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Abstract

When extending the qualitative and dynamical theory from autonomous difference equa-
tions (mappings) to explicitly time-dependent problems, one is confronted with three intrinsic
problems: One needs a more flexible notion of invariance, eigenvalues do not yield meaning-
ful stability information, and generically such equations do not possess equilibria.

In this admittedly biased survey paper, we address the above aspects and discuss several
approaches in the development of a corresponding bifurcation theory for nonautonomous dif-
ference equations. First, we present a spectral notion based on exponential dichotomies and
give continuation results for entire bounded solutions. Second, we discuss so-called solution,
as well as attractor bifurcations and illustrate them using various examples. Finally, to apply
the above results in higher-dimensional problems, we tackle an applicable version of Pliss’s
reduction principle via nonautonomous center manifolds — so-called center fiber bundles.
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1 An amble introduction

Bifurcation or branching theory as a part of nonlinear functional analysis deals with changes in
the solution structure to abstract (nonlinear) equations under parameter variation (cf., e.g., the
references [18, 25, 50, 90]). Applied to the theory of dynamical systems these equations are
evolutionary differential or difference equations, and a bifurcation typically goes hand in hand
with a change of stability properties to particular reference solutions. More specifically, classical
dynamical bifurcation theory for discrete systems focusses on autonomous difference equations

xk+1 = g(xk, λ) (1.1)

with a smooth right-hand side g : Rd × Λ→ Rd depending on a parameter λ; here, the parameter
space Λ is an ambient metric space — typically an open subset of Rn or of a some Banach space
(cf., e.g., [42, 30, 88, 35, 60] or the survey paper [23]) but sometimes a more flexible setting is
eligible. A central question is how stability and multiplicity properties of invariant sets for (1.1)
change, when the parameter λ is varied? In the simplest, and most often considered situation,
these invariant sets are fixed points or periodic solutions to a difference eqn. (1.1).

Given some fixed parameter value λ∗ ∈ Λ, an equilibrium x∗ = g(x∗, λ∗) of (1.1) is called
hyperbolic, provided the partial derivative D1g(x∗, λ∗) ∈ Rd×d possesses no eigenvalue on the
complex unit circle S1. Then the implicit function theorem (cf., e.g. [90, p. 150, Thm. 4.B]) allows
a unique continuation x(λ) ≡ g(x(λ), λ) of x∗ in a neighborhood of λ∗. In particular, hyperbol-
icity rules out bifurcations understood as topological changes in the set {x ∈ Rd : g(x, λ) = x}
near a reference pair (x∗, λ∗) or a stability change of x∗.

On the other hand, eigenvalues on the complex unit circle give rise to various well-understood
autonomous bifurcation scenarios. Such classical examples include fold, transcritical or pitchfork
bifurcations (eigenvalue 1), flip bifurcations (eigenvalue−1) or the Sacker-Neimark bifurcation (a
pair of complex conjugate eigenvalues for d ≥ 2). Via center manifold theory, higher dimensional
problems can be reduced to the above situations. Moreover, normal form theory allows a clas-
sification of bifurcation scenarios by finding an algebraically most simple representation. It can
be said that the dynamical bifurcation theory for autonomous equations has reached a remarkable
maturity w.r.t. analytical as well as numerical aspects and various effective computational tools
are available (cf., for instance, [31]).

Nevertheless, even in the time-invariant setting of eqn. (1.1), we will illustrate below that one
easily encounters intrinsically nonautonomous problems, where neither the classical methods de-
scribed above and presented in, for instance, [42, 30, 88, 35, 60, 23], nor the numerical routines
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of e.g. [31] apply. For this reason, we extend our perspective to the framework of general nonau-
tonomous difference equations

xk+1 = fk(xk, λ) (∆λ)

with a sufficiently smooth right-hand side fk : Rd × Λ → Rd, k ∈ Z. For our theory, we usually
suppose that the function fk and its derivatives map bounded subsets of Rd ×Λ into bounded sets
uniformly in k ∈ Z. Concrete applications and examples for nonautonomous equations (∆λ) are:

• Investigate the behavior of (1.1) along an entire reference solution (φ∗k)k∈Z, which is not
constant or periodic. This is typically done using the (obviously nonautonomous) equation
of perturbed motion

xk+1 = g(xk + φ∗k, λ)− g(φ∗k, λ), (1.2)

which evidently possesses the trivial solution; here, fk(x, λ) = g(x+ φ∗k, λ)− g(φ∗k, λ).

• One replaces the constant parameter λ in (1.1) by a sequence (λk)k∈Z in Λ, which varies in
time. Also the resulting parametrically perturbed equation

xk+1 = g(xk, λk)

becomes nonautonomous with fk(x, λ) = g(x, λk); note here the ambiguity that the param-
eter space in (∆λ) is an appropriate sequence space, while it is a subset of Rn in (1.1). This
situation is highly relevant for applications, in order to mimic control or regulation strategies
via the sequence (λk)k∈Z.

• Numerical discretizations of an autonomous ODE ẋ = G(x, λ) with adaptive time-steps
hk > 0 yield nonautonomous difference equations. In the simplest case of the forward
Euler-method, they are of the form

xk+1 = xk + hkG(xk, λ)

and it is fk(x, λ) = x+ hkG(x, λ).

There is also a further source for nonautonomous dynamics: Given a so-called base space Ω
and a map f : Ω× Rd × Λ→ Rd, the concept of driven difference equations

xk+1 = f(θkω, xk, λ) (1.3)

as nonautonomous problems with right-hand sides fk = f(θkω, ·) : Rd×Λ→ Rd, is very fruitful
from an applied point of view (see [20, 51]). For instance,

• a sequence fk : Rd × Λ → Rd is chosen periodically or, perhaps less regularly, from a
finite family of maps {g1, . . . , gr}. A difference eqn. xk+1 = gωk(xk, λ), ωk ∈ {1, . . . , r},
can be written as (1.3) with Ω being the set of sequences from Z into {1, . . . , r} and θ is
the shift operator on Ω defined by θ((ωk)k∈Z) = (ωk+1)k∈Z. Then Ω becomes a compact
metric space w.r.t. the metric

d(ω, ω̄) :=
∑
k∈I

(1 + r)−|k| |ωk − ω̄k| for all ω, ω̄ ∈ Ω.
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• To incorporate random or stochastic influences, one considers metric dynamical systems,
i.e. a probability space (Ω, F,P) with a measurable map θ : Ω→ Ω such that θP = P. Then
a random difference equation (see [5]) is of the form

xk+1 = f(θkω, xk, λ),

where the mapping f(ω, ·, λ) : Rd → Rd, λ ∈ Λ, is assumed to be measurable. For a fixed
event ω ∈ Ω, i.e. in a path-wise consideration, this is a nonautonomous difference equation
(cf. [5, pp. 50ff, Sect. 2.1] or [87]).

Finally, we point out that these notes are based on [56, Chapt. 7] but provide a broader scope and
various additional examples.

1.1 Nonautonomous dynamics

In the classical autonomous theory, the dynamical behavior of (1.1) only depends on the time
elapsed since starting. For this reason, one chooses 0 as initial time and works with (1-parameter)
semigroups

φλ(k, ·) := g(·, λ) ◦ . . . ◦ g(·, λ)︸ ︷︷ ︸
k times

for all k ∈ Z+
0

on the state space Rd. Their dynamical behavior is captured by means of orbits {φλ(k, ξ)}k∈Z+
0

,

i.e. projections of solution sequences
(
k, φλ(k, ξ))

)
k∈Z+

0
to Rd, where ξ ∈ Rd denotes an initial

value. As a consequence, invariant and limit sets are subsets of the state space.
As opposed to this, for nonautonomous difference equations

xk+1 = fk(xk) (∆)

their dynamics depends on the starting time as well, and a vivid geometrical interpretation requires
the extended state space Z × Rd. An entire solution to (∆) is a sequence (φk)k∈Z satisfying the
identity φk+1 ≡ fk(φk) on Z, and the set

{
(k, φk) ∈ Z× Rd : k ∈ Z

}
is called solution sequence.

In particular, the forward solution to (∆) satisfying the initial condition xκ = ξ for given initial
times κ ∈ Z and initial states ξ ∈ Rd is called general solution; it is denoted by ϕ(·;κ, ξ) and
explicitly given by

ϕ(k;κ, ·) :=

{
fk−1 ◦ . . . ◦ fκ, κ < k,

id, k = κ.
(1.4)

Without invertibility assumptions on fk, backward solutions to (∆) might not exist or might not
be unique. Hence, the maximal domain of definition for ϕ is

{
(k, κ, ξ) ∈ Z2 × Rd : κ ≤ k

}
. For

bijective fk : Rd → Rd with inverse f−1
k , one additionally defines

ϕ(k;κ, ·) := f−1
k ◦ . . . ◦ fκ−1 for all k < κ.

In the following lines, we briefly present an extension of the autonomous dynamical systems
theory (see e.g. [30, 35]) to such 2-parameter semigroups or processes ϕ. Central for this endeavor
is the notion of a nonautonomous setA: At first, this is a subset of the extended state space Z×Rd
and its k-fiber is defined to be

A(k) :=
{
x ∈ Rd : (k, x) ∈ A

}
for all k ∈ Z.
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A neighborhood of A is a superset of the ε-neighborhood

Bε(A) :=
{

(k, x) ∈ Z× Rd : dist(x,A(k)) < ε
}

with some ε > 0 and dist(x,A) := infa∈A ‖x− a‖ for x ∈ Rd and A ⊆ Rd. Such a nonau-
tonomous set A is called

• compact, if every fiber A(k), k ∈ Z, is compact

• bounded, if there exists a R > 0 such that A(k) ⊆ BR(0) for all k ∈ Z, where BR(0)
denotes the open unit ball in Rd centered around 0

• invariant, if one has
A(k + 1) = fk(A(k)) for all k ∈ Z

and forward invariant, if A(k + 1) ⊆ fk(A(k)) holds for all k ∈ Z, which is equivalent to
A(k) = ϕ(k;κ,A(κ)) resp. the inclusion A(k) ⊆ ϕ(k;κ,A(κ)) for all κ ≤ k

• attractive, if every bounded nonautonomous set B satisfies

lim
n→∞

h(ϕ(k; k − n,B(k − n)),A(k)) = 0 for all k ∈ Z, (1.5)

where h(A,B) := supb∈B dist(b, A) is the Hausdorff semidistance of subsets A,B ⊆ Rd

• repulsive, if every bounded nonautonomous set B satisfies

lim
n→∞

h(ϕ(k − n; k,B(k)),A(k − n)) = 0 for all k ∈ Z, (1.6)

where the right-hand side fk : Rd → Rd of (∆) is assumed to be bijective.

We furthermore speak of a locally attractive or repulsive set, if the respective relation (1.5) or (1.6)
holds for all nonautonomous sets B contained in a neighborhood of A.

Finally, a global attractor of (∆) is defined as an invariant, compact and attractive nonau-
tonomous set. Accordingly, a local attractor or repeller is invariant, compact and locally attractive
resp. repulsive.

1.2 Examples for nonautonomous bifurcations

After these preliminaries on the process formulation of nonautonomous discrete dynamics, we
return to a bifurcation theory and parameter-dependent difference eqns. (∆λ). Throughout, their
general solution will be denoted by ϕλ.

Firstly, we observe that nonautonomous problems (∆λ) generically do not have constant so-
lutions (equilibria), and in particular the fixed point sequences x∗k = fk(x

∗
k, λ
∗) are normally not

solutions to (∆λ). This gives rise to

Question 1: If there are no equilibria, what bifurcates in a nonautonomous set-up?

An adequate answer to this question forces us to enlarge the set of objects in which we look for
bifurcating objects. For motivational purposes, consider the autonomous case (1.1) first and the
problem of parametric perturbations.
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Example 1.1. Let b = (bk)k∈Z be a bounded real sequence, λ be a real parameter and consider the
scalar nonautonomous difference equation

xk+1 = 1
2xk + λbk. (1.7)

For λ = 0 this equation is autonomous and has the unique fixed point x0 = 0 resulting from the
relation x = 1

2x; this fixed point is the unique bounded and entire solution, as well as the global
attractor for the autonomous problem xk+1 = 1

2xk. For parameters λ 6= 0 the unique solutions
to x = 1

2x + λbk do not have a dynamical meaning. Nevertheless, the difference eqn. (1.7) still
admits a unique bounded entire solution

φ(λ)k := λ
k−1∑

n=−∞

(
1
2

)k−n−1
bn for all k ∈ Z.

Hence, the fixed point of (1.7) for λ = 0 persists as an entire bounded solution φ(λ) (cf. Fig. 1).
On the other hand, the global attractor to (1.7) is given by the nonautonomous set

Aλ := {(k, φ(λ)k) : k ∈ Z} for all λ ∈ R.

Its fibers consist of singletons and do not change their topological structure for arbitrary values of
the parameter λ ∈ R.

Figure 1: Solution sequences (dotted) of the linear difference eqn. (1.7) with bk = k
2+k2

and λ = 0
(left), λ = 1 (middle), λ = 2 (right) and the unique bounded solution φ(λ) (solid)

This facile linear example and Fig. 1 yield the conjecture that equilibria of autonomous dif-
ference eqns. (1.1) persist as bounded entire solutions under parametric perturbations and that this
behavior can also be observed for nonlinear equations. It will be shown below in Thm. 3.4 (or in
[69, Thm. 3.4]) that this conjecture is generically true in the sense that a fixed point of (1.1) has to
be hyperbolic in order to persist under parametric perturbations.

In the following, we study various scenarios where the hyperbolicity condition is violated and
persistence cannot be guaranteed.

Example 1.2. As above, consider a scalar nonautonomous difference equation

xk+1 = λxk + 1
1+|k| . (1.8)

Depending on the real parameter λ we obtain the following behavior:
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• |λ| < 1: The eqn. (1.8) has a unique bounded entire solution φ(λ)k :=
∑k−1

n=−∞
λk−n−1

1+|n|
for all k ∈ Z. It is uniformly asymptotically stable and accordingly the nonautonomous set
Aλ := {(k, φ(λ)k) : k ∈ Z} is the global attractor.

• λ = 1: Due to the variation of constants formula (cf., e.g., [1, p. 59]), the general solution
to (1.8) has the form of a harmonic series

ϕ1(k;κ, ξ) = ξ

{
+
∑k−1

n=κ
1

1+|n| , k ≥ κ,
−∑κ−1

n=k
1

1+|n| , k < κ

and thus there exist no bounded entire solutions to (1.8).

• λ = −1: Reasoning as above, the general solution is

ϕ−1(k;κ, ξ) = (−1)k−κξ

−
∑k−1

n=κ
(−1)k−n

1+|n| , k ≥ κ,
+
∑κ−1

n=k
(−1)k−n

1+|n| , k < κ

and consequently every solution of (1.8) is bounded.

• |λ| > 1: The eqn. (1.8) has a unique bounded entire solution φ(λ)k := −∑∞n=k
λk−n−1

1+|n| ,
which is unstable; the nonautonomous set Aλ := {(k, φ(λ)k) : k ∈ Z} is a repeller.

For the critical and nonhyperbolic parameter values λ = ±1 the linear eqn. (1.8) changes its
stability. At λ = −1 the number of bounded entire solutions explodes, while there exists a unique
bounded entire solution in the vicinity of λ = −1. Also close to the parameter value λ = −1 there
are unique bounded entire solutions, while there is none for λ = 1.

Example 1.3 (pitchfork bifurcation). For λ > 0 consider the autonomous difference equation

xk+1 = fk(xk, λ), fk(x, λ) :=
λx

1 + |x| . (1.9)

It is a prototype example featuring an autonomous pitchfork bifurcation (cf., e.g. [60, pp. 119ff,
Sect. 4.4]), where the unique asymptotically stable fixed point x∗ = 0 for λ ∈ (0, 1) bifurcates
into two asymptotically stable equilibria x± := ±(λ− 1) for λ > 1.

Along the trivial solution the linearization xk+1 = λxk to (1.9) is nonhyperbolic for λ = 1.
From a nonautonomous perspective, this loss of hyperbolicity causes an attractor bifurcation:

• λ ∈ (0, 1]: The set Aλ = Z × {0} is the global attractor which consists of the unique
bounded entire solution to (1.9) (see Fig. 2 left, middle)

• λ > 1: The zero solution becomes unstable and the global attractorAλ = Z×[1− λ, λ− 1]
is nontrivial. Here, a whole family of bounded entire solutions exists, connecting the equi-
librium 0 with ±(λ− 1) (see Fig. 2 right)

While the above example shows how (autonomous) bifurcations can be understood as attractor
alternations, the following scenario is intrinsically nonautonomous. Here, we generate a nonhy-
perbolic situation by concatenating two hyperbolic systems:
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Figure 2: Solution sequences (dotted) of the difference eqn. (1.9) with λ = 1
2 (left), λ = 1

(middle), λ = 2 (right)

Example 1.4 (shovel bifurcation). Consider a scalar linear difference equation

xk+1 = ak(λ)xk, ak(λ) :=

{
1
2 + λ, k < 0,

λ, k ≥ 0,
(1.10)

depending on a real λ > 0. In order to understand the dynamics of (1.10), we distinguish three
parameter constellations:

• λ ∈ (0, 1
2): The unique bounded entire solution is the trivial one and (1.10) is uniformly

asymptotically stable. Its global attractor reads as Aλ = Z× {0} (cf. Fig. 3 left).

• λ ∈ (1
2 , 1): For this parameter regime, every solution of (1.10) is bounded. Moreover, (1.10)

is asymptotically stable, but not uniformly asymptotically stable on the whole time axis Z.
There exists no global attractor (cf. Fig. 3, middle).

• λ > 1: The unique bounded entire solution is 0, (1.10) is unstable, there is no global
attractor, but the trivial solution is a repeller (cf. Fig. 3, right).

The parameter values λ ∈ {1
2 , 1} are critical: λ = 1

2 yields a uniformly stable and λ = 1 a
merely stable eqn. (1.10). In both situations, the number of bounded entire solutions to the differ-
ence eqn. (1.10) changes drastically. Furthermore, there is a loss of stability in two steps: From
uniformly asymptotically stable to asymptotically stable, and finally to unstable, as λ increases
through the values 1

2 and 1. Hence, both values can be considered as bifurcation values, since the
number of bounded entire solutions changes, as well as their stability properties.

The next example requires the state space to be at least two-dimensional, but also concatenates
two hyperbolic autonomous problems. Here, for the first time, we use the notation `∞ for the space
of all bounded sequences φ = (φk)k∈Z.
Example 1.5 (fold solution bifurcation). Consider the planar difference equation

xk+1 = fk(xk, λ) :=

(
bk 0
0 ck

)
xk +

(
0

(x1
k)

2

)
− λ

(
0
1

)
(1.11)

with components xk = (x1
k, x

2
k), a parameter λ ∈ R and asymptotically constant sequences

bk :=

{
2, k < 0,
1
2 , k ≥ 0,

ck :=

{
1
2 , k < 0,

2, k ≥ 0.
(1.12)
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Figure 3: Solution sequences (dotted) of the linear difference eqn. (1.10) with λ = 1
4 (left), λ = 3

4
(middle), λ = 5

4 (right)

Let ϕλ(·, 0, η) be the general solution to (1.11). Its first component ϕ1
λ reads as

ϕ1
λ(k, 0, η) = 2−|k|η1 for all k ∈ Z, (1.13)

while the variation of constants formula (cf., e.g., [1, p. 59]) can be used to deduce the asymptotic
representation

ϕ2
λ(k, 0, η) =

{
2k
(
η2 + 4

7η
2
1 − λ

)
+O(1), k →∞,

1
2k

(
η2 − 1

2η
2
1 + 2λ

)
+O(1), k → −∞.

Therefore, the sequence ϕλ(·; 0, η) is bounded if and only if η2 = −4
7η

2
1 + λ and η2 = 1

2η
2
1 − 2λ

holds, i.e., η2
1 = 7

2λ, η2 = −λ. From the first relation, one sees that there exist two bounded
solutions if λ > 0, the trivial solution is the unique bounded solution for λ = 0 and there are no
bounded solutions for parameters λ < 0; see Fig. 4 (left) for an illustration. For this reason, one
can interpret λ∗ = 0 as bifurcation value, since the number of bounded entire solutions increases
from 0 to 2 as λ increases through 0.

This method of explicit solutions can also be applied to the related difference equation

xk+1 = fk(xk, λ) :=

(
bk 0
0 ck

)
xk +

(
0

(x1
k)

3

)
− λ

(
0
1

)
(1.14)

with a cubic, rather than a quadratic nonlinearity as previously in (1.11). Again using the variation
of constants formula (cf. [1, p. 59]), it is possible to derive that the crucial second component for
the general solution ϕλ(·; 0, η) to (1.14) fulfills

ϕ2
λ(k, 0, η) =

{
2k
(
η2 + 8

15η
3
1 − λ

)
+O(1), k →∞,

1
2k

(
η2 − 2

15η
3
1 + 2λ

)
+O(1), k → −∞.

Since its first component is also given by (1.13), the sequence ϕλ(·; 0, η) is bounded if and only if
η2 = − 8

15η
3
1 + λ and η2 = 2

15η
3
1 − 2λ, which in turn is equivalent to

η1 = 3

√
9
2λ, η2 = −7

5λ.

Hence, these particular initial values η ∈ R2 on the cusp shaped curve depicted in Fig. 4 (right)
lead to bounded entire solutions of (1.14). The number of these solutions does not change and
there is no bifurcation.
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Λ

λ < λ∗

λ = λ∗

λ > λ∗

R2

R2

R2

Λ

λ < λ∗

λ = λ∗

λ > λ∗

R2

R2

R2

Figure 4: Bifurcation diagram for Exam. 1.5 with λ∗ = 0:
Left (supercritical fold): Initial values η ∈ R2 which guarantee that an entire bounded solution
ϕλ(·; 0, η) of (1.11) exists for different parameter values λ
Right (cusp): Initial values η ∈ R2 yielding an entire bounded solution ϕλ(·; 0, η) of (1.14) for
different parameter values λ

To conclude this subsection, we observed in our Exams. 1.2–1.5 that parameter variation lead
to a change in the number of bounded entire solutions for the respective nonautonomous differ-
ence equations — we denote this behavior as solution bifurcation. In the Exams. 1.2–1.4 we
additionally observed a “topological” change in the attractor Aλ as follows:

• From a nonautonomous setAλ consisting of singleton fibers, over the empty set to a repeller
as λ was increasing through 1 in Exam. 1.2

• A continuous transition ofAλ from having singleton to interval fibers as λ increases through
the value 1 in Exam. 1.3

• In Exam. 1.4 the trivial solution changes from being an attractor for λ ∈ (0, 1
2) to a repeller

for λ > 1, while there is no attractor for λ ∈ (1
2 , 1)

One can understand such a phenomenon as attractor bifurcation; in our examples this also went
hand in hand with a change in stability. In the other side, entire solutions can bifurcate while
staying unstable (cf. Exam. 5.3).

Remarks

Our, by nature, biased survey on existing tools and concepts in bifurcation theory for nonau-
tonomous difference equations relies on their more intuitive process formulation (1.4), rather than
a skew-product formalism (cf., e.g. [56, Sect. 4]) to describe nonautonomous dynamics. Never-
theless, we will hint to further and alternative results throughout the remarks supplementing each
section.

The particular form of attraction considered here is also denoted as pullback attraction and
dates back to at least [52]. This kind of convergence guarantees for instance that limit sets become
invariant and inherit various canonical properties from their autonomous special cases (cf. [70,
p. 1ff, Chapt. 1]). Yet, we do not conceal the fact that pullback convergence strongly emphasizes
backward behavior and lacks to capture forward dynamics (see the note [57] for a more detailed
discussion). A comparison of different attractor notions can be found in [21]. Our repeller concept
is taken from [81, p. 13, Def. 2.6]. Finally, as a general source for nonautonomous dynamical
systems, we refer to the recent monograph [58] or the survey paper [56] with a focus on discrete
dynamics.
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One of the earliest contribution to nonautonomous bifurcations in time-discrete equations we
are aware of, is [80], relying on attractor bifurcation. The alternative approach via solution bi-
furcations arose later from [71, 75] and both concepts were featured above in form of various
examples.

2 Spectral theory

Typical examples of time-variant difference equations having the trivial solution are equations of
perturbed motion (1.2). Their variational equation along nonconstant solutions (φ∗k)k∈Z to (1.1) is
intrinsically nonautonomous and given by xk+1 = D1g(φ∗k, λ)xk. Investigating the stability prop-
erties as well as the behavior of φ∗ under variation of λ requires an appropriate nonautonomous
spectral and hyperbolicity notion.

For this purpose, we investigate finite-dimensional linear but nonautonomous difference equa-
tions. Precisely, suppose Ak ∈ Rd×d, k ∈ Z, is a bounded sequence of matrices, and consider

xk+1 = Akxk (L)

with the transition matrix (cf. (1.4))

Φ(k, l) :=

{
Ak−1 · · ·Al, l < k,

id, k = l.

If the coefficient matrices Ak are invertible, we moreover set Φ(k, l) := A−1
k · · ·A−1

l−1 for k < l.
Typically, one obtains (L) as variational equation along a reference solution to (∆) in `∞. For this
reason our boundedness assumption on the sequence Ak is barely restrictive.

Differing from the autonomous situation, the k-dependent eigenvalues of Ak are of no use in
stability investigations. Thereto, let us consider an example from [26, pp. 190–191, Ex. 4.17]:

Example 2.1. The 2× 2-matrices

Ak := 1
2

(
0 2 + (−1)k

2− (−1)k 0

)
for all k ∈ Z

have constant eigenvalues ±
√

3
2 with modulus less than 1. Nevertheless, this does not allow us

to deduce (asymptotic) stability of the nonautonomous difference eqn. (L) with Ak as coefficient
matrices. Indeed, (L) has the transition matrix

Φ(k, 0) := 1
2

(
21−k − (−2)1−k (

3
2

)k − (−3
2

)k
2−k − (−2)−k

(
3
2

)k − (−3
2

)k
)

for all k ≥ 0

and therefore unbounded solutions. Hence, (L) is unstable, which is also indicated by the corre-
sponding Floquet multipliers 1

4 ,
9
4 (cf. the following remark).

Remark 2.1 (periodic equations). Let p ∈ N. A satisfying spectral theory exists for p-periodic
difference eqns. (L), where we have Ak+p = Ak for all k ∈ Z. In this set-up, the eigenvalues to
Ak have to be replaced by Floquet multipliers, i.e. eigenvalues of the period map

Π := Φ(p, 0) = Ap−1 · · ·A0.

This yields a classical perturbation and stability theory for periodic difference equations. In par-
ticular, with σ(Π) ⊆ C denoting the set of eigenvalues of Π, stability criteria read as follows:
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(a) If σ(Π) ⊂ B1(0), then (L) is uniformly asymptotically stable.

(b) If there exists a λ ∈ σ(Π) with |λ| > 1, then (L) is unstable.

Nevertheless, since our aim is to capture general time-dependencies beyond being periodic,
one is still confronted with

Question 2: If eigenvalues are of no use, what indicates stability in a nonautonomous set-up?

A first and frequently met guess is the concept of characteristic or Lyapunov exponents yield-
ing criteria for merely asymptotic stability. Yet, as classical examples show (cf. [61], or [70,
p. 128, Ex. 3.4.1]), without the assumption of regularity this is not a robust stability notion. In
fact, asymptotic stability of a linear equation can be destroyed by perturbations of order o(x).

Keeping this in mind, we argue that a much more feasible concept is uniform asymptotic
stability or its natural generalization in form of exponential dichotomies: Thereto, let I be the
intersection of a real interval with the integers Z, a so-called discrete interval, and define the
lapped interval I′ := {k ∈ I : k + 1 ∈ I}. Then an invariant projector for (L) is a sequence
Pk ∈ Rd×d, k ∈ I, of projections Pk = P 2

k such that

Ak+1Pk = PkAk, Ak|N(Pk) : N(Pk)→ N(Pk+1) is invertible for all k ∈ I′. (2.1)

This assumption guarantees that the restriction Φ(k, l)|N(Pl) : N(Pl) → N(Pk), l ≤ k, is well-
defined and invertible with inverse denoted by Φ(l, k). Moreover, it ensures that the kernels
N(Pk), k ∈ I, share the same dimension.

Definition 2.1 (exponential dichotomy). A linear difference eqn. (L) is said to admit an exponen-
tial dichotomy on I (for short, ED), if there exists an invariant projector Pk with complementary
projector Qk := id−Pk and reals K ≥ 1, α ∈ (0, 1) such that for k, l ∈ I one has

‖Φ(k, l)Pl‖ ≤ Kαk−l if l ≤ k, ‖Φ(k, l)Ql‖ ≤ Kαl−k if k ≤ l. (2.2)

Remark 2.2. (1) In case I is unbounded above, then the stable vector bundle

V+ :=

{
(κ, ξ) ∈ I× Rd : lim

k→∞
Φ(k, κ)ξ = 0

}
=

{
(κ, ξ) ∈ I× Rd : sup

κ≤k
‖Φ(k, κ)ξ‖ <∞

}
satisfies R(Pk) = V+(k) for all k ∈ I and the range of Pk is uniquely determined. In a similar
fashion, for I unbounded below the unstable vector bundle

V− :=

{
(κ, ξ) ∈ I× Rd :

there exists a solution φ = (φk)k∈I
with φκ = ξ and limk→−∞ φk = 0

}
=

{
(κ, ξ) ∈ I× Rd :

there exists a solution φ = (φk)k∈I
with φκ = ξ and supk≤κ ‖φk‖ <∞

}
allows the characterization R(Qk) = N(Pk) = V−(k) for all k ∈ I determining R(Qk). There-
fore, for EDs on Z the invariant projector Pk is uniquely determined (cf. Fig. 5).

(2) The Green’s function associated to an exponentially dichotomous eqn. (L) is given by

ΓA(k, l) :=

{
Φ(k, l)Pl, l ≤ k,
−Φ(k, l)Ql, k < l.
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Rd

Z

κ κ+ 1 k

R(Qκ)

R(Qκ+1)

R(Pκ)

R(Pκ+1)

R(Qk) = V−(k)

R(Pk) = V+(k)

Figure 5: Fibers for the stable and unstable vector bundle V+ resp. V− to (L)

Example 2.2. An autonomous difference equation

xk+1 = Axk (2.3)

possesses an ED on Z, if and only if it is hyperbolic. This means the coefficient matrix A ∈ Rd×d
has no eigenvalues on the complex unit circle S1. More precisely, for a spectral splitting

σ(A) = σ+ ∪ σ−, σ+ ⊂ B1(0), σ− ∩ B̄1(0) = ∅

one can choose any growth rate α satisfying α ∈
(
maxλ∈σ+ |λ| , 1

)
, α−1 ∈

(
1,minλ∈σ− |λ|

)
. The

corresponding invariant projector Pk is constant in k and, following [48, pp. 67ff], determined by
the Riesz projection

P := − 1

2πi

∫
S1

[A− z id]−1dz.

The associated vector bundles V+ and V− have constant fibers given by the stable resp. unstable
subspace of (2.3). A similar result holds for periodic difference equations by means of a spectral
splitting for the period map Π.

It is well-known that hyperbolicity is a generic property in the class of autonomous or periodic
linear difference equation, i.e. hyperbolic systems are open and dense among autonomous/periodic
problems in Rd. When passing to nonautonomous eqns. (L), it follows from the roughness theorem
(cf. [34, p. 232, Thm. 7.6.7] or [77, p. 165 Thm. 3.6.5]) that an ED is merely an open property.
However, the exponentially dichotomous systems are not dense, and consequently not generic in
the class of difference eqns. (L) with bounded coefficient sequences. For an example we refer to
[77, p. 149, Ex. 3.4.34].

2.1 Dichotomy spectrum

With the notion of an ED available, we now introduce an appropriate spectral notion. Indeed,
there is an elegant connection between the dynamical notion of an ED and operator theory. Given
γ > 0, the scaled difference equation

xk+1 = γ−1Akxk (Lγ)
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admits an ED on Z if and only if the linear operator Sγ : `∞ → `∞,

(Sγφ)k := φk+1 − γ−1Akφk

has a bounded inverse, i.e. Sγ ∈ GL(`∞) (cf. [34, p. 230, Thm. 7.6.5]). On this basis, it is
convenient to introduce the following dichotomy spectra

• Σ(A) := {γ > 0 : (Lγ) does not have an ED on Z} = {γ > 0 : Sγ 6∈ GL(`∞)},

• Σ+
κ (A) := {γ > 0 : (Lγ) does not have an ED on Z+

κ },

• Σ−κ (A) := {γ > 0 : (Lγ) does not have an ED on Z−κ }
and the dichotomy resolvent ρ(A) := R \ Σ(A).

Next we indicate various properties of the above dichotomy spectra, which we denote by Σ
for convenience. First, the boundedness of the sequence (Ak)k∈Z carries over to the spectra Σ. As
shown in [12, 13, 6] we know that every dichotomy spectrum Σ ⊆ (0,∞) is the disjoint union of
n ≤ d nonempty spectral intervals σ1, . . . , σn ⊆ (0,∞), i.e. of the form

Σ =
n⋃
i=1

σi, σ1 =


[a1, b1]

or
(0, b1]

, σi = [ai, bi] for all 2 ≤ i ≤ n

with reals 0 < a1 ≤ b1 < a2 ≤ . . . < bn. Here, σn is called dominant spectral interval of (L)
and the additional assumption Ak ∈ GL(Rd) with supk∈I

∥∥A−1
k

∥∥ < ∞ ensures σ1 = [a1, b1].
As illustrated in Exam. 2.4 below, the spectral intervals can be considered as a nonautonomous
counterpart to the eigenvalue moduli for autonomous problems.

Remark 2.3 (properties of dichotomy spectra). (1) One has the inclusion Σ±κ (A) ⊆ Σ(A).
(2) For invertible coefficient matrices Ak, k ∈ I′, is not difficult to see that Σ±κ (A) are inde-

pendent of the starting time κ ∈ Z.
(3) Both the dichotomy spectra Σ±κ (A) are invariant under `0-perturbations, i.e. one has the

relation Σ±κ (A) = Σ±κ (A + B) for matrix sequences Bk ∈ Rd×d satisfying limk→±∞Bk = 0
(for this, see [13, Thm. 2.3]). As we will demonstrate in Exam. 2.7 this is not true for Σ(A).
Indeed, one has to impose additional assumptions (cf. [72, Thm. 4]) to ensure the invariance of
Σ(A) under additive perturbations decaying to 0.

(4) The dichotomy spectra Σ±κ (A) and Σ(A) depend upper-semicontinuously on perturbations
of the coefficients (Ak)k∈I′ in the `∞-topology (cf. [68, Cor. 4] and [73, Cor. 3.24]). We again refer
to Exam. 2.7 for an explicit example illustrating this. Hence, it is difficult to establish a smooth
perturbation theory for spectral intervals like it is possible for eigenvalues in the autonomous or
periodic case. Nevertheless, the set of discontinuity points for the set-valued functions Σ±,Σ is of
first category (cf. [73, Rem. 4.26(1)]).

On the full integer line I = Z the dichotomy spectrum Σ(A) also provides a geometric insight
into the dynamics of (L). This means we can establish a “nonautonomous linear algebra”. Thereto,
given a growth rate γ > 0, we define the

• γ-stable vector bundle

V+
γ :=

{
(κ, ξ) ∈ Z× Rd : sup

κ≤k
|Φ(k, κ)ξ| γκ−k <∞

}
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• and the γ-unstable vector bundle

V−γ :=

{
(κ, ξ) ∈ Z× Rd :

there exists a solution φ = (φk)k∈I with
φκ = ξ and supk≤κ ‖φk‖ γκ−k <∞

}
,

whose fibers are linear subspaces of Rd; in particular, it is V± = V±1 . Furthermore, choose rates
γi ∈ (bi, ai+1) for 1 ≤ i < n, in case σ1 = [a1, b1] choose γ0 ∈ (0, a1) and define

V0 :=

{
V+
γ0 , if σ1 = [a1, b1],

Z× {0} , else
V1 := V+

γ1 ∩
{
V−γ0 , if σ1 = [a1, b1],

Z× Rd, else,

Vi := V+
γi ∩ V−γi−1

for all 1 < i ≤ n, Vn+1 := V−γn .

These vector bundles V0, . . . ,Vn+1 are forward invariant nonautonomous sets whose fibers pos-
sess constant dimension dimVi, which is also called the multiplicity of the corresponding spectral
interval σi for indices 1 ≤ i ≤ n. In addition, one has the Whitney sum

Z× Rd = V0 ⊕ . . .⊕ Vn+1,

which reduces to the well-known direct decomposition of the state space Rd into generalized
eigenspaces for autonomous eqns. (2.3) (cf. [38, pp. 110ff, Chapt. 6]).

Referring to [12], the boundary points of the spectral intervals are Bohl exponents. For real
sequences (ak)k∈I they are defined as limits

β+
I (a) = lim

j→∞
j

√√√√inf
n∈I

n+j−1∏
k=n

|ak|, β+
I (a) = lim

j→∞
j

√√√√sup
n∈I

n+j−1∏
k=n

|ak|. (2.4)

Next we illustrate the dichotomy spectra using a combination of results from [12, Sect. 4], [9]
and [68] to deduce the following examples in which I = Z.

Example 2.3 (scalar equations). For scalar eqns. xk+1 = akxk with coefficients ak ∈ R\{0} and
supk∈Z

{
|ak| ,

∣∣a−1
k

∣∣} <∞, the dichotomy spectrum is related to Bohl exponents in terms of

Σ(A) = [β−Z (a), β+
Z (a)]

(cf. [12, Thm. 4.6]). In particular, for the asymptotically constant special case ak = a+ for k ≥ κ
and ak = a− for k < κ, a+, a− ∈ R \ {0}, one deduces

β−Z (a) = min
{∣∣a+

∣∣ , ∣∣a−∣∣} , β+
Z (a) = max

{∣∣a+
∣∣ , ∣∣a−∣∣} .

Furthermore, the dichotomy spectra extend the autonomous and periodic situation studied in
Exam. 2.2, where moduli of eigenvalues determine stability properties. More general, the spectral
intervals measure exponential growth of solutions, but we do not want to conceal that they are
useless to indicate rotational behavior.

Example 2.4 (autonomous equations). For autonomous linear difference eqns. (2.3) with coeffi-
cient matrix A ∈ Rd×d one has

Σ(A) = Σ+
κ (A) = Σ−κ (A) = {|λ| : λ ∈ σ(A)} \ {0} ,

which can be seen using Exam. 2.2 or [42, p. 6, Technical lemma 1].
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Example 2.5 (periodic equations). For a p-periodic difference eqn. (L) with the period mapping
Π = Φ(p, 0) ∈ GL(Rd) one has (cf. [12, Thm. 4.1]

Σ(A) = Σ+
κ (A) = Σ−κ (A) =

{
p
√
|λ| > 0 : λ ∈ σ(Π)

}
.

Example 2.6 (asymptotically autonomous equations). If the coefficient sequence Ak ∈ GL(Rd)
in eqn. (L) satisfies

A+ := lim
k→∞

Ak, A− := lim
k→−∞

Ak

with invertible limits A+, A− ∈ Rd×d, then one obtains the dichotomy spectra

Σ+
κ (A) =

{
|λ| > 0 : λ ∈ σ(A+)

}
, Σ−κ (A) =

{
|λ| > 0 : λ ∈ σ(A−)

}
for all κ ∈ Z.

To determine the spectrum Σ(A) is more involved and we restrict to difference eqns. (L) with
piecewise constant coefficient matrices Ak = A− for k < κ and Ak = A+ for k ≥ κ. Thereto,
given ρ > 0 denote by Nρ(A

−) (resp. Rρ(A+)) the kernel (resp. range) of the Riesz projection
associated to the closed disk {z ∈ C : |z| ≤ ρ}. Let us suppose that

σ(A+) ∪ σ(A−) = {λ1, . . . , λ2d} ,

where the λi ∈ C are ordered according to

|λ1| = . . . = |λn1 | < |λn1+1| = . . . = |λnk | < |λnk+1| = . . . =
∣∣λnk+1

∣∣ ,
i.e., the indices n1 < . . . < nk indicate one of the k < 2d jumps in the moduli of the elements
in the union σ(A+) ∪ σ(A−), and we set nk+1 := 2d. Moreover, choose indices i1 < . . . < il−1

from {1, . . . , k} such that N|λnim |(A
−)⊕ R|λnim |(A

+) = Rd holds for 0 ≤ m < l. This yields
l ≤ d + 1 and, with i0 = 0, il = k + 1, such a piecewise constant difference eqn. (L) has the
dichotomy spectrum (cf. [12, Thm. 4.8])

Σ(A) =

l−1⋃
m=0

[∣∣λnim+1

∣∣ , ∣∣∣λnim+1

∣∣∣] .
In our following considerations it will be particularly important to understand the nonhyper-

bolic situation 1 ∈ Σ(A), i.e. the case when (L) does not have an ED on Z. Here, the following
characterization of an ED turns out to be helpful.

Theorem 2.1. Let κ ∈ Z. A linear eqn. (L) has an ED on Z, if and only if the following conditions
are fulfilled:

(i) (L) has an ED on Z+
κ with projector P+

k , as well as an ED on Z−κ with projector P−k ,

(ii) R(P+
κ )⊕N(P−κ ) = Rd.

Proof. See [15, Lemma 2.4].

Our next example fulfills two purposes. First, it illustrates that the dichotomy spectrum can
suddenly shrink under arbitrarily small perturbations (cf. Rem. 2.3(4)). Second, it shows that in
contrast to the one-sided dichotomy spectra (cf. Rem. 2.3(3)), the spectrum on the whole integer
axis is not invariant under perturbations decaying to 0.
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λ

1

Σ(λ)

λ∗

Figure 6: Dichotomy spectrum Σ(λ) in Exam. 2.7
being discrete for parameters λ 6= λ∗ = 0 and an
interval for λ = λ∗

Example 2.7. Let κ = 0 and suppose that δ, ε are nonzero reals satisfying |ε| < 1 < |δ|. We
consider a λ-dependent difference eqn. xk+1 = Aλkxk with

Aλk :=

(
ak λεk
0 a−1

k

)
, ak :=

{
δ, k ≥ 0,
1
δ , k < 0,

εk :=

{
εk, k ≥ 0,

0, k < 0

and λ ∈ R. Using Exam. 2.6 we easily deduce the dichotomy spectrum

Σ(A0) =
[

1
|δ| , |δ|

]
and consider the matrix sequence λ

(
0 εk
0 0

)
, k ∈ Z, as perturbation of xk+1 = A0

kxk. Thanks to
supk∈Z |λεk| = |λ| this perturbation can be made arbitrarily small. Moreover it decays to 0 even
exponentially, but does effect the dichotomy spectrum Σ(Aλ). This can be seen as follows: For
rates γ > 0 the transition matrix Φγ of the scaled perturbed eqn. (Lγ) with λ 6= 0 reads as

Φγ(k, 0) = γ−k
(
δk

λδ
δ2−ε

(
δk−( εδ )

k
)

0 δ−k

)
for all k ≥ 0

yielding the γ-stable resp. γ-unstable fibers

V+
γ (0) =


R2, |δ| ≤ γ,
R
(

δλ
ε−δ2

)
, 1
|δ| ≤ γ < |δ| ,

{0} , γ < 1
|δ| ,

V−γ (0) =


{0} , |δ| < γ,

{0} × R, 1
|δ| < γ ≤ |δ| ,

R2, γ ≤ 1
|δ| .

Hence, for values γ 6∈
{
|δ| , 1

|δ|

}
we obtain the direct sum V+

γ (0)⊕V−γ (0) = R2 and Rem. 2.2(1)
combined with Thm. 2.1 shows that (Lγ) admits an ED on the whole axis Z. This manifests a
change in the dichotomy spectrum under the above perturbations, since we can conclude

Σ(Aλ) =


{

1
|δ| , |δ|

}
, λ 6= 0,[

1
|δ| , |δ|

]
, λ = 0.

2.2 Fine structure

We already pointed out that an ED of the linear difference eqns. (L) or (Lγ) on Z can be charac-
terized in terms of invertibility of the shift operators S1 ∈ L(`∞) resp. Sγ ∈ L(`∞) with

(Sγφ)k := φk+1 − γ−1Akφk.
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In the subsequent Sects. 4 and 5 it will be apparent that bifurcations in nonlinear problems (∆λ)
can only occur in absence of an ED. Therefore, it is crucial to investigate different forms of non-
invertibility for S1. This gives rise to the following subsets of the dichotomy spectrum Σ(A):

• The point spectrum Σp(A) :=
{
γ > 0 : dimS−1

γ ({0}) > 0
}

• the surjectivity spectrum Σs(A) := {γ > 0 : Sγ is not onto}

• the Fredholm spectra ΣF (A) := {γ > 0 : Sγ is not Fredholm} and

ΣF0(A) := {γ > 0 : Sγ is not Fredholm or of nonzero index} .

It turns out that also the set-valued mappings Σs,ΣF ,ΣF0 are upper-semicontinuous on the set of
linear eqns. (L) with bounded coefficient sequences (cf. [73, Cors. 4.21(c) and 4.26(c)]).

As illustrated below, these different spectra allow a classification of nonautonomous bifurca-
tions already on a linear level. Moreover, one can deduce the following relations between them:

Corollary 2.2. For every κ ∈ Z and coefficient sequences Ak ∈ GL(Rd), k ∈ Z, one has

Σp(A) ⊆ Σp(A) ∪ Σs(A)
‖

Σ+
κ (A) ∪ Σ−κ (A) = ΣF (A) ⊆ ΣF0(A) ⊆ Σ(A) = Σs(A) ∪ ΣF0(A)

∩| ‖
∂Σ(A) ⊆ Σs(A) ⊆ Σp(A) ∪ ΣF0(A)

Proof. See [73, Cor. 4.31].

Remarks

A historically first reference for exponential dichotomies in discrete time might be [24], but we
also refer to the more recent and approachable contribution [66] with applications to shadowing
and Smale’s theorem; a generalization to noninvertible difference equations is due to [47]. Further
related results can be found in [84, 36, 2, 4], [34, pp. 229ff], [70, pp. 128ff]. The connection
between structural stability and an exponential dichotomy was studied in [54, 55, 11]. An elegant
technique to investigate dichotomies using operator theory was introduced in [10, 9] (see also
[12, 13, 14]).

Our nonautonomous spectral theory based on dichotomies dates back to [85], who consider
differential equations (and linear skew-product flows), while corresponding discrete time results
can be found in [7, 6], whereas [82] features an interesting alternative approach via the Morse
spectrum. The ideas from [9] were continued in [68, 72] and the fine structure of the dichotomy
spectrum was investigated in [73]. Due to results from [67, 86] the scheme of inclusions from
Cor. 2.2 and the overall spectral theory drastically simplifies for almost periodic difference equa-
tions (cf. [73, Cor. 4.34]).

As a word of caution: Despite the above examples, it is difficult to verify an exponential
dichotomy rigorously or to compute dichotomy spectra analytically. For a numerical approach to
such problems we refer to the work of Thorsten Hüls in [40, 41].
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3 Continuation and stability

We argued above that the dichotomy spectrum yields the correct hyperbolicity notion in a nonau-
tonomous context. In this section we are about to specify this statement.

First of all, nonetheless, the dichotomy spectrum is a crucial tool to determine stability prop-
erties of solutions. At the moment, it suffices to retreat to parameter-free difference equations

xk+1 = fk(xk) (∆)

with a smooth right-hand side fk : Rd → Rd. A solution φ∗ = (φ∗k)k∈I of (∆) is called hyperbolic
(on I), provided the variational equation

xk+1 = Dfk(φ
∗
k)xk (V )

has an ED on the discrete interval I. If Pk denotes the corresponding invariant projector, then the
constant dimension of N(Pk), k ∈ I, is called the Morse index of the solution φ∗. Indicating
the number of unstable directions, it is a measure of instability for φ∗. We write Σ+

κ ,Σ for the
associate dichotomy spectra and obtain the following stability criteria:

Proposition 3.1. (a) If max Σ+
κ < 1, then φ is asymptotically stable.

(b) If max Σ < 1, then φ is uniformly asymptotically stable.

Proof. See [75, Prop. 3.9].

Proposition 3.2. If the dominant spectral interval σ of Σ+
κ fulfills minσ > 1, then φ is unstable.

Proof. See [75, Prop. 3.10(a)].

Referring to Exam. 2.4 and 2.5, both Prop. 3.1 and 3.2 canonically generalize the well-known
stability conditions in an autonomous resp. periodic setting. Stability criteria for scalar difference
equations in the nonhyperbolic situation Σ+

κ = {1} can be found in [78, Prop. 5.4].
Throughout the remaining section we return to parameter-dependent difference eqns. (∆λ),

suppose that the parameter space Λ is an open subset of a Banach space Y and denote the general
solution to (∆λ) by ϕλ. This flexible parameter setting allows us to consider parametric pertur-
bations, as well as perturbations of the right-hand side itself. We furthermore write Σ(λ) for the
associate dichotomy spectrum of the variational equation

xk+1 = D1fk(φ
∗
k, λ)xk. (Vλ)

Our interest is centered around the behavior of a hyperbolic bounded solution φ∗ = (φ∗k)k∈I
to eqn. (∆λ∗) when the system parameter λ is varied. For discrete intervals I of the form Z±κ the
situation is as follows: Since the variational eqn. (Vλ∗) along φ∗ admits an ED on I, there exists a
corresponding so-called stable fiber bundleW+

λ∗ (for I unbounded above), as well as an unstable
fiber bundle W−λ∗ (for I unbounded below). Hence, a hyperbolic solution φ∗ on a semiaxis is
embedded into a whole family of forward resp. backward bounded solutions given byW±λ∗ .

More precisely, for every λ ∈ Λ the stable set of φ∗ is defined as

Ŵ+
λ :=

{
(κ, ξ) ∈ I× Rd : ϕλ(k;κ, ξ)− φ∗k −−−→

k→∞
0
}
,
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while the corresponding unstable set reads as

Ŵ−λ :=

{
(κ, ξ) ∈ I× Rd :

there exists a solution φ = (φk)k∈I of (∆λ)
such that φκ = ξ and φk − φ∗k −−−−→

k→−∞
0

}
,

where the interval I is assumed to be unbounded above resp. below. The local structure of these
nonautonomous sets can be described as follows, which also yields a nonautonomous version of
the stable manifold theorem — we speak of invariant fiber bundles:

Theorem 3.3 (continuation of solutions on half-lines). Let λ∗ ∈ Λ, κ ∈ Z, I = Z±κ and suppose
that fk is of class Cm, m ≥ 1. If φ∗ = (φ∗k)k∈I is a bounded solution of (∆λ∗) with

1 6∈ Σ±κ (λ∗) and associated invariant projector P±k , (3.1)

then there exist ρ, ε > 0 and a unique Cm-function w±κ : Bρ(0, λ
∗) ⊆ R(P±κ ) × Λ → N(P±κ )

such that for all λ ∈ Bρ(λ∗) the following holds:

W±λ (κ) = Ŵ±λ (κ) ∩Bε(φ∗κ) =
{
φ∗κ + ξ + w±κ (ξ, λ) ∈ Rd : ξ ∈ Bρ(0) ⊆ R(P±κ )

}
.

Proof. We refer to [76, Cor. 2.23] for a simple proof on basis of the surjective implicit function
theorem (cf. [90, p. 177, Thm. 4.H]).

In a geometric language, for parameters λ near λ∗, Thm. 3.3 states that the stable/unstable set Ŵ±λ
is locally graph of a smooth function over the stable/unstable vector bundle V± to (Vλ∗).

Now we tackle entire bounded solutions φ∗ = (φ∗k)k∈Z to (∆λ∗), i.e. the situation of an ED on
the whole axis I = Z. It turns out that φ∗ allows a unique smooth continuation near λ∗. Moreover,
also the saddle-point structure consisting of stable and unstable fiber bundles around φ∗ persists
under variation of λ:

Theorem 3.4 (continuation of entire solutions). Let λ∗ ∈ Λ and suppose that fk is of class Cm,
m ≥ 1. If φ∗ = (φ∗k)k∈Z is an entire bounded solution of (∆λ∗) with

1 6∈ Σ(λ∗),

then there exists an open neighborhood Λ0 ⊆ Λ of λ∗ and a unique Cm-function φ : Λ0 → `∞

such that

(a) φ(λ∗) = φ∗,

(b) φ(λ) is a bounded entire and hyperbolic solution of (∆λ) with the same Morse index as φ∗.

Remark 3.1. This result naturally generalizes the autonomous situation: If x∗ is a fixed point to
xk+1 = g(xk, λ

∗) with 1 6∈ σ(D1g(x∗, λ∗)), then x∗ can be uniquely continued in the parameter λ;
formally, only the spectrum σ(λ∗) has to be replaced by the dichotomy spectrum Σ(λ∗). Moreover,
Thm. 3.4 ensures that such hyperbolic fixed points x∗ persist as entire bounded solutions under
`∞-small parametric perturbations.

Proof. See [76, Thm. 2.11].
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Due to the Cm-dependence of the perturbed solution φ(λ) ∈ `∞ on the parameter λ ∈ Λ0,
one can approximate φ(λ) using a finite Taylor series in λ. Here, a phenomenon typical for the
nonautonomous theory occurs: Algebraic problems in an autonomous setting become dynamical
problems, i.e., instead of solving algebraic equations, one has to find bounded solutions of a linear
nonautonomous difference equation, in order to obtain the Taylor coefficients. We will make a
similar observation in Sect. 6 when dealing with invariant fiber bundles.

In order to formulate this problem algorithmically, we have to introduce the following nota-
tions: With given j, n ∈ N we write

P<j (n) :=

(N1, . . . , Nj)

∣∣∣∣∣∣∣∣
Ni ⊆ {1, . . . , n} and Ni 6= ∅ for i ∈ {1, . . . , j} ,
N1 ∪ . . . ∪Nj = {1, . . . , l} ,
Ni ∩Nk = ∅ for i 6= k, i, k ∈ {1, . . . , j} ,
maxNi < maxNi+1 for i ∈ {1, . . . , j − 1}


for the set of ordered partitions of {1, . . . , n} with length j and #N for the cardinality of a
finite set N ⊂ N. In case N = {n1, . . . , nk} ⊆ {1, . . . , n} for k ∈ N, k ≤ n, we abbreviate
Dkg(x)xN := Dkg(x)xn1 · · ·xnk and

Dkg(x)x
(k)
1 := Dkg(x)x1 · · ·x1︸ ︷︷ ︸

k times

for vectors x, x1, . . . , xn ∈ Rd. Here, the mapping g : Rd → Rd is assumed to be n-times
continuously differentiable with derivatives Dkg(x) ∈ Lk(Rd).1)

As a result of Taylor’s theorem (cf., e.g., [90, p. 148, Thm. 4.A]) we can write

φ(λ) = φ∗ +
m∑
n=1

1

n!
Dnφ(λ∗)(λ− λ∗)(n) +Rm(λ) (3.2)

with coefficients Dnφ(λ∗) ∈ Ln(Y,Rd) and remainder Rm satisfying limλ→0
Rm(λ)
|λ|m = 0. For

n = 1, . . . ,m we apply the higher order chain rule (see [78, Lemma 4.1] for a reference in our
notation) to the solution identity

φ(λ)k+1 ≡ fk(φ(λ)k, λ) on Λ0

for all k ∈ Z. This yields the relation

Dnφ(λ)k+1y1 · · · yn = D1fk(φ(λ)k, λ)Dnφ(λ)ky1 · · · yn

+

n∑
j=2

∑
(N1,... ,Nj)∈P<j (n)

Djfk(φ(λ)k, λ)g#N1

k (λ)yN1 · · · g
#Nj
k (λ)yNj

for all y1, . . . , yn ∈ Y , where we abbreviate g#N1

k (λ) := d#N1 (φ(λ)k,λ)

dλ#N1
. Setting λ = λ∗ in this

relation yields that the Taylor coefficients Dnφ(λ∗) ∈ Ln(Y, `∞) ∼= `∞(Ln(Y,Rd)) fulfill the
linearly inhomogeneous difference equation

Xk+1 = D1fk(φ
∗
k, λ
∗)Xk +Hn(k) (I)n

1)Given Banach spaces X,Y and k ∈ N0, we write Lk(X,Y ) for the linear space of all symmetric linear k-forms,
and often abbreviate Lk(X) := Lk(X,X), L0(X,Y ) := Y .
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in Ln(Y,Rd), where the inhomogeneity Hn : Z→ Ln(Y,Rd) reads as

Hn(k)y1 · · · yn :=
n∑
j=2

∑
(N1,... ,Nj)∈P<j (n)

Djfk(φ
∗
k, λ
∗)g#N1

k (λ∗)yN1 · · · g
#Nj
k (λ∗)yNj

and in particular H1(k) = D2fk(φ
∗
k, λ
∗). Having these preparations at hand, we deduce

Corollary 3.5. The coefficients Dnφ(λ∗) : Z→ Ln(Y,Rd), 1 ≤ n ≤ m, in the Taylor expansion
(3.2) can be determined recursively from the Lyapunov-Perron sums

Dnφ(λ∗)k =
∑
l∈Z

Γλ∗(k, l + 1)Hn(l) for all 1 ≤ n ≤ m,

where Γλ∗ is the Green’s function associated to (Vλ∗).

Proof. See [76, Cor. 2.20].

Example 3.1. (1) In the linear eqns. (1.7) or (1.8) from Exam. 1.1 resp. 1.2 it is possible to ob-
tain the continuation φ(λ) ∈ `∞ explicitly, where the latter example requires the hyperbolicity
assumption |λ| 6= 1.

(2) With a bounded sequence (ak)k∈Z in R we consider the parametrically perturbed scalar
difference equation

xk+1 =
4

π
arctanxk + λak (3.3)

depending on λ ∈ R and an arbitrarily smooth right-hand side. For the parameter value λ = 0 the
eqn. (3.3) is autonomous and admits the three equilibria x0 = 0 and x± = ±1 (cf. Fig. 7 (left)).
Next we investigate the behavior of these fixed points for values λ 6= 0.

• x0 = 0: The variational eqn. at λ∗ = 0 reads as xk+1 = 4
πxk and is therefore unstable.

Thus, Thm. 3.4 ensures that x0 persists for small values of λ as an entire bounded solution
φ0(λ) to (3.3). Thanks to Cor. 3.5 its derivatives can be recursively computed as

Dφ0(0)k = −
(

4
π

)k−1
∞∑
n=k

(
π
4

)n
an, D2φ0(0)k = 0,

D3φ0(0)k = 2
(

4
π

)k ∞∑
n=k

(
π
4

)n
Dφ0(0)3

n, D4φ0(0)k = 0 for all k ∈ Z.

• x± = ±1: Here the variational eqn. with λ∗ = 0 becomes xk+1 = 2
πxk and so x± are

uniformly asymptotically stable. Their unique continuation φ±(λ) for λ 6= 0 can be ap-
proximated as above.

See Fig. 7 for the solution portrait with different values of λ.

Remarks

Both the proof of Thm. 3.3 and 3.4 is essentially based on the implicit function theorem. Hence,
using a quantitative version of this result (cf., for instance, [37]), one can obtain estimates for the
size of the neighborhoods occurring. This, in turn, yields robustness results on the magnitude of
parametric perturbations.
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Figure 7: Solution sequences (dotted) of the difference eqn. (3.3) with ak = sin(k) and λ = 0
(left), λ = 0.05 (middle) and λ = 0.1 (right). The solution φ0(λ) is marked with crosses.

4 Attractor bifurcation

As already indicated in Subsect. 1.2, this survey distinguishes between attractor and solution
bifurcation. Hence, an easy example for a bifurcation of an attractor was discussed already in
Exam. 1.3. In the following, a general bifurcation pattern will be derived, which ensures that un-
der certain conditions on Taylor coefficients of the right-hand side fk in (∆λ), an attractor changes
qualitatively under variation of the parameter. This allows us to extend autonomous bifurcation
patterns of transcritical and pitchfork type. Although the attractor discussed in Exam. 1.3 was a
global attractor, the bifurcation scenarios presented here only yield properties for local attractors.

The results of this section are due to Martin Rasmussen [80, 81] and are formulated for scalar
equations. By means of the nonautonomous center manifold reduction presented in Sect. 6 they
can be extended to higher-dimensional problems.

We retreat to one-parameter bifurcations, i.e. the parameter space Λ ⊆ R is open. Suppose that
our difference eqn. (∆λ) is scalar (d = 1), the right-hand sides fk(·, λ) : R → R, k ∈ Z, λ ∈ Λ,
are invertible and possesses a family (or a branch) φ(λ), λ ∈ Λ, of bounded entire solutions, i.e.

φ(λ)k+1 ≡ fk(φ(λ)k, λ) on Z.

Then the general solution ϕλ(k;κ, ·) exists for all k, κ ∈ Z. Given a fixed parameter λ∗ ∈ Λ, the
solution φ∗ = φ(λ∗) is called

• all-time attractive, if there exists a ρ > 0 such that

lim
k→∞

sup
n∈Z

h(ϕλ∗(n+ k, n,Bρ(φ
∗
n)),

{
φ∗n+k

}
) = 0

and the supremum of all such ρ > 0 is called the attraction radius ρ+
λ∗(φ

∗) > 0,

• all-time repulsive, if there exists a ρ > 0 such that

lim
k→∞

sup
n∈Z

h(ϕλ∗(n− k, n,Bρ(φ∗n)),
{
φ∗n−k

}
) = 0

and the supremum of all such ρ > 0 is called the repulsion radius ρ−λ∗(φ
∗) > 0. As shown

in [81, p. 21, Def. 2.24] one can also define repulsivity for noninvertible equations.
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Figure 8: Dichotomy spectra Σ(λ)
under Hyp. 4.1 degenerating to a
singleton {1} in the limit λ → λ∗

for functions γ± increasing (left) or
γ± decreasing (right)

λλ

1 1

Σ(λ) Σ(λ)

λ∗ λ∗

Σ(λ1)

Σ(λ1)

λ1 λ1

The transition matrix of the corresponding variational equation

xk+1 = D1fk(φ(λ)k, λ)xk (4.1)

is denoted by Φλ(k, l) ∈ R. We assume

Hypothesis 4.1. Suppose that D1fk(φ(λ)k, λ) > 0 for all k ∈ Z, λ ∈ Λ and that there exist con-
stants K ≥ 1 and functions γ+, γ− : Λ → (0,∞) which are either both increasing or decreasing
with limλ→λ∗ γ+(λ) = limλ→λ∗ γ−(λ) = 1 and

Φλ(k, l) ≤ Kγ+(λ)k−l, Φλ(l, k) ≤ Kγ−(λ)l−k for all l ≤ k, λ ∈ Λ.

Remark 4.1. The above assumptions have various consequences:
(1) They ensure the bounded growth estimate |Φλ(k, l)| ≤ Kγ(λ)|k−l| for all k, l ∈ Z with

the function γ(λ) := max {γ−(λ), γ+(λ)} and consequently (see [6, Thm. 3.5])

Σ(λ) ⊆
{[
γ(λ)−1, γ(λ)

]
, γ(λ) > 1,[

γ(λ), γ(λ)−1
]
, γ(λ) ≤ 1.

Thus, the dichotomy spectrum Σ(λ) of the variational eqn. (4.1) fulfills (cf. Fig. 8)

lim
λ→λ∗

h(Σ(λ), {1}) = 0.

(2) The variational difference eqn. (4.1) at λ = λ∗ does not have an ED on both semiaxes
Z−κ and Z+

κ , and hyperbolicity condition (i) in Thm. 2.1 will be violated. Hence, the subsequent
attractor bifurcations occur under the nonhyperbolicity condition

1 ∈ ΣF (λ∗).

This yields a nonautonomous counterpart to the classical pitchfork bifurcation pattern:

Theorem 4.1 (transcritical attractor bifurcation, cf. [80]). Suppose Hyp. 4.1 holds and that the
right-hand side fk(·, λ) : R→ R, k ∈ Z, λ ∈ Λ, is of class C3. If there exists a λ∗ ∈ Λ such that

−∞ < lim inf
λ→λ∗

inf
k∈Z

D2
1fk(φ(λ)k, λ) ≤ lim sup

λ→λ∗
sup
k∈Z

D2
1fk(φ(λ)k, λ) < 0 (4.2)

is satisfied and the remainder fulfills

lim
x→0

sup
λ∈(λ∗−|x|,λ∗+|x|)

sup
k∈Z

x

∫ 1

0
(1− t)2D3fk(φ(λ)k + tx, λ) dt = 0,
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lim sup
λ→λ∗

lim sup
x→0

sup
k∈Z

Kx2

1−min{γ+(λ), γ−(λ)−1}

∫ 1

0
(1− t)2D3fk(φ(λ)k + tx, λ) dt < 1,

then there exist λ− < λ∗ < λ+ so that the following statements hold:

(a) For increasing functions γ+, γ− the solution φ(λ) is all-time attractive for λ ∈ (λ−, λ
∗) and

all-time repulsive for λ ∈ (λ∗, λ+). At λ = λ∗, a difference eqn. (∆λ) admits an attractor
bifurcation with

lim
λ↗λ∗

ρ+
λ (φ(λ)) = 0, lim

λ↘λ∗
ρ−λ (φ(λ)) = 0. (4.3)

(b) For decreasing functions γ+, γ− the solution φ(λ) is all-time repulsive for λ ∈ (λ−, λ
∗) and

all-time attractive for λ ∈ (λ∗, λ+). At λ = λ∗, a difference eqn. (∆λ) admits an attractor
bifurcation with

lim
λ↘λ∗

ρ+
λ (φ(λ)) = 0, lim

λ↗λ∗
ρ−λ (φ(λ)) = 0.

Remark 4.2. (1) Dual assertions as in Thm. 4.1 hold under the assumption (cf. [80, Thm. 5.1])

0 < lim inf
λ→λ∗

inf
k∈Z

D2
1fk(φ(λ)k, λ) ≤ lim sup

λ→λ∗
sup
k∈Z

D2
1fk(φ(λ)k, λ) <∞.

(2) A version of Thm. 4.1 can also be formulated for difference equations on a semiaxis I = Z+
κ

or I = Z−κ , where the concepts of all-time attraction/repulsion has to be replaced by future resp.
past attractivity and repulsivity (cf. [80]).

Proof. First of all, we pass over to the equation of perturbed motion

xk+1 = fk(x+ φ(λ)k, λ)− fk(φ(λ)k, λ) =: Fk(xk, λ) (4.4)

which clearly has the trivial solution for all λ ∈ Λ. Thus, we can apply [80, Thm. 5.1] to the
corresponding second order Taylor expansion

Fk(x, λ) = D1Fk(0, λ)x+ 1
2D

2
1Fk(0, λ)x2 +

∫ 1

0

(1−t)2
2! D3

1Fk(tx, λ) dt x3

(cf. [90, p. 148, Thm. 4.A]) of the right-hand side of (4.4).

Example 4.1. Let (ak)k∈Z be a bounded real sequence with 0 < infk∈Z ak. We consider the scalar
difference equation

xk+1 = (1 + λak)(1− e−xk). (4.5)

If we denote the right-hand side of (4.5) by fk, then for parameters λ in a neighborhood of zero
the mapping fk(·, λ) is invertible. It has the family of trivial solutions φ(λ) = 0 for every λ ∈ R
and the corresponding variational equation is

xk+1 = (1 + λak)xk. (4.6)
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The eqn. (4.5) does satisfy Hyp. 4.1 with K = 1 and increasing functions γ+, γ− given by

γ+(λ) := 1 + λ

{
supk∈Z ak, λ ≥ 0,

infk∈Z ak, λ < 0,
γ−(λ) := 1 + λ

{
infk∈Z ak, λ ≥ 0,

supk∈Z ak, λ < 0

and possesses the dichotomy spectrum Σ(λ) = 1 + λ
[
β−Z (a), β+

Z (a)
]
. Evaluated at the critical

parameter value λ∗ = 0 we use

D2
1fk(0, λ) = −(1 + λak) for all k ∈ Z, λ ∈ R

to deduce limλ→λ∗ D
2
1fk(0, λ) < 0. Finally, we compute

x

∫ 1

0
(1− t)2D3fk(tx, λ) dt = (1 + λak)

x2 − 2x+ 2− 2e−x

x2

and thus verify that the assumptions of Thm. 4.1(a) are satisfied. Hence, as λ is growing through
the critical value λ∗ = 0 the trivial solution to (4.5) becomes unstable and bifurcates in the sense
of (4.3). An illustration is given in Fig. 9.

Figure 9: Solution sequences (dotted) of the difference eqn. (4.5) with ak = 2 + sin(k) and
λ = −0.3 (left), λ = 0 (middle) and λ = 0.4 (right), indicating a stability change

The nongeneric situation where (4.2) is violated, leads to

Theorem 4.2 (pitchfork attractor bifurcation, cf. [80]). Suppose Hyp. 4.1 holds and that the
right-hand side fk(·, λ) : R→ R is of class C4 with

D2
1fk(φ(λ)k, λ) = 0 for all k ∈ Z and λ ∈ Λ.

If there exists a λ∗ ∈ Λ such that the following hypotheses hold:

• Provided the functions γ+ and γ− are increasing, then

−∞ < lim inf
λ→λ∗

inf
k∈Z

D3
1fk(φ(λ)k, λ) ≤ lim sup

λ→λ∗
sup
k∈Z

D3
1fk(φ(λ)k, λ) < 0

• Provided the functions γ+ and γ− are decreasing, then

0 < lim inf
λ→λ∗

inf
k∈Z

D3
1fk(φ(λ)k, λ) ≤ lim sup

λ→λ∗
sup
k∈Z

D3
1fk(φ(λ)k, λ) <∞.
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If the remainder fulfills

lim
x→0

sup
λ∈(λ∗−x2,λ∗+x2)

sup
k∈Z

x

∫ 1

0
(1− t)3D4fk(φ(λ)k + tx, λ) dt = 0,

lim sup
λ→λ∗

lim sup
x→0

sup
k∈Z

Kx3

1−min{γ+(λ), γ−(λ)−1}

∫ 1

0
(1− t)3D4fk(φ(λ)k + tx, λ) dt < 3,

then there exist λ− < λ∗ < λ+ so that the following statements hold:

(a) For increasing functions γ+, γ− the solution φ(λ) is a local attractor for λ ∈ (λ−, λ
∗)

bifurcating into a nontrivial local attractorAλ, λ ∈ (λ∗, λ+), and fulfilling the limit relation

lim
λ→λ∗

sup
k∈Z

h(Aλ(k), {φ(λ)k}) = 0.

(b) For decreasing functions γ+, γ− the solution φ(λ) is a local attractor for λ ∈ (λ∗, λ+)
bifurcating into a nontrivial local attractorAλ, λ ∈ (λ−, λ

∗), and fulfilling the limit relation

lim
λ→λ∗

sup
k∈Z

h(Aλ(k), {φ(λ)k}) = 0.

Remark 4.3. (1) A dual version to Thm. 4.2 for pitchfork bifurcations into nontrivial repellers was
given in [80, Thm. 6.1].

(2) The global invertibility of fk(·, λ) is not given in various applications. Yet, without this
restriction, D1fk(φ(λ)k, λ) > 0 implies at least local invertibility. Under the assumptions

sup
k∈Z
|D1fk(φ(λ)k, λ)|−1 <∞,

lim
x→0

sup
k∈Z

[D1fk(x+ φ(λ)k, λ)−D1fk(φ(λ)k, λ)] = 0 for all λ ∈ Λ,

one can apply Thm. A.1 to construct a globally invertible extension of (4.4) to the whole state
space Rd. It coincides with the equation of perturbed motion (4.4) on a neighborhood of 0 which
is uniform in k ∈ Z. To this modification, [80, Thms. 5.1 and 6.1] are applicable yielding nonin-
vertible versions of Thms. 4.1 and 4.2.

Proof. As in the proof of Thm. 4.1 the claim essentially follows from [80, Thm. 6.1].

Example 4.2. Let (ak)k∈Z be a bounded real sequence again with 0 < infk∈Z ak. We consider the
scalar difference equation

xk+1 = (1 + λak) arctanxk. (4.7)

For parameters λ in a neighborhood of λ∗ = 0 its right-hand side is invertible. Moreover, it has
the family of bounded entire solutions φ(λ) = 0 for every λ ∈ R; the corresponding variational
equation coincides with (4.6) and Hyp. 4.1 holds with the same data as in Exam. 4.1. If we denote
the right-hand side of (4.7) by fk and investigate the critical parameter λ∗ = 0, one obtains from

D2
1fk(0, λ) = 0, D3

1fk(0, λ) = −2− 2λak for all k ∈ Z, λ ∈ R
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that limλ→λ∗ D
3
1fk(0, λ) < 0. Furthermore, it is

x3

∫ 1

0
(1− t)3D4fk(tx, λ) = 2(1 + λak)

(
x2 − 3x+

arctanx

x

)
and therefore the assumptions of Thm. 4.2(a) are satisfied. Hence, as λ is growing through the
critical value λ∗ = 0 the trivial solution to (4.7) becomes unstable and bifurcates into a nontrivial
attractor. An illustration is given in Fig. 10.

Figure 10: Solution sequences (dotted) of the difference eqn. (4.7) with ak = 2 + sin k and
λ = −0.1 (left), λ = 0.1 (middle) and λ = 0.2 (right).

Remarks

Both the attractor bifurcation Thms. 4.1 and 4.2 also hold for difference equations defined only
on half-lines with appropriately modified attraction/repulsion notions (cf. [80, 81]). In addition,
note that particularly autonomous transcritical and pitchfork bifurcations fit into the framework
of Thms. 4.1 and 4.2 (for this, see [80, Ex. 5.3] resp. [80, Rem. 6.2(vi)]). However, it seems an
autonomous fold bifurcation is not suitable for a formulation in terms of an attractor bifurcation.

We refer to [39] for a further detailed explicit bifurcation analysis in a population dynamics
model involving the above results.

5 Solution bifurcation

In the previous section on attractor bifurcations, the first hyperbolicity condition (i) in Thm. 2.1,
given by EDs on both semiaxes, has been violated. The present concept of solution bifurcation
is based on the assumption that merely Thm. 2.1(ii) does not hold. Yet, the existence of EDs on
both semiaxes enables us to employ an abstract analytical branching theory based on Fredholm
linearizations. Rather than using dynamical systems tools, we consider difference equations as
abstract equations in sequence spaces. In this sense our approach resembles Sect. 3, where in-
vertibility is weakened to being Fredholm with index 0 now. Of particular importance in this
functional analytical approach will be bounded sequences `∞ and limit-zero sequences `0.

We again restrict to one-parameter bifurcations, where Λ ⊆ R is open. The concept of solution
bifurcation is classical in branching theory (cf., e.g., [25, 50, 90]) and understood as follows:
Suppose that for a fixed parameter λ∗ ∈ Λ, (∆λ∗) possesses an entire bounded reference solution
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φ∗ = φ(λ∗). Then one says a difference eqn. (∆λ) undergoes a bifurcation at λ = λ∗ along φ∗, or
φ∗ bifurcates at λ∗, if there exist a convergent parameter sequence (λn)n∈N in Λ with limit λ∗ so
that each (∆λn) has two distinct entire solutions φ1

λn
, φ2

λn
∈ `∞ both satisfying

lim
n→∞

φ1
λn = lim

n→∞
φ2
λn = φ∗.

In this context, λ∗ is called bifurcation value for (∆λ). One speaks of a subcritical or a super-
critical bifurcation, if the sequence (λn)n∈N can be chosen according to λn < λ∗ or λn > λ∗,
respectively.

This definition immediately yields a necessary condition for bifurcation:

Proposition 5.1. Let λ∗ ∈ Λ. If an entire bounded solution φ∗ of (∆λ) bifurcates at λ∗, then φ∗

is nonhyperbolic.

Proof. If we suppose 1 6∈ Σ(λ∗), then Thm. 3.4 yields neighborhoods Λ0 ⊆ Λ for λ∗ and U ⊆ `∞
for φ∗, so that (∆λ) has a unique entire solution φ(λ) ∈ U for all λ ∈ Λ0. Hence, φ∗ cannot
bifurcate at λ∗.

Consequently, in order to ensure nonhyperbolicity 1 ∈ Σ(λ∗), we now make the following
crucial and standing assumption:

Hypothesis 5.1. Let κ ∈ Z. Suppose (∆λ∗) has an ED both on Z+
κ (with projector P+

k ) and on
Z−κ (with projector P−k ) such that there exist nonzero ξ1 ∈ Rd, ξ′1 ∈ Rd satisfying

R(P+
κ ) ∩N(P−κ ) = Rξ1, (R(P+

κ ) +N(P−κ ))⊥ = Rξ′1. (5.1)

Remark 5.1. (1) One has the orthogonality relation ξ1 ⊥ ξ′1.
(2) Note that Hyp. 5.1 cannot hold for the trivial projector P+

κ = id. Hence, Σ+
κ (λ∗) has

a spectral interval in (1,∞) and Prop. 3.2 guarantees that the solution φ∗ is unstable. It is also
impossible to fulfill (5.1) for the zero projector P+

κ = 0.
(3) In order to satisfy Hyp. 5.1 one needs state spaces of dimension d > 1. Otherwise the only

possible projections are P±k ∈ {0, 1} and for them (5.1) cannot hold.
(4) The assumption (5.1) guarantees that the point spectrum fulfills 1 ∈ Σp(λ

∗). Moreover,
we have EDs on both semiaxes and therefore it is (see [73, Prop. 4.9])

1 ∈ Σ(λ∗) \ ΣF0(λ∗).

(5) Under Hyp. 5.1 the variational eqn. (Vλ) is intrinsically nonautonomous: Indeed, if (Vλ)
is almost periodic (or autonomous or periodic), then an ED on a semiaxis extends to the whole
integer axis (cf. [86, Thm. 2]) and the reference solution φ = (φ∗k)k∈Z becomes hyperbolic. For
this reason the following bifurcation scenarios cannot occur for almost periodic equations.

From a functional-analytical perspective the above Hyp. 5.1 implies Fredholm properties and,
thus, allows to employ a Lyapunov-Schmidt reduction technique (see, for example, [50, 90]).
Here, Hyp. 5.1 enables a geometrical insight into the following abstract bifurcation results using
invariant fiber bundles, i.e., nonautonomous counterparts to invariant manifolds: Since the vari-
ational eqn. (Vλ) has an ED on Z+

κ , there exists a stable fiber bundle φ∗ +W+
λ consisting of all

solutions to (∆λ) approaching φ∗ in forward time. In particular, W+
λ is locally a graph over the

stable vector bundle V+. Analogously, an ED on the negative half line Z−κ guarantees an unstable



192 CHRISTIAN PÖTZSCHE

fiber bundle φ∗ +W−λ consisting of solutions decaying to φ∗ in backward time (cf. Thm. 3.3).
Then bounded entire solutions to (∆λ) are contained in the set (φ∗ +W+

λ ) ∩ (φ∗ +W−λ ). One
concludes that the intersection of the fibers

Sλ := φ∗κ +W+
λ (κ) ∩ φ∗κ +W−λ (κ) ⊆ Rd

yields initial values (at initial time k = κ) for bounded entire solutions (see Fig. 11).

φ∗ +W+
λ

φ∗ +W−λ

φ1

φ2Rd

ZSλ

k = κ

Figure 11: Intersection Sλ ⊆ Rd of the stable fiber bundle φ∗+W+
λ ⊆ Z+

κ ×Rd with the unstable
fiber bundle φ∗ +W−λ ⊆ Z−κ × Rd at time k = κ yields two bounded entire solutions φ1, φ2 to
eqn. (∆λ) indicated as dotted dashed lines

5.1 Fold bifurcation

At first we study a fold bifurcation scenario already encountered in Exam. 1.5.
Thereto, we interpret Rd as Euclidean space equipped with inner product 〈x, y〉 =

∑d
n=1 xnyn.

Theorem 5.2 (fold solution bifurcation). Suppose Hyp. 5.1 holds and that the right-hand side
fk, k ∈ Z, is of class Cm, m ≥ 2. If

g01 :=
∑
j∈Z
〈Φλ∗(κ, j + 1)T ξ′1, D2fj(φ

∗
j , λ
∗)〉 6= 0,

then there exists a real ρ > 0, open convex neighborhoods U ⊆ `∞ of φ∗, Λ0 ⊆ Λ of λ∗ and
Cm-functions φ : (−ρ, ρ)→ U , λ : (−ρ, ρ)→ Λ0 such that

(a) φ(0) = φ∗, λ(0) = λ∗ and φ̇(0) = Φλ∗(·, κ)ξ1, λ̇(0) = 0,

(b) each φ(s) is an entire solution of (∆λ(s)) in `∞.

Moreover, under the additional assumption

g20 :=
∑
j∈Z
〈Φλ∗(κ, j + 1)T ξ′1, D

2
1fj(φ

∗
j , λ
∗)[Φλ∗(j, κ)ξ1]2〉 6= 0,

the solution φ∗ ∈ `∞ of (∆λ∗) bifurcates at λ∗, one has λ̈(0) = −g20
g01

and the following holds
locally in U × Λ0:
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(c) Subcritical case: If g20/g01 > 0, then (∆λ) has no entire solution in `∞ for λ > λ∗, φ∗ is
the unique entire solution of (∆λ∗) in `∞ and (∆λ) has exactly two distinct entire bounded
solutions for λ < λ∗.

(d) Supercritical case: If g20/g01 < 0, then (∆λ) has no entire solution in `∞ for λ < λ∗, φ∗ is
the unique entire solution of (∆λ∗) in `∞ and (∆λ) has exactly two distinct entire bounded
solutions for λ > λ∗.

Proof. See [71, Thm. 2.13].

Example 5.1 (fold solution bifurcation). We return to eqn. (1.11) studied in Exam. 1.5 and verify
that its assertion can be deduced on the basis of Thm. 5.2 as well. First, the variational equation
for (1.11) corresponding to the trivial solution and the critical parameter λ∗ = 0 reads as

xk+1 = D1fk(0, 0)xk :=

(
bk 0
0 ck

)
xk

with the sequences bk, ck given in (1.12). It admits an ED on Z+
0 , as well as on Z−0 with corre-

sponding invariant projectors P+
k ≡

(
1 0
0 0

)
and P−k ≡

(
0 0
0 1

)
. This yields

R(P+
0 ) ∩N(P−0 ) = R

(
1
0

)
, R(P+

0 ) +N(P−0 ) = R
(

1
0

)
and thus condition (ii) of Thm. 2.1 is violated. Hence, the trivial solution to (1.11) for λ = 0 is not
hyperbolic. On the other hand, Hyp. 5.1 holds with ξ1 =

(
1
0

)
, ξ′1 =

(
0
1

)
and κ = 0. Therefore,

we can compute

g01 = −
∑
j∈Z

(
1
2

)|j+1|
= −3, g20 = 12

7

and Thm. 5.2 yields that the bounded solutions to (1.11) exhibit a supercritical fold bifurcation.
This corresponds to the explicitly computed results from Exam. 1.5.

5.2 Crossing-curve bifurcation

Further prototype bifurcation patterns for equations possessing a trivial branch of solutions, are of
transcritical and pitchfork type. In this context it is clear that any branch φ(λ) of solutions to (∆λ)
can be transformed into the trivial one, as long as φ(λ) is known beforehand. The following result
does not require such global information and contains pitchfork and transcritical bifurcations as
special cases:

Theorem 5.3 (crossing curve solution bifurcation). Suppose Hyp. 5.1 holds and that the right-
hand side fk, k ∈ Z, is of class Cm, m ≥ 2. If

D2fk(φ
∗
k, λ
∗) ≡ 0 on Z, g02 :=

∑
j∈Z
〈Φλ∗(κ, j + 1)T ξ′1, D

2
2fj(φ

∗
j , λ
∗)〉 = 0 (5.2)

and the transversality condition

g11 :=
∑
j∈Z
〈Φλ∗(κ, j + 1)T ξ′1, D1D2fj(φ

∗
j , λ
∗)Φλ∗(j, κ)ξ1〉 6= 0 (5.3)
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hold, then the entire solution φ∗ of (∆λ∗) bifurcates at λ∗. In detail, there exist open convex
neighborhoods S ⊆ R of 0, U1×U2 ⊆ `∞×Λ of (φ∗, λ∗) andCm−1-curves γ1, γ2 : S → U1×U2

with the following properties:

(a) The set of bounded entire solutions for (∆λ) in the neighborhood U1 is given by the inter-
section (γ1(S) ∪ γ2(S)) ∩ `∞ × {λ} (see Fig. 12).

(b) γ1(s) = (γ(s), λ∗ + s) with γ1(0) = (φ∗, λ∗), γ̇(0) = 0 and

γ2(0) =

(
φ∗

λ∗

)
, γ̇2(0) =

(
Φλ∗(·, κ)ξ1

− g20
2g11

)
where g20 :=

∑
j∈Z〈Φλ∗(κ, j + 1)T ξ′1, D

2
1fj(φ

∗
j , λ
∗)[Φλ∗(j, κ)ξ1]2〉.

Remark 5.2. If the entire solution φ∗ is embedded into a branch of trivial solutions to (∆λ), then
(5.2) is automatically fulfilled and γ1 resp. γ represents the zero branch. In this sense, Thm. 5.3
generalizes [71, Thm. 3.14 and Cors. 3.15, 3.16]. Moreover, the direction of the crossing curve
bifurcation from Thm. 5.3 is given by the coefficient g20

2g11
:

(1) For g20 6= 0 there are locally exactly two entire solutions to (∆λ) in `∞ for λ 6= λ∗. This
yields a transcritical pattern (see Fig. 12 (left)).

(2) In the degenerate case g20 = 0 we assume m ≥ 3 and a higher order condition

g30 :=
∑
j∈Z
〈Φλ∗(κ, j + 1)T ξ′1, D

3
2f(s, φ∗j , λ

∗)[Φλ∗(j, κ)ξ1]3〉

− 3
∑
j∈Z
〈Φλ∗(κ, j + 1)T ξ′1, D

2
2f(s, φ∗j , λ

∗)Φλ∗(j, κ)ξ1D2
2f(s, φ∗j , λ

∗)[Φλ∗(j, κ)ξ1]2〉,

yielding a pitchfork pattern (see Fig. 12 (right)):

(a) For g30/g11 < 0 (supercritical case) there is a unique entire solution of (∆λ) in `∞ for
parameters λ ≤ λ∗ and (∆λ) has exactly three entire solutions in `∞ for λ > λ∗.

(b) For g30/g11 > 0 (subcritical case) there is a unique entire solution of (∆λ) in `∞ for
parameters λ ≥ λ∗ and (∆λ) has exactly three entire solutions in `∞ for λ < λ∗.

Here, given a sequence ψ = (ψk)k∈Z, we use the notation

ψk :=

{
Φλ∗(k, κ)P+

κ ξ
∗
κ +

∑∞
j=κ ΓP+(k, j + 1)ψj , k ≥ κ,

Φλ∗(k, κ)[id−P−κ ]ξ∗κ +
∑κ−1

j=−∞ ΓP−(k, j + 1)ψj , k < κ,
(5.4)

ξ∗κ := [P+
κ + P−κ − id]†

 κ−1∑
j=−∞

Φλ∗(κ, j + 1)P−j ψj +
∞∑
j=κ

Φλ∗(κ, j + 1)[id−P+
j ]ψj


and [P+

κ + P−κ − id]† ∈ Rd×d denotes the pseudo-inverse to P+
κ + P−κ − id (cf., e.g., [22]).

Proof. This is a discrete time counterpart to [74, Thm. 4.1] and can be shown along the same
lines.

The following example illustrates Thm. 5.3:
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λ(λ∗, φ∗)λ(λ∗, φ∗)

γ1 γ1

γ2

γ2

`∞ `∞

Figure 12: Schematic crossing curve bifurcation from Thm. 5.3: Generic case of a transcritical
situation (left) and the degenerate case of a supercritical pitchfork situation (right)

Example 5.2 (transcritical solution bifurcation). Consider the nonlinear difference equation

xk+1 = fk(xk, λ) :=

(
bk 0
λ ck

)
xk +

(
0

(x1
k)

2

)
(5.5)

depending on a bifurcation parameter λ ∈ R and sequences bk, ck defined in (1.12). As in the
previous examples, our assumptions hold with λ∗ = 0 and

g11 = 4
3 6= 0, g20 = 12

7 6= 0.

Hence, Rem. 5.2(1) can be applied in order to see that the trivial solution of (5.5) has a transcritical
bifurcation at λ = 0. This bifurcation can be described quantitatively. While the first component
of the general solution ϕλ(·; 0, η) given by (1.13) is homoclinic, the second component fulfills

ϕ2
λ(k; 0, η) =

{
2k
(
η2 + 4

7η
2
1 + 2λ

3 η1

)
+ o(1), k →∞,

2−k
(
η2 − 2

7η
2
1 − 2λ

3 η1

)
+ o(1), k → −∞;

in conclusion, one sees that ϕλ(·; 0, η) is bounded if and only if η = (0, 0) or

η1 = −14
9 λ, η2 = 28

81λ
2.

Therefore, besides the zero solution there is a unique nontrivial entire bounded solution to (5.5)
passing through the initial point η = (η1, η2) at time k = 0 for λ 6= 0. This means the solution
bifurcation pattern sketched in Fig. 13 (left) holds.

Example 5.3 (pitchfork solution bifurcation). Suppose that δ is a fixed nonzero real. Here, con-
sider the nonlinear difference equation

xk+1 = fk(xk, λ) :=

(
bk 0
λ ck

)
xk + δ

(
0

(x1
k)

3

)
(5.6)

depending on a bifurcation parameter λ ∈ R and the sequences bk, ck from (1.12). As in Exam. 5.2,
the assumptions of Thm. 5.3 hold with λ∗ = 0. The transversality condition reads as g11 = 4

3 6= 0.
Moreover, D2

1fk(0, 0) ≡ 0 on Z implies g20 = 0, whereas the relation D3
1fk(0, 0)ζ3 =

( 0
6δζ31

)
for

all k ∈ Z, ζ ∈ R2 leads to g30 = 4δ 6= 0; having this available, one arrives at the crucial quotient
g30
g11

= 3δ. By Rem. 5.3(2) one deduces a subcritical (supercritical) pitchfork bifurcation of the
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Λ

λ < λ∗

λ = λ∗

λ > λ∗

R2

R2

R2

Λ

λ < λ∗

λ = λ∗

λ > λ∗

R2

R2

R2

Figure 13: Bifurcation diagram for Exam. 5.2 (left) resp. 5.3 (right) with λ∗ = 0:
Left (transcritical): Initial values η ∈ R2 yielding a homoclinic solution ϕλ(·; 0, η) of eqn. (5.5)
for different parameter values λ.
Right (supercritical pitchfork): Initial values η ∈ R2 yielding a homoclinic solution ϕλ(·; 0, η) of
eqn. (5.6) for different parameter values λ

trivial solution to (5.6) at λ∗ = 0, provided δ > 0 (resp. δ < 0). Anew, we can illustrate this result
using the general solution ϕλ(·; 0, η) to (5.6). As above, the first component is given by (1.13),
which helps to compute for the second component that

ϕ2
λ(k; 0, η) =

{
2k
(
η2 + 8δ

15η
3
1 + 2λ

3 η1

)
+ o(1), k →∞,

2−k
(
η2 − 2δ

15η
3
1 − 4λ

3 η1

)
+ o(1), k → −∞.

This asymptotic representation shows that ϕλ(·; 0, η) is homoclinic to 0 (or bounded) if and only
if η = 0 or η2

1 = −2
δλ and η2 = 4

15
(5δ+16λ)

δ2
λ2. Hence, there is a correspondence to the pitchfork

solution bifurcation from Rem. 5.2(2). An illustration is given in Fig. 13 (right).

5.3 Shovel bifurcation

The solution bifurcation patterns discussed in Thm. 5.2 and 5.3 were flawed by the fact that only
unstable solutions can bifurcate (cf. Rem. 5.1(2)). This somehow contradicts the folklore under-
standing that a bifurcation goes hand in hand with a change in stability. Actually, we did impose
Hyp. 5.1, whose assumption (5.1) is not robust under parameter variation. This causes the di-
chotomy spectrum to behave as illustrated in Fig. 6, i.e. to suddenly shrink for parameters λ 6= λ∗.

Now we investigate the somehow more “generic” situation of a dominant spectral interval
crossing the stability boundary.

Hypothesis 5.2. Suppose that (∆λ) has a branch φ(λ) ∈ `∞, λ ∈ Λ, of entire solutions. Let
D1fk(φ(λ)k, λ) ∈ GL(Rd) for all k ∈ Z, λ ∈ Λ and suppose the dichotomy spectra of (Vλ) allow
a splitting

Σ(λ) = Σ−(λ)∪̇σ(λ), Σ±(λ) = Σ±−(λ)∪̇σ±(λ) for all λ ∈ Λ

into dominant intervals σ(λ), σ±(λ) and a remaining spectral part with supλ∈Λ max Σ−(λ) < 1.
In addition, let m be the multiplicity of σ(λ).

Remark 5.3. In case max Σ−(λ) < 1, a nonautonomous difference eqn. (∆λ) possesses a center
fiber bundle (cf. the subsequent Thm. 6.1) and the stability analysis for the bounded entire solution
φ(λ) reduces to an m-dimensional problem, where a corresponding nonautonomous reduction
principle will be given in Thm. 6.2. In the remaining, we neglect the situation maxσ+(λ) = 1.
Here, the stability behavior of the reference solution φ∗ is determined by the restriction of (∆λ)
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on a center fiber bundle and particularly on Taylor coefficients of nonlinear terms (cf. [78]). As
opposed to this setting, in the following, stability and bifurcation results are determined by the
linear part alone.

In the autonomous (or periodic) situation the classical (or Floquet) spectrum consists of eigen-
values with a powerful perturbation theory available, yielding their differentiable dependence on
the parameters (see, for instance, [48, Chapt. 7]). Since the dichotomy spectrum depends only
upper-semicontinuously on parameters (cf. Rem. 2.3(4)), one cannot expect a similar smooth be-
havior for the boundary points of spectral intervals and instead we have to assume certain mono-
tonicity properties for them. In this context, given a function σ : Λ→ R, a convenient terminology
is as follows: We briefly say σ(λ∗) = 1 increases (decreases), if σ(λ∗) = 1 and the function σ is
strictly increasing (decreasing) in a neighborhood of λ∗.

Theorem 5.4 (shovel solution bifurcation). Suppose that Hyp. 5.2 holds. If

max Σ(λ∗) = maxσ(λ∗) = 1

and the dominant spectral interval σ−(λ) has constant multiplicity m, then there exists a neigh-
borhood Λ1 ⊆ Λ of λ∗ such that for all λ ∈ Λ1 it is:

(a) Subcritical case: If maxσ is decreasing at λ∗, then

(a1) for λ < λ∗ one has

•1 if maxσ+(λ∗) < 1 or maxσ+(λ∗) = 1 increases, then φ(λ) is asymptotically
stable, and if also minσ−(λ∗) = 1 decreases, then φ(λ) is embedded into an m-
parameter family of bounded entire solutions to (∆λ),
•2 if minσ+(λ∗) = 1 decreases, then φ(λ) is unstable,

(a2) for λ = λ∗ and maxσ+(λ∗) < 1 the solution φ(λ∗) is asymptotically stable,

(a3) for λ > λ∗ the unique entire bounded solution of (∆λ) is φ(λ); it is uniformly asymp-
totically stable

(b) Supercritical case: If maxσ is increasing at λ∗, then

(b1) for λ < λ∗ the unique entire bounded solution of (∆λ) is φ(λ); it is uniformly asymp-
totically stable,

(b2) for λ = λ∗ and maxσ+(λ∗) < 1 the solution φ(λ∗) is asymptotically stable,

(b3) for λ > λ∗ one has

•1 if maxσ+(λ∗) < 1 or maxσ+(λ∗) = 1 decreases, then φ(λ) is asymptotically
stable, and if also minσ−(λ∗) = 1 increases, then φ(λ) is embedded into an m-
parameter family of bounded entire solutions to (∆λ),
•2 if minσ+(λ∗) = 1 increases, then φ(λ) is unstable.

The dominant spectral intervals are illustrated in Fig. 14.
Furthermore, we refer to Fig. 15 for a schematic illustration of the bifurcation patterns de-

scribed in Thm. 5.4. To explain our terminology, the set of solutions in `∞ for different values
of the parameter λ resembles a shovel rather than e.g. a pitchfork. The shape of the shovel de-
pends on the nonlinearity (see the discussion in Exam. 1.4). For linear difference equations, the
bifurcating family of bounded solutions fills the whole half-plane left (subcritical case) resp. right
(supercritical case) of the critical parameter λ∗.
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Figure 14: Dominant spectral inter-
vals σ(λ) as required in Thm. 5.4,
where maxσ(λ∗1) = 1 is increasing
(left) or minσ(λ∗2) = 1 decreasing
(right)

λλ

1 1

Σ(λ) Σ(λ)

λ∗
1 λ∗

2 λ∗
1 λ∗

2

σ(λ∗
1) σ(λ∗

2)

φ(λ)

φ∗

λ∗

`∞

λ φ(λ)

φ∗

λ∗

`∞

λ

Figure 15: Schematic bifurcation diagram for Thm. 5.4•1 with a subcritical shovel bifurcation
(left) and a supercritical shovel bifurcation (right) of an entire solution φ∗ (double arrows indicate
uniform asymptotic stability).

Remark 5.4. (1) A corresponding bifurcation scenario when the dominant spectral interval σ(λ)
leaves the stability boundary, i.e. under the assumption

minσ(λ∗) = 1

was described in [75, Thm. 3.16]. See Fig. 14 for an illustration.
(2) The phenomenon of a shovel bifurcation is somewhat based on the assumption that the

reference solution first becomes “unstable” on the negative axis Z−κ , while it stays stable on the
positive half line Z+

κ , as λ increases through the critical value λ∗. In the complementary situation
where maxσ+(λ∗) = 1 one can reduce (∆λ) to a center fiber bundle (cf. the following Sect. 6)
and, provided the resulting bifurcation equation is scalar and the corresponding assumptions hold,
possibly apply a version of Thm. 4.1 or 4.2 (cf. also Rem. 4.2(2)).

(3) In terms of the dichotomy spectrum, a supercritical shovel bifurcation allows the following
interpretation: For λ < λ∗ one is in a hyperbolic situation 1 6∈ Σ(λ∗), which becomes nonhyper-
bolic 1 ∈ Σ(λ) for λ > λ∗ in such a way that 1 6∈ Σs(λ) (cf. [73, Thm. 4.20]).

Proof. See [75, Thm. 3.15].

A linear example exhibiting a shovel bifurcation was already discussed in Exam. 1.4 — now we
give a nonlinear version.

Example 5.4. Let (ak)k∈Z be a bounded real sequence and consider the scalar difference equation

xk+1 = (λ+ ak) arctanxk. (5.7)
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With the reference solution φ∗ = 0 we obtain the variational eqn. xk+1 = (λ + ak)xk; it is
invertible for sequences (ak)k∈Z never equal to−λ. The dichotomy spectra reduce to the dominant
intervals given by

σ(λ) = λ+
[
min

{
β−Z (a), β+

Z (a)
}
,max

{
β−Z (a), β+

Z (a)
}]
,

σ+(λ) = λ+
[
min

{
β−
Z+
κ

(a), β+

Z+
κ

(a)
}
,max

{
β−
Z+
κ

(a), β+

Z+
κ

(a)
}]

involving the Bohl exponents introduced in (2.4). In particular, for the sequence

ak :=

{
1
2 , k < 0,

0, k ≥ 0
(5.8)

one obtains σ(λ) = λ+ [0, 1
2 ] and σ+(λ) = {λ}. This yields a supercritical shovel bifurcation at

λ∗ = 1
2 . We refer to Fig. 16 for a solution portrait of eqn. (5.7) with ak given by (5.8)

Figure 16: Solution sequences (dotted) of the difference eqn. (5.7) with ak given in (5.8) and
λ = 0.5 (left), λ = 0.6 (middle) and λ = 1.1 (right). It is indicated that the trivial solution
becomes unstable in two steps.

Remarks

Under the assumption limk→±∞ fk(0, λ) = 0 for all λ ∈ Λ one can show that the bifurcating
solutions in Thm. 5.2 and 5.3 are indeed homoclinic to 0, i.e. contained in the sequence space `0.

Persistence results, i.e. the behavior of the above solution bifurcations and their bifurcation
diagrams under perturbation, was investigated in [77].

Also the classical autonomous transcritical and pitchfork patterns can be interpreted as “shovel
bifurcations” in the sense that a whole family of bounded entire solutions branches, namely the
heteroclinic connections of the bifurcating fixed points. However, the corresponding assumptions
significantly differ from Hyp. 5.2.

Finally, we refer to [32] for an interesting result on almost periodic variational equations.

6 Center fiber bundles and reduction

In this section, we finally introduce a nonautonomous counterpart to a center manifold — a so-
called center fiber bundle. It serves as a dynamically meaningful tool to reduce the dimension of
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bifurcation problems (∆λ). Thereto, let us suppose I is a discrete interval unbounded below and
initially consider a parameter-free nonautonomous difference equation

xk+1 = fk(xk) (∆)

with a Cm-right-hand side fk : Rd → Rd, k ∈ I, and m ≥ 2. The well-established procedure how
to include parameters into center manifold theory will be reviewed at the end of this section.

We suppose that (∆) admits a fixed reference solution φ∗ = (φ∗k)k∈I ∈ `∞ and pass over to
the corresponding equation of perturbed motion

xk+1 = Akxk + Fk(xk) (6.1)

with Ak := Dfk(φ
∗
k) and the Cm-nonlinearity Fk : Rd → Rd,

Fk(x) := fk(x+ φ∗k)− fk(φ∗k)−Dfk(φ∗k)x

fulfilling the limit relation

lim
x→0

DFk(x) = 0 uniformly in k ∈ I. (6.2)

Moreover, we assume the dichotomy spectrum Σ of the variational difference eqn. (V ) satisfies

Σ ∩ (α−, α+) = ∅

with reals 0 < α− < α+. The invariant projector associated to this spectral gap is called Pk, while
Qk = id−Pk denotes its complementary projector.

Our next aim is to describe a nonautonomous counterpart of an invariant manifold for (∆)
along φ∗ resp. (6.1) along the trivial solution. To that end, let U ⊆ Rd be an open convex neigh-
borhood of 0. Suppose ck : U → Rd, k ∈ I, are continuously differentiable mappings satisfying

ck(0) ≡ 0 on I, lim
x→0

Dck(x) = 0 uniformly in k ∈ I, (6.3)

ck(x) = ck(Qkx) ∈ R(Pk) for all k ∈ I, x ∈ U. (6.4)

Then the graph (cf. Fig. 17)

φ∗ + C :=
{

(κ, φ∗κ + ξ + cκ(ξ)) ∈ I× Rd : ξ ∈ R(Qκ) ∩ U
}

is called a locally invariant fiber bundle for the solution φ∗ to (∆), if one has the implication

(k0, x0) ∈ φ∗ + C ⇒ (k, ϕ(k; k0, x0)) ∈ φ∗ + C for all k0 ≤ k (6.5)

as long as the general solution to (∆) satisfies ϕ(k; k0, x0) ∈ φ+ U .
Specifically, one speaks of a Cm-fiber bundle, if the derivativesDnck exist and are continuous

for 1 ≤ n ≤ m, and of a center fiber bundle provided 0 < α− < 1.

Theorem 6.1 (existence of locally invariant fiber bundles). There exist real numbers ρ0 > 0
and γ0, . . . , γm ≥ 0 such that the following holds with U = Bρ0(0): If the spectral gap condition

α− < αm+ (6.6)

is satisfied, then the solution φ∗ to (∆) possesses a locally invariant Cm-fiber bundle C with the
following properties:
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Rd
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κ κ+ 1 k

C(κ)

C(κ+ 1)
C(k)

R(Qκ)

R(Qκ+1)
R(Qk)

Figure 17: Fibers C(k) of an invariant fiber bundle C ⊆ I × Rd along the trivial solution being
smooth curves tangential to the ranges R(Qk), k ∈ I

(a) The corresponding mappings ck : U → Rd, k ∈ I, satisfy

‖Dnck(x)‖ ≤ γn for all x ∈ U, k ∈ I, n ∈ {0, . . . ,m} , (6.7)

(b) if the right-hand side fk and the solution φ∗ are periodic with period p ∈ N, then

ck+p = ck for all k ∈ Z;

for an autonomous (∆) and constant φ∗ there is a mapping c : U → Rd with c ≡ ck on I,
i.e., the set

{
φ∗ + ξ + c(ξ) ∈ Rd : ξ ∈ R(Q) ∩ U

}
is a locally invariant manifold of (∆).

Remark 6.1. (1) The invariant fiber bundles share the well-known properties of invariant mani-
folds. In particular, they need not to be unique but have the same Taylor coefficients (see [78,
Thm. 3.4]). Furthermore, even for analytical right-hand sides fk they need not to be of class C∞.

(2) Besides (α−, α+) being disjoint from the dichotomy spectrum Σ, we made no further
assumption on the growth rates α− < α+. For this reason, C is also denoted as pseudo-unstable
fiber bundle. Given a discrete interval I being unbounded above, one can dually introduce pseudo-
stable fiber bundles which are given as graphs over R(Pk), k ∈ I.

Proof. See [78, Thm. 3.2].

The usefulness of center fiber bundles is due to the fact that they allow a dimension reduction
in critical stability situations:

Theorem 6.2 (reduction principle). Let I = Z and α− < 1. A solution φ∗ of (∆) is stable
(uniformly stable, asymptotically stable, uniformly asymptotically stable, exponentially stable, or
unstable), if and only if the reduced equation

xk+1 = Akxk +Qk+1Fk(xk + ck(xk)) (6.8)

in the unstable vector bundle V− has the respective stability property.

Proof. See [70, p. 267, Thm. 4.6.14].
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We are interested in local approximations of such a mapping ck : U → Rd, k ∈ I, describing a
Cm-invariant fiber bundle for the solution φ∗ to (∆). Taylor’s Theorem (cf. [90, p. 148, Thm. 4.A])
together with (6.3) implies the representation

ck(x) =
m∑
n=2

1

n!
cnkx

(n) +Rmk (x) (6.9)

with coefficient sequences cnk ∈ Ln(Rd) given by cnk := Dnck(0) and a remainder Rmk satisfying

the limit relation limx→0
Rmk (x)

‖x‖m = 0. We know from [78, Thm. 3.4] that cnk is uniquely determined
by the mappings ck from Thm. 6.1. Due to (6.7) the coefficient sequences (cnk)k∈I are bounded,
i.e., one has ‖cnk‖ ≤ γn for k ∈ I, 2 ≤ n ≤ m with reals γ2, . . . , γm ≥ 0. We need further
notational preparations:

• It is convenient to introduce Ck : U → Rd, Ck(x) := Qkx+ ck(x), satisfying

DCk(0)
(6.3)
= Qk, DnCk(0) = Dnck(0) for all k ∈ I (6.10)

and n ∈ {2, . . . ,m}. Hence, for the derivatives Cnk := DnCk(0) we have the estimates

∥∥C1
k

∥∥ (2.2)
≤ K, ‖Cnk ‖

(6.7)
≤ γn for all n ∈ {2, . . . ,m} . (6.11)

• We abbreviate gk(x) := Qk+1 [Akx+ Fk(Qkx+ ck(x))] and the corresponding partial
derivatives gnk := Dngk(0) are given by (cf. (6.2)–(6.3))

g1
kx1

(2.1)
= AkQkx1,

gnkx1 · · ·xn =

n∑
l=2

∑
(N1,... ,Nl)∈P<l (n)

Qk+1D
lFk(0)C#N1

k |QkxN1 · · ·C#Nl
k |QkxNl

for all x1, . . . , xn ∈ Rd and n ∈ {2, . . . ,m}.

Given (multi-)linear mappings X ∈ Ln(Rd) and T ∈ L(Rd) it is convenient to introduce the brief
notation X|Tx1 · · ·xn := X(Tx1, . . . , Txn) for x1, . . . , xn ∈ Rd. In [78] we show that each
Taylor coefficient sequence cn is a solution to the so-called homological equation for C given by

Xk+1|AkQk = AkXk|Qk +Hn
k |Qk ; (6.12)

this is a linear difference equation in Ln(Rd) with inhomogeneities Hn
k ∈ Ln(Rd) defined by

Hn
k x1 · · ·xn :=Pk+1

[
DnFk(0)|Qkx1 · · ·xn

+

n−1∑
l=2

∑
(N1,... ,Nl)∈P<l (n)

(
DlFk(0)C#N1

k |QkxN1 · · ·C#Nl
k |QkxNl (6.13)

− clk+1g
#N1

k |QkxN1 · · · g#Nl
k |QkxNl

)]
.

Obviously, one has Hk
2 = Pk+1D

2Fk(x)|Qk and for n ∈ {3, . . . ,m} the values Hn
k only depend

on the sequences c2, . . . , cn−1. This leads to the following
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Theorem 6.3. The coefficients cnk ∈ Ln(Rd), 2 ≤ n ≤ m, in the Taylor expansion (6.9) of the
mapping ck : U → Rd can be determined recursively from the Lyapunov-Perron sums

cnk =

k−1∑
j=−∞

Φ(k, j + 1)Hn
j |Φ(j,k)Qk for all 2 ≤ n ≤ m. (6.14)

Proof. See [78, Thm. 4.2(b)].

As an application we study a discrete epidemic model from [16]. Our present analysis extends
corresponding earlier results from [78, Exams. 5.1 and 5.5].

Example 6.1. Let (αk)k∈I, (βk)k∈I denote bounded real sequences and let λ ∈ (−1,∞) be the
bifurcation parameter. Consider the scalar second-order nonautonomous problem

yk+2 = (1− αkyk+1 − βkyk)
(

1− e−(λ+1)yk+1

)
, (6.15)

which is equivalent to the planar first-order system (∆λ) with

fk(x, λ) :=

(
x2

(1− αkx2 − βkx1)
(
1− e−(λ+1)x2

)) .
The linear transformation x 7→ Tx with T :=

(
1 1
0 λ+1

)
, T−1 =

(
1 − 1

λ+1

0 1
λ+1

)
applied to (∆λ) yields

xk+1 =

(
0 0
0 λ+ 1

)
xk + Fk(xk, λ), (6.16)

where we have abbreviated

Fk(x1, x2, λ) :=

[
(λ+ 1)x2 − (1− αk(λ+ 1)x2 − βk(x1 + x2))

1− e−(λ+1)x2

λ+ 1

](
1
−1

)
.

This planar system satisfies our assumptions with dichotomy data given by α− ∈ (0, λ+ 1),
α+ = λ+1, K = 1 and P+ =

(
1 0
0 0

)
; hence, Thm. 6.1 applies with associate dichotomy spectrum

Σ(λ) = {λ+ 1}. In case I = Z, formula (6.14) from Thm. 6.3 implies that the coefficients cnk for
the fiber bundle C of (6.16) can be computed explicitly; the first three are given by

c2
k = 1

λ+1

(
(λ+ 1)2 + 2αk−1(λ+ 1) + 2βk−1

)
, (6.17)

c3
k =

3βk−1

(λ+1)2
c2
k−1 +

3(λ+1)3+6αk−1(λ+1)2+6(λ+1)βk−1

(λ+1)2
c2
k − 3αk−1(λ+ 1)− 3βk−1 − (λ+ 1)2,

c4
k =

12βk−1

(λ+1)2
c2
k−1c

2
k − 6βk−1

λ+1 c
2
k−1

− 24(λ+1)3βk−1+12(λ+1)β2
k−1+7(λ+1)5+24(λ+1)4αk−1+12(λ+1)3αk−1

2+24(λ+1)2αk−1βk−1

(λ+1)3
c2
k

+
4βk−1

(λ+1)3
c3
k−1 +

12βk−1(λ+1)2+6(λ+1)4+12αk−1(λ+1)3

(λ+1)3
c3
k + (λ+ 1)3 + 4αk−1(λ+ 1)2

+ 4βk−1(λ+ 1).

The stability properties of the zero solution of (6.16) (or (6.15)) depend on the parameter λ. We
have asymptotic stability for λ ∈ (−1, 0) (cf. Prop. 3.1), instability for λ ∈ (0,∞) (cf. Prop. 3.2).
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In the critical situation λ = 0 the stability behavior depends on nonlinear terms involving the
center fiber bundle C. If we reduce (6.16) to C we obtain the scalar difference equation

xk+1 = xk − (1 + 2αk + 2βk)x
2
k + (1− 3βkc

2
k + 3αk + 3βk)x

3
k +O(x4

k). (6.18)

Hence, due to the nonautonomous reduction principle from Thm. 6.2, the stability of the zero
solution for (6.18) involves the sequence (1 + 2αk + 2βk)k∈Z. In fact, [78, Prop. 5.4] yields

• asymptotic left stability for lim supk→∞ (αk + βk) < −1
2 ,

• asymptotic right stability for lim infk→∞ (αk + βk) > −1
2 ;

in any case, the zero solution of (6.16) is unstable in the above situation. In the degenerate case
where 1 + 2αk + 2βk ≡ 0 on Z, one has to take the center fiber bundle C of (6.16) into account.
Keeping in mind (6.17), the reduced equation reads as

xk+1 = xk +
[
1− 3βk

(
−2αk−1 + 2βk−1

)
+ 3αk

]
x3
k +O(x4

k).

We, thus, define the sequence γk := [−βk (−2αk−1 + 2βk−1) + αk] for k ∈ Z and the trivial
solutions of (6.15), (6.16) and (6.18) are

• unstable, if lim infk→∞ γk > −1
3 ,

• asymptotically stable, if lim supk→∞ γk < −1
3 .

For a bifurcation analysis of the trivial solution to (6.15) we augment the planar system (6.16) with
the trivial equation λk+1 = λk and introduce the new variables zk := (xk, λk) ∈ R3 to obtain

zk+1 =

0 0 0
0 1 0
0 0 1

 zk +

 F 1
k (zk)

z2
kz

3
k + F 2

k (zk)
0

 . (6.19)

Due to Thm. 6.1 this difference equation has a 2-dimensional center fiber bundle C ⊆ Z × R3

being graph of mappings ck, which allow the ansatz

ck(ζ2, ζ3) =

2∑
i=0

ζ2−i
2 ζi3c

2−i,i
k +O

(√
ζ2

2 + ζ2
3

3
)

in order to determine the desired coefficient sequences c2−i,i
k , k ∈ Z, for i ∈ {0, 1, 2}. This yields

the homological equations

c2,0
k+1 = 1

2 + αk + βk, c1,1
k+1 = 0, c0,2

k+1 = 0

and the bifurcation equation (i.e. (6.19) reduced to the center fiber bundle C) becomes

yk+1 = (1 + λ)yk + F 2
k (ck(yk, λ), yk, λ)

= (1 + λ)yk − (λ+ 1)
[
2αk(λ+ 1) + 2βk + (λ+ 1)2

]
y2
k + rk(yk, λ)

(6.20)

with a remainder rk satisfying rk(y, λ) = O(y3) uniformly in k ∈ Z. We now restrict to the
generic situation where the sequence δk(λ) := 2αk(λ+ 1) + 2βk + (λ+ 1)2 does not identically
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vanish. It is clear that (6.20) has the trivial solution for all parameters λ > −1. As suggested in
Rem. 4.3(2) we can globally extend the bifurcation eqn. (6.20) outside a uniform neighborhood
of the origin, such that it becomes globally invertible. Moreover, Hypothesis 4.1 is satisfied for
(6.20) with the increasing functions γ−(λ) = γ+(λ) = 1 + λ. We can therefore apply Thm. 4.1
yielding a transcritical attractor bifurcation of the trivial solution at the critical parameter value
λ∗ = 0, provided one has

lim inf
λ→0

inf
k∈Z

(−δk(λ)) ≤ lim sup
λ→0

sup
k∈Z

(−δk(λ)) < 0.

Remarks

By construction, the reduced difference eqn. (6.8) has a critical linear part. Hence, if it is not
scalar, corresponding stability investigations require subtle techniques.

Our Thm. 6.3 can be used to obtain local approximations of invariant fiber bundles based on
Taylor coefficients. This is sufficient for a local stability and bifurcation analysis. On the other
hand, a numerical scheme to compute more global approximations was derived in [79].

7 Concluding remarks and perspectives

In our bifurcation analysis we explored two essentially different approaches, namely a dynamical
one (attractor bifurcation) in Sect. 4 and a functional analytical one in Sect. 5. Both lead to
independent scenarios indicating the fact that nonhyperbolicity is a significantly wider concept in
our nonautonomous setting. This necessitates to investigate the fine structure of the dichotomy
spectrum in order to classify nonautonomous bifurcations on a linear level already (cf. [73]).

Nevertheless, we penally neglected various other approaches to a nonautonomous bifurcation
theory — in part, to keep this survey short, in part since the corresponding results deal with dif-
ferential equations only. Historically first, bifurcation results for almost periodic solutions to such
differential equations can be traced back to the monograph [49], while corresponding results in
discrete time are due to [33].

For instance, [59] contains a phenomenological approach to bifurcation phenomena in nonau-
tonomous ODEs. The references [62, 63] understand bifurcations as changes in (pullback) stabil-
ity notions for ODEs. Topological methods have been employed in [17] to describe bifurcations
in control systems. Using a skew-product language, the contribution [65] gives elegant nonau-
tonomous counterparts to the classical bifurcation patterns for scalar differential equations; we
refer to [89] or [3] for related discrete time results.

The references [45, 46] investigate Hopf bifurcations along nonperiodic solutions and [44, 29]
apply averaging techniques to deduce nonautonomous counterparts of transcritical and saddle-
node bifurcations. A two-step bifurcation scenario significantly different from [75] was investi-
gated in [43].

Eventually, we did not deal with bifurcations for random dynamical systems in this survey, but
refer to [19] or [5] for corresponding results.

The reduction to center fiber bundles yields a dynamical way to understand the behavior of
critical nonautonomous difference equations via dimension reduction. An algebraic approach to
simplify difference equations are normal forms. The corresponding nonautonomous theory has



206 CHRISTIAN PÖTZSCHE

been established in [83] containing a nice and natural formulation of the nonresonance conditions
in terms of the dichotomy spectrum.

The monograph [64, pp. 114ff, Sect. 5.2] contains an approach to attractor bifurcations for
autonomous differential equations. A generalization to nonautonomous equations, or suitable dis-
crete time versions, would be interesting. The contribution [53] might be helpful for a connection
between solution and attractor bifurcation. Here, it is shown that every compact forward (or back-
ward) invariant set contains a strictly invariant nonautonomous set. Since attractors consist of
bounded entire solutions (cf. [70, p. 17, Cor. 1.3.4]), attractor bifurcation will lead to solution
bifurcation.

All the (nonlinear) results mentioned in this survey are of local nature. This is due to that fact
that global continuation and bifurcation results often rely on degree theory. However, for instance,
the Leray-Schauder degree (cf., e.g., [50, pp. 178ff, Sect. II.2]) requires the considered equations
to be compact perturbations of the identity. In large function spaces as `∞, where we look for
solutions, such compactness requires very restrictive assumptions on the right-hand side of (∆λ).
The Fredholm degree used in [28, 27] might be a suitable alternative.

A Global extension

Let K denote a (nonempty) set, X be a Cm-Banach space and Y be a Banach space. Here, being
a Cm-Banach space means that the norm on X is of class Cm away from 0; we refer to [70,
pp. 364–371, Sect. C.2] for a survey.

Proposition A.1 (global extension of local diffeomorphisms). Let m ∈ N and U be an open
neighborhood of x0 ∈ X . If fk : U → Y , k ∈ K, is a Cm-mapping satisfying

(i) Dfk(x0) ∈ GL(X,Y ) with supk∈K
∥∥Dfk(x0)−1

∥∥ <∞,

(ii) limx→x0 ‖Dfk(x)−Dfk(x0)‖ = 0 uniformly in k ∈ K,

then there exists a ρ > 0 and a Cm-diffeomorphism Fk : X → Y with Fk(x) ≡ fk(x) on B̄ρ(0)
for all k ∈ K.

Proof. Above all, we define the Cm-mapping f̃k(x) := fk(x+ x0)− fk(x0), k ∈ K on the open
neighborhood U0 := {x ∈ X : x+ x0 ∈ U} of 0 and choose ρ1 > 0 so small that Bρ1(0) ⊆ U0.
Since X is assumed to be a Cm-Banach space we obtain from [70, p. 369, Prop. C.2.16] that for
every ρ > 0 there exists a Cm-function χρ : X → [0, 1] such that

χρ(x) ≡ 1 on B̄ρ(0), χρ(x) ≡ 0 on X \B2ρ(0), ‖Dχρ(x)‖ ≤ 2
ρ for all x ∈ X.

Thanks to the assumption (i) we can choose a c > 0 such that c supk∈Z
∥∥Df̃k(0)−1

∥∥ < 1 and
assumption (ii) ensures that there exists a ρ ∈ (0, ρ1) with∥∥Df̃k(x)−Df̃k(0)

∥∥ < c
6 for all x ∈ B2ρ(0), k ∈ K. (A.1)

We introduce the Cm-mappings f̂k, gk : X → Y given by f̂k(x) := Df̃k(0)x+ gk(x) and

gk(x) :=

{
χρ(x)

[
f̃k(x)−Df̃k(0)x

]
, ‖x‖ < 2ρ,

0, ‖x‖ ≥ 2ρ.
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Thanks to the mean value theorem the derivative of gk is given by

Dgk(x) = Dχρ(x)
[
f̃k(x)−Df̃k(0)x

]
+ χρ(x)

[
Df̃k(x)−Df̃k(0)

]
= Dχρ(x)

∫ 1

0
Df̃k(hx)−Df̃k(0) dhx+ χρ(x)

[
Df̃k(x)−Df̃k(0)

]
and therefore satisfies

‖Dgk(x)‖
(A.1)
≤ 2ρ ‖Dχρ(x)‖

∫ 1

0

c

6
dh+ ‖χρ(x)‖ c

6
≤ 2c

3
+
c

6
< c for all ‖x‖ ≤ 2ρ, k ∈ K.

Since the nonlinearity gk vanishes identically outside of the ball B2ρ(0) we obtain from the mean
value inequality that c > 0 is a global Lipschitz constant of gk (uniformly in k ∈ K). Due to the
choice of c, this in turn, ensures that both f̂k and Df̂k(x) are homeomorphisms (cf. [8, Cor. 6.2])
for all x ∈ X . Hence, f̂k is proper (see [90, p. 173, Ex. 4.39]) and due to the local inverse function
theorem (see [90, p. 172, Thm. 4.F]) also a local Cm-diffeomorphism. Given this information,
[90, p. 174, Thm. 4.G] implies that f̂k : X → Y is a global Cm-diffeomorphism. Finally, the
desired global extension Fk : X → Y of fk reads as Fk(x) := f̂k(x − x0) + f(x0) and satisfies
our assertion.
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