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Abstract

A family of second order difference equations is presented. They have a variational struc-
ture and appear often in Mechanics.

1 The equation

Let us consider the second order difference equation

∂2h(θn−1, θn) + ∂1h(θn, θn+1) = 0, (1)

where h = h(θ, θ′) is a given function. Here ∂1 = ∂
∂θ and ∂2 = ∂

∂θ′ . This equation appears in
some physical problems, see [1, 4]. The prototype of generating function h will be

hp(θ, θ
′) = (θ′ − θ)p,

defined on θ′ > θ. The exponent p can be any real number excepting 0 and 1. When h = hp the
equation becomes

p(θn − θn−1)p−1 − p(θn+1 − θn)p−1 = 0,

and this is equivalent to
θn+1 − θn = constant = ω > 0.

Finally we find the solutions θn = θ0 + nω. Results on the equation (1) for functions h close
to hp find applications in conservative Mechanics of low dimension. There are several reasons
explaining why this equation is useful in Mechanics and we will present two of them.

2 Discrete Lagrangian systems

Assume that θ = θ(t) models the motion of a particle on a circle. The Lagrangian function
L = L(θ, θ̇) is defined as

L = T − V,
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where T is the kinetic energy and V is the potential. The motions can be obtained as the critical
points of the action functional

A[θ] =

∫ t1

t0

L(θ(t), θ̇(t))dt.

They satisfy Euler-Lagrange equation

∂L

∂θ
− d

dt
(
∂L

∂θ̇
) = 0.

Assume now that we want to model the motion with a discrete sequence Θ = (θn). By formal
analogy we can replace the derivative θ̇ by the finite difference ∆θ = θn+1 − θn and consider a
Lagrangian

L = L(θn, θn+1 − θn) ≡ h(θn, θn+1).

The integral in the functional is replaced by a sum,

A[Θ] =
∑
n

h(θn, θn+1)

and the ”motions” are obtained as critical points of A. The variable θn only appears in two terms
of the sum defining A,

A[Θ] = · · ·+ h(θn−1, θn) + h(θn, θn+1) + · · ·

and so the equation ∂A
∂θn

= 0 leads to (1).

3 Symplectic twist maps

Let us consider a cylinder with coordinates (θ, r) where θ ≡ θ + 2π. A diffeomorphism of the
cylinder M : (θ, r) 7→ (θ′, r′) is called symplectic if the differential form dθ ∧ dr is preserved,

dθ1 ∧ dr1 = dθ ∧ dr.

This is equivalent to detM ′ = 1. M has twist if the derivative ∂θ1
∂r does not vanish. This last

condition has a simple geometrical interpretation. Assume for instance that

∂θ1
∂r

> 0.

Given a segment Γ = {θ = constant}, the image Γ1 = M(Γ) will be a twisted arc, meaning that
the angle θ1 goes forward as r increases. Already Birkhoff found that these maps play an important
role in Hamiltonian dynamics, see [2]. Some considerations on differential forms together with the
implicit function theorem show that every symplectic twist map M has an associated generating
function h = h(θ, θ′), see [6, 7]. This means that the map can be expressed in the form

M :

{
r = ∂1h(θ, θ′)
r′ = −∂2h(θ, θ′),

(2)

which formally resembles the structure of Hamiltonian systems.
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The function h satisfies,

|∂12h(θ, θ′)| > 0, (3)

where ∂12 = ∂2

∂θ∂θ′ . This property reflects the twist condition at the level of the generating func-
tion. It allows to solve the equation r = ∂1h(θ, θ′) with respect to θ′ = θ′(θ, r). This is important
to recover the map M from h via the formulas in (2).

The equation (1) is crucial for the understanding of the dynamics of M . Given a solution
(θn)n∈Z we can produce an M -orbit with the definition rn = ∂1(θn, θn+1). To illustrate the
previous discussion we go back to the prototype hp(θ, θ′) = (θ− θ′)p and compute the associated
map Mp. From (2) we obtain,

r = p(θ′ − θ)p−1 = r′

equivalent to

Mp :

{
θ′ = θ + ( rp)

1
p−1 ,

r′ = r.

This is an integrable twist map having the invariant circles r = constant. Notice that the map Mp

becomes a rotation on each of these circles and the rotation number changes with r. In the case
p < 1 or p > 2 there is small twist at infinity, meaning that ∂θ

′

∂r → 0 as r →∞.
Going back to a general M , we notice that the notion of symplectic map can be reformulated

in terms of the differential form η = r′dθ′ − rdθ. Actually M is symplectic whenever this form
is closed, that is dη = 0. The map M is called exact symplectic when the differential form η is
exact in the cylinder. This means that there is a function V = V (θ, r), 2π-periodic in θ and such
that dV = η. In such a case the generating function satisfies the periodicity condition

h(θ + 2π, θ′ + 2π) = h(θ, θ′). (4)

The classical theory of exact symplectic twist maps on the cylinder can be viewed as collection of
results on the equation (1) when the function h satisfies (3) and (4). In this connection we mention
the version on Moser’s invariant curve theorem formulated in [5] or [6, 7] for presentations of
Aubry-Mather theory in terms of this difference equation. In the recent paper [3], by Markus
Kunze and the present author, some results on the equation (1) have been obtained. They do not
assume (3) or (4) but h must be close to hp with p < −1. As could be expected from the previous
discussions they have found several applications in classical Mechanics.

References

[1] S. Aubry, The concept of anti-integrability: definition, theorems and applications to the stan-
dard map, Twist Mappings and Their Applications, IMA Vol. Math. Appl. 44, Springer,
1992, pp. 7-54.

[2] G. Birkhoff, Dynamical Systems, American Mathematical Society, 1927.

[3] M. Kunze and R. Ortega, Complete orbits for twist maps on the plane: the case of small
twist, Ergodic Theory Dynam. Systems, to appear.

[4] M. Levi, The mathematical mechanic, Princeton University Press, 2009.



148 RAFAEL ORTEGA

[5] M. Levi and J. Moser, A Lagrangian proof of the invariant curve theorem for twist map-
pings, in Smooth ergodic theory and its applications (Seattle, WA, 1999), volume 69 of Proc.
Sympos. Pure Math., pages 733746. Amer. Math. Soc., Providence, RI, 2001.

[6] J. Mather, Existence of quasi-periodic orbits for twist homeomorphisms on the annulus,
Topology 21 (1982), 457–467.

[7] J. Moser, Selected Chapters in the Calculus of Variations, Lecture notes by O. Knill, Lectures
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