, b, A, B and g : J → R. Let x be a
slowly oscillatory periodic solution of Eq. (10) with

min
t∈R

x(t) = −m, max
t∈R

x(t) = M.
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Then −m ≤ G(−B), M ≥ G(A), and

||xt || ≥ min {G−(G(A)), G+(−G(−B))} for all t ∈ R.

Proof As x is a slowly oscillatory periodic solution, there exist zeros z0, z1, z2 of x
with z0 + 1 < z1, z1 + 1 < z2, x(t) < 0 for t ∈ (z0, z1), x(t) > 0 for t ∈ (z1, z2),
and the minimal period of x is z2 − z0. These facts, the negative feedback condition
(18) and Eq. (10) combined yield that x ′(t) > 0 for all t ∈ [z0 + 1, z1] and x ′(t) < 0
for all t ∈ [z1 +1, z2]. Consequently, there exist t1 ∈ (z1, z1 +1) and t2 ∈ (z2, z2 +1)

such that x(t1) = M and x(t2) = −m.
As G(R) = [−A, B], obviously G(−B) ≥ −A and G(A) ≤ B. Thus, the state-

ment clearly holds for m and M provided −m ≤ −A and M ≥ B, respectively.
We distinguish two cases according as M ≥ B or M < B.
Case 1 M ≥ B. If −m ≤ −A then there is nothing to prove. Assume −A < −m <

0. Integrating equation (10) on [z1, t1], using that x(R) = [−m, M] ⊂ (−A,∞)

implies −g(x(t)) ≤ −g(−m) for all t ∈ R, and t1 − z1 < 1, we obtain

B ≤ M = x(t1) − x(z1) =
∫ t1

z1
x ′(t) dt =

∫ t1
z1

[−ax(t) − g(x(t − 1))] dt

<
∫ t1−1

z1−1 [−g(x(t))] dt < −g(−m)(t1 − z1)

< −g(−m).

Consequently, −B ∈ (g(−m), 0) ⊂ (g(−A), 0), and −m ≤ g−1(−B) = G(−B).
Case 2 M < B. Then −m < −A by Theorem 1. There exists t2 ∈ (z2, z2 + 1)

with x(t2) = −m. Integrating equation (10) on [z2, t2], using that x(R) = [−m, M] ⊂
(−∞, B) implies −g(x(t)) ≥ −g(M) for all t ∈ R, and t2 − z2 < 1, we obtain

−A > −m = x(t2) − x(z2) =
∫ t2

z2
x ′(t) dt =

∫ t2
z2

[−ax(t) − g(x(t − 1))] dt

>
∫ t2−1

z2−1 [−g(x(t))] dt > −g(M)(t2 − z2)

> −g(M),

that is g(M) > A. Hence M > g−1(A) = G(A) follows.
Now we prove the lower bound for mint∈R ||xt ||. The properties of x mentioned at

the beginning of the proof clearly imply that

||xs || ≥ ||xz1 || for all s ∈ [z0 + 1, z1],
||xs || ≥ ||xz2 || for all s ∈ [z1 + 1, z2],
||xs || ≥ ||xz1+1|| ≥ ||xz2 || for all s ∈ [t1, z1 + 1],
||xs || ≥ ||xz2+1|| ≥ ||xz1 || for all s ∈ [t2, z2 + 1].

Then

||xt || ≥ min
s∈[z1,t1]∪[z2,t2]

||xs ||

follows for all t ∈ R.
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Let s ∈ [z1, t1] and assume that ||xs || = β. If β ≥ A then trivially β ≥ G−(G(A))

since G−([0,∞)) = [0, A]. So, suppose 0 < β < A. Then 0 ≤ x(s) ≤ β. Integrating
equation (10) on [s, t1] we get

M − β ≤ M − x(s) = x(t1) − x(s) =
∫ t1

s x ′(t) dt =
∫ t1

s [−ax(t) − g(x(t − 1))] dt
<

∫ t1−1
s−1 [−g(x(t))] dt

< −g(−β).

Hence

G(A) ≤ M < β − g(−β) = g−(β)

and β > G−(G(A)) follows.
Analogously, let s ∈ [z2, t2] and ||xs || = γ . We may assume 0 < γ < B since the

statement is obvious in case β ≥ B. Then −γ ≤ x(s) ≤ 0. Integrating equation (10)
on [s, t2] we obtain

−m+γ ≥−m−x(s)= x(t2) − x(s)=
∫ t2

s x ′(t) dt =
∫ t2

s [−ax(t)−g(x(t−1))] dt

>
∫ t2−1

s−1 [−g(x(t))] dt

> −g(γ ).

Hence

g+(γ ) = γ + g(γ ) > m ≥ −G(−B)

and γ > G+(−G(−B)) follows. This completes the proof. 56

Theorem 2 provides a neighbourhood of 0 ∈ C where periodic orbits corresponding
to slowly oscillating periodic solutions cannot enter.

As an illustration, we apply it to Eq. (5). In this case

g(x) = 7δ2e−δ arctan(x); g′(x) = 7δ2e−δ

1 + x2 > 0.

To use Theorem 2, notice that

g′(x) > b ⇐⇒ 7δ2e−δ

1 + x2 > b ⇐⇒ |x | <

(
7δ2e−δ

b
− 1

)1/2

.

Thus we can define

A(δ) = B(δ) =
(

7δ2e−δ

b
− 1

)1/2

, (19)

where b = (δ2 + ω2)1/2, and ω is the unique solution of ω = −δ tan(ω) in (π/2, π).
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Fig. 4 The inner curve
(constructed using Theorem 2)
delimits the neighbourhood of 0
free of slowly oscillatory
periodic orbits of Eq. (5) for the
values of δ between the two
Hopf bifurcation points. The
exterior curve is obtained
integrating numerically the
equation and plotting the
minimum norm of the points of
the periodic orbit in the phase
space 3
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x
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The parametric curve

(
δ, min

{
G∗

−(G(A(δ))), G∗
+(−G(−B(δ)))

})

for δ ∈ (δ1, δ2) ≈ (0.845, 2.587) provides the inner curve in Fig. 4. The exterior
curve is a numerical approximation obtained integrating numerically the equation and
plotting the minimum of the norms of the segments xt over a period.

5 Upper Bounds for Bubbles

Theorems 1 and 2 allow us to find a neighborhood of zero free of slowly oscillatory
periodic solutions, giving in this way a lower bound for the distance of bubbles to zero,
at least in some cases. In this section, we provide some upper bounds for the location
of bubbles. For it, we use some results based on attracting invariant intervals for an
auxiliary one-dimensional discrete equation [13,20,21]. The results below, together
with those proved in Sect. 4, enable us to represent a bounded and bounded away from
zero region in which the maximum and the minimum of the periodic solutions should
be; such results will be applied to validate the numerical experiments made for Eq.
(5), for the Mackey equation, and for the Nicholson’s blowflies equation.

Consider the equation

x ′(t) = −ax(t) − g(x(t − 1)), (20)

where g : I → I is a continuously differentiable function defined on an open real
interval I , with 0 ∈ I . We assume that g(x) = x if and only if x = 0. Define the
auxiliary map

ha(x) := e−a − 1
a

g(x).

In case g is a unimodal map, we can apply the following result, which is a slight
modification of [20, Corollary 9]:
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Proposition 1 Assume that there exists c < 0 such that h′
a(x) > 0 for all x < c,

and h′
a(x) < 0 for all x > c. Then the map ha has a globally attracting invariant set

[α, β] = [ha(ha(c)), ha(c)]. Moreover, for every solution x(t) of (20) the following
inequalities hold:

α ≤ lim inf
t→∞ x(t) ≤ lim sup

t→∞
x(t) ≤ β.

If g is strictly decreasing and bounded either from below or from above, then the
map ha also has a globally attracting invariant set, and a result similar to Proposition 1
holds. If some additional conditions are assumed, this invariant set can be considerably
shrunken. We recall that the Schwarzian derivative of a C3 map f is defined by the
relation

(S f )(x) = f ′′′(x)

f ′(x)
− 3

2

(
f ′′(x)

f ′(x)

)2

,

whenever f ′(x) 0= 0.
For decreasing maps with negative Schwarzian derivative, we can apply the fol-

lowing dichotomy result which follows from [21, Proposition 5]:

Proposition 2 Assume that ha has a globally attracting invariant set [α, β], and
h′

a(x) < 0, (Sha)(x) < 0 for all x ∈ [α, β], where Sha is the Schwarzian derivative
of ha.

(a) If −1 ≤ h′
a(0) < 0, then limt→∞ x(t) = 0 for every solution x(t) of (20).

(b) If h′
a(0) < −1, then

α ≤ α1 ≤ lim inf
t→∞ x(t) ≤ lim sup

t→∞
x(t) ≤ β1 ≤ β,

for every solution x(t) of (20), where {α1, β1} is the unique 2-cycle of ha.

Notice that h′
a(x) < 0 if and only if g′(x) > 0, and (Sha)(x) < 0 if and only if

(Sg)(x) < 0. We emphasize that Proposition 2 can be applied to the case of uni-
modal maps when the attracting invariant interval [ha(ha(c)), ha(c)] is included in
the domain where ha is decreasing, that is, if ha(ha(c)) > c.

Now we apply Proposition 2 to Eq. (5). In this case, the map g(x) =
7δ2e−δ arctan(x) is bounded and

g′(x) = 7δ2e−δ

1 + x2 > 0, (Sg)(x) = −14δ2e−δ

(1 + x2)2 < 0, ∀ x ∈ R.

Notice also that

h′
δ(0) =

(
e−δ − 1

)
7δe−δ < −1 ⇐⇒ δ ∈ J = (δ∗, δ∗) ≈ (0.58, 2.99).

Author's personal copy



Bubbles for a Class of Delay Differential Equations 187

Fig. 5 Lower and upper bounds
for the location of the bubble
generated by Eq. (5) as δ is
increased. As expected, the
closed curve obtained from the
numerical approximation of the
minimum and the maximum of
the attracting periodic solutions
is located between the bounds

0.5 1 1.5 2 2.5 3
-2

0

2

δ

x
1

-1

Thus, if {α1(δ), β1(δ)} is the unique 2-cycle of hδ for each δ ∈ J , then the set

⋃

δ∈J

(δ, α1(δ)) ∪
⋃

δ∈J

(δ, β1(δ))

forms a closed loop. It is the most exterior closed curve in Fig. 5.
The inner closed curve in Fig. 5 is obtained as

⋃

δ∈(δ1,δ2)

(δ,−A(δ)) ∪
⋃

δ∈(δ1,δ2)

(δ, B(δ)),

where δ1, δ2 are the two Hopf bifurcation points for equation (5), and A(δ), B(δ) are
defined in (19). According to Theorem 1, Eq. (5) has no slowly oscillatory solutions
contained in (−A(δ), B(δ)). The numerical approximation of the bubble obtained by
plotting the minimum and the maximum of the attracting periodic orbits (see Fig. 3)
is located in Fig. 5 between the lower and upper bounds.

6 Applications: The Mackey Equation and the Nicholson’s Blowflies Equation

In this section we apply our results to well known equations. Our first example is the
Mackey equation, which can be written as

x ′(t) = −δx(t) + 1
1 + xm(t − τ)

, (21)

where x(t) is the circulating density of RBC at time t, δ is the destruction rate of RBC,
m is a positive parameter estimated experimentally, and τ is a feedback delay (see [24]
for more details). We consider the values m = 7.6 and τ = 1.73 used in [24] (see also
[9]).

Notice that the nonlinearity h(x) = 1/(1 + xm) is decreasing and thus complex
behaviour in (21) is not possible [38]. It is clear that Eq. (21) has a unique positive equi-
librium k(δ) determined by the unique positive solution of equation xm+1 + x = 1/δ.
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Fig. 6 Stability chart for the
Mackey’s equation (22) with
m = 7.6 in the plane of
parameters (a, τ ). The dashed
line corresponds to the
parameter τ = 1.73 used in [24].
The numbers between the curves
indicate how many roots the
characteristic equation has with
positive real part (Thus, 0
corresponds to the stability
region)
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The change of variables y(t) = x(τ t) − k(δ) transforms (21) into

y′(t) = −ay(t) − g(y(t − 1), (22)

where a = δτ and

g(y) = τ

(
1

1 + (k(δ))m − 1
1 + (y + k(δ))m

)
.

Mackey already observed the existence of two Hopf bifurcation points a1 ≈
0.289, a2 ≈ 1.576, in such a way that 0 is asymptotically stable for a < a1 and
a > a2, and it is unstable for a ∈ (a1, a2). It is known that there is at least a slowly
oscillatory periodic solution of (22) for all a ∈ (a1, a2). Numerical simulations suggest
that this periodic solution is unique (for further discussions, see [18,21]). In Fig. 6, we
plot the stability chart for Eq. (22) with m = 7.6 in the plane of parameters (a, τ ). For
the considered value τ = 1.73 and a ∈ (a1, a2), the associated characteristic equation
has exactly two roots with positive real part.

Theorem 1 can be applied to find a region where slowly oscillatory periodic solu-
tions cannot exist. Define b = (a2 + ω2)1/2, where ω is the unique solution of ω =
−a tan(ω) in (π/2, π). For a ∈ (a1, a2), equation g′(y) = b has exactly one negative
solution −A(a), and one positive solution B(a).

The inner closed curve we plot in Fig. 7 is delimited by the curves m(a) and
−m(a), a ∈ (a1, a2), where m(a) = min{A(a), B(a)}. It is obvious from Theo-
rem 1 that there are no slowly oscillatory periodic solutions of (22) y with y(R) ⊂
(−m(a), m(a)).

Since the auxiliary map ha(x) = (e−a − 1)g(x)/a is decreasing and has negative
Schwarzian derivative (see, e.g., [21]), we can apply Proposition 2. The points a0, a3
where h′

a(x) = −1 are estimated numerically as a0 ≈ 0.162, a3 ≈ 1.819. The exterior
closed curve in Fig. 7 is determined by the points (a, α1(a)), (a, β1(a)), a ∈ (a0, a3),
where {α1(a), β1(a)} is the unique 2-cycle of ha .
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Fig. 7 Lower and upper bounds
for the location of the bubble
obtained from the Mackey
equation (22) as the parameter a
is increased
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We also include in Fig. 7 a graphic representation of the bubble defined by (22); it
was obtained plotting the numerical approximation of the minimum and the maximum
of the attracting periodic orbit starting at an initial condition close to zero. As predicted
by the analytical results, it is located between the lower and the upper bounds.

Remark 2 A similar bifurcation diagram for Eq. (21) is plotted in [9, Section 3.3],
including an upper bound obtained by another approach. Such an upper bound is dif-
ferent from the one we got from Proposition 2; in particular, it does not have a bubble
shape, so it does not predict the existence of two Hopf bifurcation points.

Our next example is the Nicholson’s blowflies equation:

x ′(t) = −δx(t) + px(t − τ)e−γ x(t−τ), (23)

where δ, p, γ and τ are positive constants. We consider (23) as a model for the growth
of an exploited population, and assume a strategy of harvesting based on constant
effort, that is, the catch is proportional to the population size. Then, an increase in
harvesting pressure can be seen as an increase in the mortality parameter δ in (23).
This kind of strategy arises in the modelling of fisheries: a fixed number of boats is
allowed to fish for some fixed interval of time; then, if the fish is distributed uniformly
in the sea, the catch will be proportional to the stock density [4,5]. If we pursue to
analyze the response of the system to harvesting, this means that we should study the
changes in the behaviour of (23) when parameter δ is increased.

An important difference with the previous example is that the function h(x) =
pxeγ x is unimodal, and this fact has important consequences in the dynamics of (23);
in particular, complex behaviour is possible (see, e.g., [18, Section 4] and references
therein).

It is known (see, e.g., [13,20,23]) that Eq. (23) has a unique equilibrium x = 0
if δ ≥ p, and it attracts all nonnegative solutions. If δ < p, then there is a positive
equilibrium k(δ) = (1/γ ) ln(p/δ), and x = 0 becomes unstable. Moreover, k(δ) is
globally attracting for all values of the delay if and only if δ ∈ [pe−2, p). This means
that, regardless the value of the delay, too large harvesting effort in (23) results in
extinction, and this is explained mathematically by a global transcritical bifurcation
at δ = p.
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Next, for δ < pe−2, k(δ) is globally asymptotically stable for all sufficiently small
values of the delay (see, e.g., [13,23]). This indicates that the dynamics of (23) for
small values of τ is essentially the same as the dynamics of the ordinary differen-
tial equation (τ = 0), that is, an increasing mortality results in a decreasing globally
attracting equilibrium (notice that ∂k(δ)/∂δ = −1/(γ δ) < 0).

The (local) stability analysis can be performed similarly to that of Eq. (2). Setting
y(t) = γ x(τ t) − γ k(δ) we obtain the equation

y′(t) = δτ (−y(t) − g(y(t − 1))) (24)

with g(y) = g(y, δ, p) = ln
( p

δ

)
(1 − e−y) − ye−y .

The only equilibrium of (24) in (−k(δ),∞) is y = 0. Since g′(0) = ln(p/δ) − 1,

the characteristic equation associated to the variational equation of (24) about 0 is

λ + δτ − δτ (1 − ln(p/δ)) e−λ = 0. (25)

The border of the asymptotic stability of the equilibrium is given by the relation

arccos
(

1
1 − ln(p/δ)

)
= τδ

√
(1 − ln(p/δ))2 − 1. (26)

This expression allows us to represent the stability region of (24) in the plane of
parameters (δτ, pτ). The lower solid curve in Fig. 8 represents the boundary of the
stability region for δτ ∈ (0, 30), pτ ∈ (0, 220). The other solid curves represent the
values for which other branches of roots of (25) reach the imaginary axis, which are
defined by the implicit equations

Fig. 8 Stability chart for the
Nicholson’s blowflies equation
in the plane of parameters
(δτ, pτ). The dashed lines
correspond to the cases of study:
τ = 10, p = e3, and
τ = 2, p = e3. The numbers
between the curves indicate how
many roots the characteristic
equation has with positive real
part
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arccos
(

1
1 − ln(p/δ)

)
+ 2kπ = τδ

√
(1 − ln(p/δ))2 − 1, k = 1, 2. (27)

A Hopf bifurcation analysis for the Nicholson’s blowflies equation (23) was done
in [39], taking the delay τ as the bifurcation parameter. In this case, the authors prove
that if λ(τ) = α(τ) + iβ(τ) is a root of (25) and α(τ∗) = 0, then α′(τ∗) > 0. Thus, it
is impossible to get a bubble in the bifurcation diagram.

In the rest of the section, we present a case of study for Eq. (24) in order to illustrate
the effects of increasing δ, and the influence of the length of the delay parameter τ .

From now on, we fix p = e3, and assume δ < p to ensure the existence of a positive
equilibrium. Thus, equation (24) writes

x ′(t) = −δτ x(t) − δτ
(
(3 − ln(δ))

(
1 − e−x(t−1)

)
− x(t − 1)e−x(t−1)

)
. (28)

The unique equilibrium of (28) in (ln(δ)/3 − 1,∞) is x = 0. For δ ∈ [e, e3), it is
globally asymptotically stable for all values of the delay.

As discussed before, for τ = 0 the equilibrium is globally attracting for all δ ∈
(0, e3). Using the global stability Theorem 2.1 in [23], it follows that the same trivial
dynamics holds for τ < τ1 ≈ 1.18117.

We next combine some numerical experiments with our theoretical results to illus-
trate how an increase in the mortality rate δ can enhance variability in the asymptotic
behaviour of the solutions of (28). When τ is small, complex behaviour is not observed
and our simulations, together with Theorem 2, suggest existence of bubbles. For larger
values of τ , our numerical experiments show an increasing complex behaviour after
the first bifurcation point, followed by convergence to periodic orbits, and a stable
equilibrium again after the second bifurcation point. Despite the complex behaviour
observed for some values of the parameters, it seems that bubbles in the sense of
Definition 1 are still present.

First, let us take τ = 2, so Eq. (28) writes

y′(t) = −ay(t) − g(y(t − 1), (29)

where a = 2δ and

g(y) = a
[
(3 − ln(a/2))

(
1 − e−y) − ye−y] .

The bifurcation points a1 ≈ 0.63, a2 ≈ 4.7 can be calculated using the relation (26).
Our simulations show that this value of the delay is small enough to prevent complex
behaviour, and all solutions converge either to 0 (if a < a1 or a > a2), or to a slowly
oscillatory periodic solution (if a ∈ (a1, a2)).

Since function g is unimodal and has negative Schwarzian derivative (see, e.g.,
[13,23]), to get un upper bound for the location of the bubble, we will make use of
Propositions 1 and 2. It is easy to check that the auxiliary map

ha(y) = e−a − 1
a

g(y) =
(
e−a − 1

) [
(3 − ln(a/2))

(
1 − e−y) − ye−y]
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Fig. 9 Graphic representation
of the bubble obtained from the
Nicholson’s blowflies equation
(29) as the parameter a is
increased, together with the
lower and upper bounds coming
from the analytical results
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has a unique local maximum at ca = ln(a/2)− 2. We can find numerically the points
for which h′

a(0) = −1, and those satisfying ha(ha(ca)) = ca . On the one hand,

h′
a(0) < −1 ⇐⇒ a ∈ (a0, a5) ≈ (0.295, 5.412).

On the other hand, equation ha(ha(ca)) = ca has exactly two solutions on (a0, a5),
given by a2 ≈ 1.26 and a3 ≈ 4.107. Moreover, ha(ha(ca)) > ca for a ∈ (a0, a2) ∪
(a3, a5), and ha(ha(ca)) < ca for a ∈ (a2, a3). This means that ha is monotone
decreasing on the attracting interval [ha(ha(ca)), ha(ca)] for a ∈ (a0, a2) ∪ (a3, a5).
Thus, Propositions 1 and 2 allow us to get bounds for the maximum and the minimum
of the solutions. They are represented in Fig. 9, respectively, by the curves




⋃

a∈(a0,a2)∪(a3,a5)

(a, β1(a))



 ∪




⋃

a∈(a2,a3)

(a, ha(ca))





and



⋃

a∈(a0,a2)∪(a3,a5)

(a, α1(a))



 ∪




⋃

a∈(a2,a3)

(a, ha(ha(ca)))



 ,

where, for each a ∈ (a0, a2) ∪ (a3, a5), {α1(a), β1(a)} is the unique 2-cycle of ha .
Next we apply Theorem 1. If ω is the unique solution of ω = −a tan(ω) in

(π/2, π), and b = (a2 + ω2)1/2, then for each a ∈ (a1, a4) ≈ (0.63, 4.7), equation
g′(y) = b has exactly one negative solution −A(a), and one positive solution B(a),
with B(a) < A(a). Thus Theorem 1 ensures that (29) has no slowly oscillatory
periodic solutions y with y(R) ⊂ (−B(a), B(a)).

The parametric curves (a,−B(a)), (a, B(a)) for a ∈ (a1, a4) provide the inner
closed curve in Fig. 9. As in the previous examples, the approximations of the mini-
mum and the maximum values of the attracting periodic solutions provide a represen-
tation of the bubble located inside the region determined by the lower and the upper
bounds.
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Fig. 10 Numerical
approximation of the minimum
norm of the segments xt of a
solution of (28) with τ = 10 and
δ ∈ (0, 4), suggesting a bubbling
shape
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Fig. 11 Solution of (28) with τ = 10, δ = 0.7: (a) x(t) versus t ; (b) x(t) versus x(t − 1)

Next we consider Eq. (28) with τ = 10, where more complex behaviour is observed
for some values of δ. As before, the bifurcation points where the positive equilibrium
changes its stability can be calculated numerically using the relation (26). This pro-
vides the values δ1 ≈ 0.033, δ2 ≈ 2.701.

In Fig. 10 we plot, for δ ∈ (0, 3), an approximation of the minimum norm of the
segments of a solution x(t) of (28) with τ = 10, which suggests that it is bounded
away from zero, giving rise to a bubble in the sense of Definition 1. Other numerical
experiments for different initial conditions provide similar figures.

The range of values δ for which the curve is more abrupt may correspond to more
complex dynamics. However, as far as we know, no results are available to explain this
phenomenon. In Fig. 11 we plot a numerical solution of (28) with δ = 0.7, τ = 10,
and a projection of its orbit over the plane (x(t − 1), x(t)).

The limit form of Eq. (28) as τ → ∞ is the difference equation with continuous
argument

x(t) = −(3 − ln(δ))
(

1 − e−x(t−1)
)

+ x(t − 1)e−x(t−1) := h(δ, x(t − 1)),
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Fig. 12 Bifurcation diagram of
(30) with δ ∈ (1, 3)
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whose dynamics is governed by the one-dimensional discrete equation of Ricker type
[36]

xn+1 = h(δ, xn). (30)

In Fig. 12, we show the bifurcation diagram corresponding to (30) with δ ∈ (1, 3).
The dashed line denotes the unstable equilibrium.

We notice that, if δ1(τ ), δ2(τ ) denote, respectively, the points at which the equi-
librium of (28) loses and recovers its asymptotic stability, then limτ→∞ δ1(τ ) =
0, limτ→∞ δ2(τ ) = e. For the limiting Eq. (30), there are no bubbles, and increas-
ing the mortality rate δ helps to stabilize the equilibrium. Actually, the equilibrium
becomes globally stable after a period-halving bifurcation at δ = e.

In conclusion, the main finding of our analytical and numerical study of the possi-
ble destabilizing effect of increasing mortality in Nicholson’s blowflies delay dif-
ferential equation (23) is the following: as it is well known, for small values of
τ , the dynamics is as simple as in the nondelayed case; thus increasing mortality
does not destabilize the positive equilibrium. For larger values of τ the dynam-
ics is still simple, but an increment of parameter δ leads to a bubble, thus induc-
ing oscillations between the two Hopf-bifurcation points. For even larger values
of τ , increasing mortality induces instabilities, and the dynamics seems to become
more complex; further harvesting effort leads to an attracting equilibrium again.
Finally, for the limit case τ =∞, increasing mortality tends to simplify the dynamics
from a chaotic behaviour to a globally stable equilibrium via period-halving bifurca-
tions.
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