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Abstract

We will deal with the topic of the periodicity for difference equations with real val-
ues. In the autonomous case, xn+k = f(xn+k−1, . . . , xn), we will survey two topics:
the forcing relations of periods and the global periodicity. In the non-autonomous case,
xn+k = f(n, xn+k−1, . . . , xn) we focus our attention on periodic non-autonomous differ-
ence equations given by xn+1 = fnmodp(xn), with n ≥ 1. For these equations, we present
a Sharkovsky type result characterizing their periodic structure. In both the autonomous and
the non-autonomous case, we pose some open problems.

1 Introduction

In general, if X is a set, f : Ω ⊆ Xk → X is a map defined on some subset of a finite Cartesian
product of X, and x0, . . . , xk−1 are elements of X (so-called initial conditions), we say that

xn+k = f(xn+k−1, . . . , xn+1, xn), n ≥ 0, (1)

is an (autonomous) difference equation of order k. Notice that, once we have introduced the initial
conditions, the recurrence constructed by f gives a unique solution {xn}∞n=0 if that the map f is
well defined for any element (xn+k−1, . . . , xn+1, xn).

If f : Ω×
(
Z+ ∪ {0}

)
⊆ Xk ×

(
Z+ ∪ {0}

)
→ X and

xn+k = f(xn+k−1, . . . , xn+1, xn, n), n ≥ 0, (2)

we have a non-autonomous system.

When we obtain a constant solution {x, x, . . . } we say that x is an equilibrium point of the
difference equation. Notice that in the autonomous case x satisfies the equation x = f(x, . . . , x).

The analysis of the asymptotic behavior of the solutions {xn}∞n=0 as n tends to infinity is
a question of paramount importance. In applied mathematics, we find a lot of biological, eco-
nomical, chemical, physical, . . . models following laws described by recurrences or difference
equations (the reader is referred to the textbooks [1, 30, 36, 38, 52, 58], in order to get examples
illustrating the importance of difference equations as applied models).

In this paper we will concentrate on the special type of periodic behavior. Recall that {xn}∞n=0

is a periodic solution if xn+m = xn for all n ≥ 0 and some positive integer m. The smallest of
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such values is called the period of {xn}∞n=0. If, additionally, all the solutions are periodic and p
is the least common multiple of their periods, we say that the difference equation is a p−cycle or
is globally periodic. In the next two sections we will deal with the topic of the periodic structure
of discrete dynamical systems and in the last section we will comment some aspects of the global
periodicity. Most of the part of the following notes is extracted from [44].

Before starting our theoretical development, let us present some historical notes relative to the
abundance of the difference equations. In fact, they appear during all the periods of the History
of Mathematics, although, obviously, the mathematical formulation for difference equations was
nonexistent. In their appearances the common idea is to give a recurrence method for making
some arithmetic or geometric construction.

• There are archaeological signs (for instance the clay tablet YBC 7289) which allow us to
know an arithmetic procedure in the Babylonian civilization for approximating

√
2 as the

arithmetic mean of lower and upper bounds of this root. In our notation, xn+1 = 1
2(xn+ 2

xn
).

To obtain more information about the mentioned tablet, the reader is referred to [32] and
references therein.

• In the Egyptian culture, the geometrical sequences are included in the Rhind’s papyrus (or
Ahmes’ papyrus) as the 79th problem, an amusing exercise whose statement says something
like this (see [49]): “there are seven houses; in each house there are seven cats; each cat eat
seven mice; each mouse eats seven ears of spelt; each ear of spelt produces seven hekat of
grain. Find the total number of items involved”.

• In the Ancient Greek culture, triangular numbers were an important and intriguing class
of integer numbers for the Pythagorean school. Each number represented the amount of
pebbles necessary to do the corresponding figure with form of triangle. They are defined
by the non-autonomous difference equation tn+1 = tn + n + 1, t1 = 1. In spite of their
importance, they are not mentioned in the thirteen books of Euclid’s Elements, although in
the seventh book a variety of integer numbers is presented: odd, even, multiple, perfect, ...
It is interesting to mention that in the ninth book Euclid proves the formula to calculate the
sum of a geometrical progression, but surprisingly nothing about arithmetical progressions
is said.

• Theon of Smyrna (first-second century A.D.) was a neoplatonist philosopher who approxi-
mates

√
2 by using a process based on a linear system of difference equations:

xn+1 = xn + yn, yn+1 = 2xn + yn.

Theon observed that the successive differences between the areas of the squares of lengths
yn and δn, with δn being the diagonal of the square having length xn, were always ±1, that

is, y2
n − 2x2

n = (−1)n and consequently yn
xn

=
√

2 + (−1)n

x2n
. If we take x1 = y1 = 1, the

above successive quotients give us a good approximation of
√

2.

• Fibonacci (1180-1250) is famous, above all, for the ubiquitous sequence receiving his name,
{1, 1, 2, 3, 5, 8, 13, . . . }. It is the solution of the difference equation of second order Fn+2 =
Fn+1 + Fn, with initial conditions F0 = F1 = 1, and appears in Chapter 12 of the
“Liber abaci” [61] as the solution of a (somewhat artificial) growth problem of the rabbits
population. The first time that Fibonacci difference equation appears in modern notation
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Fn+2 = Fn+1 + Fn is in Les Oeuvres mathématiques de Simon Stevin augmentées par
Albert Girard, from Albert Girard, Leyde, 1634. In this work he also stated that the ratios of
terms of the Fibonacci sequence tend to the golden ratio, that is, lim

n→∞
Fn+1

Fn
= Φ := 1+

√
5

2 .

• Under suitable conditions, the Newton-Raphson method for approximating the roots of an
equation f(x) = 0 is given by the difference equation xn+1 = xn− f(xn)

f ′(xn) . The first time we
may recognize this method is inside the Newton’s tract De analysi per aequationes numero
terminorum infinitas, around 1669. It is interesting to mention that Vieta was a forerunner of
this formula because in his De numerosa potestatum, Paris, 1600, he presented a numerical
method similar to the above-mentioned one. To obtain more information about the history
of Newton-Raphson method, see [68].

• At the XVIII century, and according to Jordan’s book [35], “the origin of the Calculus of
Finite Differences may be ascribed to Brook Taylor’s Methodus Incrementorum (London,
1717), but the real founder of the theory was Jacob Stirling, who in his Methodus Differen-
tialis (London, 1730) solved very advanced questions, and gave useful methods, introducing
the famous Stirling numbers; these, though hitherto neglected, will form the backbone of the
Calculus of Finite Differences.” Jordan continues to say “The first treatise on this Calculus
is contained in Leonhardo Eulero Institutiones Calculus Differentialis (Academiae Impe-
rialis Scientarum Petropolitanae, 1755. See also Opera Omnia, Series I. Vol. X. 1913) in
which he was the first to introduce the symbol ∆ for the differences, which is universally
used now. From the early works in this subject the interesting article Différence in the Ency-
clopédie Méthodique (Paris, 1784), written by l’Abbé Charles Bossut, should be mentioned,
and also F.S. Lacroix’s Traité des différences et séries, Paris, 1800.”

• During the centuries XVIII-XIX we observe the creation of the fundamentals of the modern
theory of difference equations, especially in the linear case. As an example of a famous
mathematician working in this subject, we can cite, for instance, H. Poincaré [55]. Even in
first half of the XX century the researchers continued constructing new methods for solving
difference equations, as the case of U. Broggi [10] or L.M. Milne-Thomson [53].

• Difference equations appear in the setting of numerical methods of differential equations
while approximating solutions through finite difference schemes both for ordinary differen-
tial equations -let us mention Euler’s method, Runge-Kutta’s methods, multistep methods-
and partial difference equations as well (consult [12, 43, 50, 65, 66]).

2 Structure of the set of periods

In this section we briefly survey Sharkovsky’s Theorem and solve the problem of determining the
set of periods of any power fn of a continuous interval map f by establishing the corresponding
initial segment of Sharkovsky’s ordering. Let us recall that we consider a discrete dynamical
system as a pair (X, f), where f is a continuous map defined from a topological space X into
itself (in short, f ∈ C(X,X)). In this setting, by fn is meant the composition f ◦ fn−1, n ≥ 1,
with f0 = Id|X the identity map. A periodic point x ∈ X satisfies fm(x) = x for some m ≥ 1,
and its period or order, denoted by ordf (x), is the smallest of such values m. We use Per(f) to
denote the set of periods of f.
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2.1 Sharkovsky’s Theorem

In our opinion, Sharkovsy’s Theorem is the most famous theorem of combinatorial nature dealing
with discrete dynamical systems. It is easy to state, even secondary students can understand it
because they are only required to know the concept of continuity of a real map and the intermediate
value property. Let f : I → I be a continuous map, with I = [0, 1]. Reorder the natural numbers
as follows

3 >s 5 >s 7 >s ... >s 2 · 3 >s 2 · 5 >s 2 · 7 >s ...

2n · 3 >s 2n · 5 >s 2n · 7 >s ... >s 2n+1 >s 2n >s ... >s 2 >s 1.

For n ∈ N ∪ {2∞} define

S(n) = {m ∈ N : n >s m} ∪ {n} and S(2∞) = {2n : n ∈ N ∪ {0}}.

Then the direct part of Sharkovsky’s theorem states that if f has a periodic orbit of period n,
then S(n) ⊆ Per(f), and the converse statement asserts that for any n ∈ N ∪ {2∞} there is an
fn ∈ C(I, I) such that Per(fn) = S(n) (see [59] or its English translation [60]).

There are different extensions of Sharkovsky’s Theorem to other spaces and other particular
classes of continuous maps: continuous circle maps f : S1 → S1 (here by S1 is meant the circle
{z ∈ C : |z| = 1}); continuous triangular maps f : Ik → Ik,

f(x1, x2, . . . , xk) =
(
f1(x1), f2(x1, x2), . . . , fk(x1, x2, . . . , xk)

)
;

continuous permutation maps F : Ik → Ik or F : Tk → Tk,

F (x1, x2, ..., xk) =
(
fσ(1)(xσ(1)), fσ(2)(xσ(2)), ..., fσ(k)(xσ(k))

)
,

where Tk = S1× k. . . ×S1 is the k-dimensional torus and σ is a cyclic permutation; etcetera. For
more information, the reader is referred to [2] and [44].

2.2 Computing periods of powers

A curious problem is to find the set of periods of fp for any p ≥ 2 if we know the set of periods
of f ∈ C(I, I). This is a question of combinatorial nature and in order to solve it we have in mind
the following general facts (X is a general topological space):

. Fact 1: For k ∈ Z+, ϕ ∈ C(X,X) and x ∈ X, it holds:

ϕk(x) = x⇐⇒ ordϕ(x)|k,

where m|k means that m divides to k, and ordϕ(x) is the period of the sequence {ϕn(x)}n.

. Fact 2:

Per(fp) =
{ k

gcd(k, p)
: k ∈ Per(f)

}
,

where gcd(k, p) is the greatest common divisor of k and p.
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So, the latter fact answers our question. But we can say even more, we can describe the sets of
periods in terms of the initial segments of the Sharkovsky’s ordering. Consider 2 · N + 1, the set
of odd numbers greater than 1, and define for any pair p, q of positive integers

t(p, q) := min{m ∈ 2 · N + 1 : q ≤ m · p}.

For instance, t(7, 13) = 19, t(5, 5) = 3 and t(7, 67) = 11. Then we can state the sets of periods
of a power in terms of initial segments:

Theorem 2.1 ([16]). Let f ∈ C(I, I) be such that Per(f) = S(q · 2r), with q ≥ 1 odd and
r ∈ N ∪ {0,∞}. Let p ∈ N, p 6= 1.

(a) If p ≥ 3 is odd:

(a1) If q = 1, Per(fp) = S(2r).

(a2) If q > 1, Per(fp) = S(t(p, q) · 2r).

(b) If p = l · 2k, l ≥ 1 odd, k ≥ 1:

(b1) If q = 1,

Per(fp) =

{
S(1) if k ≥ r,
S(2r−k) if k < r.

}
(here if 2k = 2∞, we consider that 2k−r = 2∞).

(b2) If q > 1,

Per(fp) =


S(3) if k > r,
S(t(l, q)) if k = r,
S(t(l, q) · 2r−k) if k < r.


Let us present some examples illustrating the above theorem.

Example 2.1. Let f ∈ C(I, I) with Per(f) = S(27 · 61). Since t(3, 61) = 21, t(9, 61) = 7,
t(313, 61) = 3, we have

Per(f3) = S(27 · 21), Per(f9) = S(27 · 7), Per(f313) = S(27 · 3).

On the other hand, since t(1, 61) = 61, t(5, 61) = 13, t(7, 61) = 9, we have

Per(f2) = S(26 · 61), Per(f22·5) = S(25 · 13), Per(f27) = S(61),

Per(f27·7) = S(9), Per(f28) = S(3), Per(f29·11) = S(3).

Example 2.2. Let g ∈ C(I, I) with Per(g) = S(215). Then Per(g2m+1) = S(215) for allm ≥ 1.
For some even values of p we have:

Per(g2) = S(214), Per(g23·7) = S(212), Per(g215) = S(1), Per(g229·101) = S(1).
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There exists a similar result for circle maps. Since it is rather long to be described here, the
reader interested in its description can consult [16], where it can be also found the proof for the
case of interval maps.

Once we have studied the set of periods for a power of a continuous (real or circle) map, an
obvious question concerning the periods of powers is the following one:

Question: If we know the periodic structure of certain classM of maps (interval maps, circle
maps, σ-permutation maps, tree maps, ...), given a map f ∈M try to describe the new set of peri-
ods of fp in terms of the sets of periods appearing in the corresponding result which characterizes
the periodic structure of the classM.

2.3 Some isolated results

Notice that the above results on periodic structure are obtained for difference equations of the form
Xn+1 = Φ(Xn), in a suitable space (interval, circle, n-dimensional interval, ...) So, it is natural to
look for the results describing the periods of a difference equation of order equal to or bigger than
2. We can say that in the literature we only find some isolated results obtained for some particular
difference equations, that is, the authors give the set of periods for a particular difference equation,
but no forcing relationship between the periods is attained. Hence, to obtain new general results
containing some type of forcing relationship between the periods of new classes of difference
equations of order bigger than 1 could be an interesting line of research.

As an example, we show some periodicity results concerning the Lyness max equation [31]

xn+1 =
max(xkn, A)

xlnxn−1
, k, l ∈ R, A > 0.

• For k = 1 and l = 0, we get

xn+1 =
max(xn, A)

xn−1
, A > 0, (MAX-5)

the so-called “max-5” equation. In this case, all the periods of (MAX-5) are:

(a) A > 1 : 5r + 4s, r, s ∈ Z+.

(b) A < 1 : 5r + 6s, r, s ∈ Z+.

(c) A = 1 : It is a 5-cycle: all the sequences are periodic of period 5 or 1.

• For k = 1, l = 0, now

xn+1 =
max(xn, A)

xnxn−1
, A > 0 (MAX-7)

and all the periods of (MAX-7) are:

(a) A > 1 : 7r + 3s, r, s ∈ Z+.

(b) A < 1 : 7r + 4s, r, s ∈ Z+.

(c) A = 1 : It is a 7-cycle: all the sequences are periodic having period 7 or 1.
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Related to this class of difference equations, we could propose the following open problems:
What happens in the case k = 2, l = 1 (called 9-max),

xn+1 =
max(x2

n, A)

xnxn−1
, k, l ∈ R, A > 0,

what are their periods? Does it exist some type of forcing between the periods? Is it true the
conjecture of Kulenovic-Ladas (see [41, Conjecture 5.4.8]) establishing that all positive solutions
of this equation are bounded? Try to give some information about the periods in the general case,
being k, l, arbitrarily taken.

3 Periodic structure of alternated maps

Another way to describe applied models (biological, economic, physic, ...) is to employ an itera-
tion involving several functions according to different steps of the evolution of the system,

x, f(x), g(f(x)), h(g(f(x))), . . .

(see, for instance, [11, 48, 64, 67]).
A particular case of this idea is to apply the functions in a periodic form,

f1, f2, ..., fp, f1, f2, ..., fp, f1, f2, ..., fp, . . .

Then we obtain a new (non-autonomous) dynamical system, denoted by [f1, f2, f3, . . . , fp],where
the solutions are generated by the alternated use of p individual discrete systems (fi, X), i =
1, . . . , p, with each fi ∈ C(X,X) :

x1 → f1(x1) := x2 → f2(f1(x1)) := x3 → f3(f2(f1(x1))) := x4 . . .

We obtain a new dynamics from the individual dynamics of each fj , j = 1, . . . , p. If we con-
sider X = I := [0, 1], we propose to study the periodic sequences and their corresponding pe-
riods when we apply the strategy of alternating continuous interval maps. In this new frame,
we use the notation ord[f1,... ,fp](xn) or ord[f1,... ,fp](x1) to represent the period of the sequence
(xn)n = {x1, x2, . . . }, and Per([f1, f2, . . . , fp]) means the set of periods of the alternated system
[f1, f2, . . . , fp].

3.1 Initial results

We survey some contributions to this topic of the periodic structure of alternated systems defined
from interval maps fj ∈ C(I, I). Notice that for p ≥ 2, an alternated system is precisely a
periodic non-autonomous difference equation, namely

xn+1 = fn(xn),

with fn ∈ C(I, I), fn+p ≡ fn, n ≥ 1.

Obviously, when p = 1 we have a discrete dynamical system and Sharkovsky’s Theorem
solves the problem of the description of the periodic structure of the system.

When p ≥ 2 we mention [4] and [15] and pass to describe briefly their contributions.
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In [4], for q ∈ Z+, the authors define

Aq = {n : lcm(n, p) = q · p},

where lcm denotes the lowest common multiple of two natural numbers. Notice that p · q ∈ Aq.
Then if An ∩ Per([f1, ..., fp]) 6= ∅, it holds Am ∩ Per([f1, ..., fp]) 6= ∅ for any n >s m

(remember that >s is Sharkovsky’s ordering). For instance, if p = 3 we have

A3 = {3 · 3} >sA5 =

{
5
3 · 5

}
>sA7 =

{
7
3 · 7

}
>sA9 = {3 · 9} >s . . .

A2·3 = {2 · 3 · 3} >sA2·5 =

{
2 · 5
3 · 2 · 5

}
>sA2·7 =

{
2 · 7
3 · 2 · 7

}
>sA2·9 = {3 · 2 · 9} >s . . .

A22·3 = {22 · 3 · 3} >sA22·5 =

{
22 · 5
3 · 22 · 5

}
>sA22·7 =

{
22 · 7
3 · 22 · 7

}
>sA22·9 = {3 · 22 · 9} >s . . .

A2k·3 = {2k · 3 · 3} >sA2k·5 =

{
2k · 5
3 · 2k · 5

}
>sA2k·7 =

{
2k · 7
3 · 2k · 7

}
>sA2k·9 = {3 · 2k · 9} >s . . .

. . . >sA2m =

{
2m

3 · 2m
}
>s . . . >sA2 =

{
2
3 · 2

}
>sA1 =

{
1
3

}
.

However, the above result does not give information on the forcing between the elements of
two classes Ar and Aq, all we know is that the presence of a period in the block Ar implies the
existence of other period in Aq, whenever r >s q. But the result does not provide a detailed frame
of forcing between the periods of two classes.

Independently of the work of AlSharawi et al., in [15] it was possible to characterize com-
pletely the structure of the set of periods Per([f1, f2]), including a detailed study of the forcing
between elements of two different blocks Ar and Aq. If we put N∗ = {4, 6, 8, 10, . . . }, the main
result of [15] is:

Theorem 3.1 ([15]). Let f1, f2 ∈ C(I, I). Then

(a) If [f1, f2] has a periodic orbit of period n ∈ N∗ ∪ {2∞}, then S(n)\{1, 2} ⊂ Per[f1, f2].

(b) If 2n+ 1 ∈ Per[f1, f2], n ≥ 1, then S(2 · 3)\{1} ⊂ Per[f1, f2].

(c) There are f1, f2 ∈ C(I, I) such that Per([f1, f2]) is {1}, {2} or {1, 2}.

(d) For any n ∈ N∗ ∪ {2∞}:

d.1. There are f1, f2 ∈ C(I, I) such that Per([f1, f2]) = S(n).

d.2. There are f1, f2 ∈ C(I, I) such that Per([f1, f2]) = S(n)\{1}.
d.3. There are f1, f2 ∈ C(I, I) such that Per([f1, f2]) = S(n)\{2}.

(e) Let Imp ⊆ {2n+ 1 : n ∈ N}. Then

e.1. For any subset of odd numbers Imp there are f1, f2 ∈ C(I, I) such that Per([f1, f2]) =
Imp ∪ (S(2 · 3)\{1}).

e.2. For any subset of odd numbers Imp there are f1, f2 ∈ C(I, I) such that Per([f1, f2]) =
Imp ∪ S(2 · 3).
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Notice that the case Per([f1, f2]) = Imp ∪ (S(2 · 3)\{2}) is not allowed, that is, if 2n+ 1 ∈
Per([f,f2]) for some n ∈ N, then automatically 2 ∈ Per([f1, f2]). In addition, for n ∈ N∗∪{2∞},
n 6= 2·3, there are not continuous maps f1, f2 ∈ C(I) such that Per([f1, f2]) = Imp∪(S(n)\{1})
or Per([f1, f2]) = Imp∪(S(n)\{2}) or Per([f1, f2]) = Imp∪S(n). The result of Cánovas-Linero
can be summarized in the following frame of forcing (where n >2 m means that the presence of a
period n in the alternated system forces the existence of periodic sequences having order m):

{2 · n+ 1 : n ∈ N} >2 2 · 3 >2 2 · 5 >2 2 · 7 >2 ...

2n · 3 >2 2n · 5 >2 2n · 7 >2 ... >2 2n >2 ... >2 22 >2 (1 or/and 2).

Other interesting papers dealing with the subject of finding periodicities in alternated systems
are [3], [5] and [6].

3.2 Some advances

It is an open problem to determine all the sets of periods for an alternated system when p ≥ 3.
The main result of [4] gives only a partial answer because it ensures that the existence of periods
in certain block Aq only guarantees the existence of periods in blocks Ar for which r <s q, but it
does not establish what periods of the block are attained in Per[f1, . . . , fp].

In this sense, if we want to give a step forward in relation with the knowledge of the periodic
structure of alternated systems in the interval, then the following results will be useful for the
task of determining what elements of a block Aq can belong to Per[f1, . . . , fp]. The first one
is of combinatorial nature and characterize the periods coprime with the dimension p, and is a
generalization of the corresponding result of [15].

Lemma 3.2. Let f1, ..., fp ∈ C(I, I), with p a positive integer. Fix an integer m ≥ 1, with
gcd(m, p) = 1; thenm ∈ Per[f1, · · · , fp] if and only if f1, ..., fp share a common orbit (x1, ..., xm)
of period m. Moreover, in this case fi(xj) = x(j+1)modm, i = 1, . . . , p, j = 1, . . . ,m.

According to this result, we see that a period m coprime with the dimension p does not force
necessarily the existence of other periods coprime with p. However, the following result shows us
that the presence of a period coprime m forces certain smaller periods in Sharkovsky’s ordering.
The proof is based upon the use of techniques of digraphs in the interval, [2].

Lemma 3.3. Let q ∈ Per([f1, ..., fp]), with gcd(q, p) = 1. Then

p ·m ∈ Per([f1, ..., fp]) for all m ∈ N, m ≥ 1, such that q >s p ·m.

It is interesting to mention that the above results appear in [17], inside of a more ambitious ar-
ticle answering adequately the problem of finding all the forcing relations of an alternated system.
They are based mainly on techniques of discrete dynamical systems.

Some interesting open problems related with the periodic structure of alternated systems could
be:

• To study the periodic structure in the case of alternated continuous circle maps.

• Once we know the periodic structure of a general class of continuous maps, to analyze the
periodic structure of the corresponding alternated systems.
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• How to extend the study of the periodicity of alternated systems when we consider a family
of infinite continuous maps?

• To study other dynamical aspects (entropy, ω-limit sets, . . . ) of alternated systems, even
general non-autonomous systems. In this direction, we mention [13, 14, 28, 39, 40].

4 Global periodicity

In this section we concentrate our attention on p–cycles. Recall that a difference equation is a
p–cycle when all its possible solutions are periodic sequences and p is the least common multiple
of their periods. We survey some results concerning the existence of families of p-cycles, the
classification of p–cycles by conjugation and the existence of equilibrium points. In the results
presented below, we assume mostly that X = R or X = (0,∞).

We summarize the aspects we will deal with:

• Most popular p−cycles in the literature, including the Lyness equation and rational cycles.

• Some results on particular families of p−cycles having a specific typology.

• Abundance of p−cycles, and its possible classification by topological conjugation.

• Open problems related with the search for new families of p−cycles, with the classification
of cycles and with the existence of equilibria points.

Before starting the development of this section, let us notice that for the study of the global
periodicity, the following approaches have been employed: sometimes it is necessary to solve
functional equations (for instance, [9, 20]); in other cases it is appropriate to use techniques of
discrete dynamical systems (as in [19, 22] and [24]); and, finally, some direct arguments of real
analysis also work in some cases (for example, see [69]).

4.1 A historical digression

Probably, the most popular p−cycle is the so-called Lyness cycle

xn+2 =
1 + xn+1

xn
,

a second order difference equation for which all its solutions {xn}n verify xn+5 = xn, therefore
it is a 5-cycle.

In fact, Lyness cycle is a particular case -take a = 1- of the family of 5-cycles xn+2xn− a2 =
axn+1, a 6= 0. It is precisely under this aspect that Lyness cycle appeared: in fact, Gauss obtained
it when working in the spherical geometry of the pentagrama mirificum, a spherical pentagram
formed by five successively orthogonal great-circle arcs. To see its construction and the relation
with the 5-cycle, the reader can consult [26]. According to this paper: “This 5−cycle seems to
have been transmitted in the form of mathematical gossip for a long time”. The 5-cycle receives
the name of Lyness cycle because R.C. Lyness accounted for it in a series of papers dealing with
the existence of cycles (see [45, 46, 47] and also [34]). Surprisingly, the interest of Lyness was
associated neither to dynamical systems nor difference equations, he found the equation while
investigating a problem related to the number theory: to obtain three integer numbers such that the



SOME RESULTS ON PERIODICITY OF DIFFERENCE EQUATIONS 131

sum or the difference of any different pair of them is a square. The first time that the equation is
referred to as the “Lyness equation” occurred in 1961, in [57].

A variant of the Lyness cycle was presented in [26], namely, the difference equation of order
m given in terms of continued fractions

cn+m = 1− cm+n−1

1− cm+n−2

1−... ...
1−cn

, (3)

which is a (m+ 3)−cycle and for m = 2 coincides with the Lyness cycle.
Other rational p−cycles, different to Lyness equation xn+2 = 1+xn+1

xn
, are xn+1 = 1

xn

(2−cycle) and xn+3 = 1+xn+2+xn+1

xn
(8−cycle, called the Todd’s one, because Lyness in [46,

p. 233] commented that professor H. Todd, from Bristol University, discovered the 8−cycle
un+3un = un+2 +un+1 + 1). At the first glance the reader could think about a generalization and
could conjecture that for k ≥ 4 the equation

xn+k =
1 + xn+k−1 + xn+k−2 + · · ·+ xn+1

xn

can be a p–cycle for some p ∈ Z+. However, in [69] it was established that this conjecture is false
and, even more, the general difference equation

xn+1 =
a+ b0xn + b1xn−1 + · · ·+ bk−2xn−k+2

xn−k+1
, n = 0, 1, ...

where a, bi ∈ (0,∞), i ∈ {0, 1, · · · , k − 2}, and x−k+1, x−k+2, · · · , x0 are arbitrary positive
numbers, is not a p–cycle.

4.2 Families of p–cycles

Now we give a quick survey of results about the existence of families of p−cycles. We will pay
attention to: Rational cycles; first and second order difference equations; difference equations of
order greater than 2; and potential cycles.

4.2.1 Rational cycles

Here we will give a brief mention to the results in [23] and [27]. In [27] the authors look for
p–cycles of the form

xn =
a0 + a1xn−1 + a2xn−2 + · · ·+ akxn−k

xn−k−1

with a0, a1, · · · , ak ∈ C, a1 · a2 · · · · · ak 6= 0, ak = 1. They obtain:

xn =
xn−1

xn−2
: 6−cycle, xn =

−1− xn−1 + xn−2

xn−3
: 8−cycle.

In [23], the authors consider rational equations

xn+k =
A1xn +A2xn+1 +A3xn+2 + · · ·+Akxn+k−1 +A0

B1xn +B2xn+1 +B3xn+2 + · · ·+Bkxn+k−1 +B0
, (4)
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where the initial conditions are positive numbers, and the coefficients verify Ai ≥ 0, Bi ≥ 0,∑
iAi > 0,

∑
iBi > 0, and A2

1 +B2
1 6= 0. They prove that any non trivial p–cycle of order k = 2

or k = 4 is equivalent to one of the following difference equations:

un+2 =
un+1

un
: 6−cycle; un+2 =

1 + un+1

un
: 5−cycle (Lyness cycle);

un+4 =
un+2

un
: (2× 6)−cycle; un+4 =

1 + un+2

un
: (2× 5)−cycle.

and for odd orders k ∈ {1, 3, 5, 7, 9, 11} they prove that any non trivial p-cycle is equivalent to
one of the following ones:

un+3 =
1 + un+2 + un+1

un
: 8−cycle; un+9 =

1 + un+6 + un+3

un
: (3× 8)−cycle.

A natural question is to ask whether we can find other non trivial p–cycles of order k of the
form (4), and not generated by one of the above mentioned cycles. Evidently, according to [23]
the answer is negative for k = 1, 2, 3, 4, 5, 7, 9, 11. The cases k = 6, 8, 10, and k ≥ 12 are still
open.

4.2.2 First and second order difference equations

Evidently, the unique 1−cycle generated by a difference equation of first order, xn+1 = f(xn), is
the trivial one xn+1 = xn.Moreover, if f : (0,∞)→ (0,∞) is a continuous map, and f produces
a p−cycle different to the trivial one, then in [18] it is proved that necessarily p = 2 and f must
satisfy

f(x) =


f0(x), if x ∈ (0, x0),

x0, if x = x0,

f−1
0 (x), if x ∈ (x0,∞),

where x0 > 0 and f0 ∈ C((0, x0), (x0,∞)) is a decreasing map with limx→x0 f0(x) = x0.
Concerning the non-autonomous (of first order) case

xn+1 = fn(xn), n = 0, 1, 2, . . . ,

where each fn is a continuous map from (0,∞) into itself, it is a remarkable fact that there exist
∞-cycles in the non-autonomous case, that is, we can construct examples of non-autonomous
difference equations of first order such that all their solutions are periodic, but their set of periods
is infinite (see [19]).

In relation with p–cycles giving by difference equations of second order, xn+2 = f(xn+1, xn),
firstly it is obligatory to mention [51]. In this paper the author considers difference equations
having the form

xn+2 =
f(xn+1)

xn
, (5)

and he looks for p−cycles, with p = 3, 4, 5. This question is answered by solving appropriate func-
tional equations appearing as a consequence of imposing xn+p = xn. For instance, for 5−cycles,
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the global periodicity problem amounts to solve the system of two functional equations

f
(
f(x)
y

)
x

=
f
(
f(y)
x

)
y

,
f(x)

y

f(y)

x
= f

f
(
f(y)
x

)
y

 ,

which gets f(x) = A(Aα + xα)
1
α , with A,α > 0.

Open problem: For p ≥ 6, obtain p−cycles having the form of Eq. (5).
We continue with p–cycles of second order and cite the paper [8]. Here, general 3−cycles of

the form xn+2 = f(xn+1, xn) are searched. Now the functional equation f ∈ C((0,∞), (0,∞))
must obey is

f(u, f(w, u)) = w

for all u,w > 0. The study is focussed on the analysis of the fiber maps fz(·) = f(z, ·) and
fz(·) = f(·, z). They are strictly decreasing maps, with fz ◦ fz = fz ◦ fz = Id. If, in addition,
we assume that f separates the variables, f(x, y) = σ(x) ·ρ(y), then it is proved that fz ≡ fz (the
difference equation is symmetric), and f(x, y) = k

xy for some positive constant k. At the same
time, in [8] it is proposed the problem of finding non-symmetric 3−cycles of second order. This
was done in [18], where it is constructed a continuous map F̃ from (0,∞)2 into itself, with the
form F̃ (x, y) = (y, f̃(y, x)), that holds F̃ 3 = Id|(0,∞)2 , and f̃ is non-symmetric. The idea of the
construction is to modify F (x, y) = (y, 1

xy ) and its iterates on an appropriate rectangle. Other
example of non-symmetric 3−cycle of second order can be found in [24].

Under the involution hypothesis for fiber maps, fz ◦ fz = Id, and assuming separation of
variables, we can get new results on global periodicity of xn+2 = f(xn+1, xn). Again, the main
tool for achieving them consists of solving functional equations.

In [20] it is proved that xn+2 = σ(xn+1)ρ(xn) is a 4−cycle if and only if σ(x) = k is a
constant map for some k > 0, and ρ is a bijective decreasing map satisfying cρ ◦ cρ = Id|(0,∞).
And if it is a p−cycle, with p ≥ 5, then necessarily ρ(x) = c

x for all x > 0 and some constant
c > 0. This implies that all the p−cycles of order two, fibers acting as involutions, and separated
variables, have to follow the pattern of the equations described in Mestel’s paper [51].

Open problem: Analyze if the above characterizations of the different p−cycles of second
order remain true if we remove the involution hypothesis.

4.2.3 Order greater than two

New families of p−cycles of third order xn+3 = f(xn+2, xn+1, xn) were found in [9]. To be more
precise, the following equation is studied

xn+3 = xif(xj , xk) (6)

where i, j, k ∈ {n, n+ 1, n+ 2} are pairwise distinct and f : (0,∞)2 → (0,∞) is continuous.
It is proved, with the help of functional equations, that the unique 3−cycle of Eq. (6) is xn+3 =

xn; the unique 4−cycle is given by xn+3 = xn
xn+2

xn+1
; and there are two 5−cycles, namely xn+3 =

xn(xn+2

xn+1
)Φ, and xn+3 = xn(xn+2

xn+1
)ϕ, where Φ = 1+

√
5

2 (golden number) and ϕ = −Φ−1.
In [20], two new classes of difference equations for positive real numbers are studied, namely,

xn+3 = xng(xn+2)/g(xn+1), and xn+3 = f(xn+2,xn+1)
xn

. The first class contains 6−cycles if and
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only if g(x) = cx2 for some constant c > 0, and the second one have neither 3−cycles nor
5−cycles, and presents 4−cycles if and only if f(x, y) = c/(xy), c > 0 is a constant.

Open problem: Find new families of p–cycles, p ≥ 6, having the form xn+3 = xif(xj , xk)
and, even, find general p−cycles having the form xn+3 = f2(xn+2)f1(xn+1)f0(xn).

We have seen that the equations xn+2 = c/(xn+1xn), c > 0, are the unique 3−cycles defined
in (0,∞) if we separate the variables of the map f which defines the recurrence. This property
can be generalized in the following way:

Theorem 4.1 ([21]). Consider the difference equation of order k ≥ 3

xn+k = F (xn+k−1, . . . , xn+2, xn+1)f0(xn),

with F ∈ C((0,∞)k−1, (0,∞)), f0 ∈ C((0,∞), (0,∞)), and xi ∈ (0,∞), i = 0, 1, . . . , k − 1;
then, assuming additionally that for each x > 0 the one-dimensional map fx(y) = F (x, . . . , x)f0(y)
is an involution

fx(fx(y)) = y for all y,

the equation is a (k + 1)–cycle if and only if it has one of the following forms:

(i) k is even and

xn+k+1 =
C

xn+1xn+2 · · ·xn+k
, for some C > 0; (7)

(ii) k is odd and either xn+k+1 = C
xn+1xn+2···xn+k , for some C > 0 or

xn+k+1 =

(k+1)/2∏
j=1

xn+2j−1

(k−1)/2∏
j=1

xn+2j

. (8)

Open problem: Study whether or not the property will remain true if we remove the condition
on fx to be an involution.

4.2.4 Potential cycles

At the moment, most of the showed p−cycles on (0,∞) have a “potential” form. That is, the
p–cycle can be written as

xn+k = cx
αk−1

n+k−1 · · ·x
α1
n+1x

α0
n , n = 0, 1, . . . , (9)

where the constant c and the initial values x0, x1, . . . , xk−1 are positive real numbers, and the
exponents αj , j = 0, 1, . . . , k − 1, are real numbers.

The following result describes all the p–cycles of order k and potential form, that is, gives the
values of the constants αi and c > 0 for which the difference equation is a p–cycle, p ≥ k ≥ 2,
where xi > 0, i = 0, 1, . . . k − 1.
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Theorem 4.2 ([21]). Equation (9), with p ≥ k ≥ 2, is a p–cycle of order k if and only if either
k = p and (9) is reduced to xn+k = xn, or p > k and the real exponents αj , j = 0, 1, . . . , k − 1,
are the coefficients of the characteristic polynomial P (λ) = λk − αk−1λ

k−1 − . . . − α1λ − α0,
and according to the Cardano-Vieta’s formulas we have

−αj = (−1)k−j
∑

i1<...<ik−j

λi1 · · ·λik−j (10)

where the eigenvalues λj of P (λ) are simple pth roots of the unity verifying one of the following
cases:

1. Case 1: k is even, λ1 = 1, λ2 = −1 are eigenvalues of P (λ) and the rest of the eigenvalues
are complex numbers λj,± = cos

2πlj
p ± i sin

2πlj
p , j = 1, . . . , k2 − 1, for some integers

lj <
p
2 . Moreover, c = 1, α0 = 1, and p is even.

2. Case 2: k is even, and all the eigenvalues are complex numbers λj,± = cos
2πlj
p ± i sin

2πlj
p ,

j = 1, 2, . . . , k2 , for some integers lj <
p
2 . Moreover, c > 0 and α0 = −1.

3. Case 3: k is odd, λ1 = 1 is the unique real eigenvalue of P (λ), and the rest are com-
plex numbers λj,± = cos

2πlj
p ± i sin

2πlj
p , j = 1, 2, . . . , k−1

2 , for some integers lj <
p
2 .

Moreover, c = 1, and α0 = 1.

4. Case 4: k is odd, λ1 = −1 is the unique real eigenvalue of P (λ), and the rest are com-
plex numbers λj,± = cos

2πlj
p ± i sin

2πlj
p , j = 1, 2, . . . , k−1

2 , for some integers lj <
p
2 .

Moreover, c > 0, α0 = −1, and p is even.

In all the above four cases, lj are integer numbers satisfying gcd({lj}, p) = 1 and with lj 6= ls if
j 6= s.

In order to prove this theorem, we apply a change of variables and then we analyze the obtained
linear difference equation. In fact, by taking ym = lnxm we linearize the potential equation,
because Equation (9) is a p–cycle if and only if equation

yn+k = ln c+ αk−1yn+k−1 + . . .+ α1yn+1 + α0yn,

yi ∈ R, i = 0, 1, . . . , k − 1,

is a p–cycle for p ≥ k ≥ 2. Moreover, we recall that if Eq. (9) is a p–cycle, then the zeros
associated to its characteristic polynomial are simple pth roots of unity.

Remark 4.1. The above theorem allows us to give a counterexample to Conjecture 2.1 in [33]:
“the only 8-cycle of the form xn+3 = f(xn+2,xn+1)

xn
with f ∈ C1((0,∞)× (0,∞), (0,∞)) is

xn+3 =
1 + xn+2 + xn+1

xn
.” (11)

The conjecture is false since xn+3 = c(xn+1xn+2)β

xn
, with β = −1 +

√
2 or β = −1 −

√
2, is a

8-cycle different from (11).

Potential cycles appear again in the search of (k + 2)-cycles of order k, when the difference
equation has separated variables and certain symmetric property holds.
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Theorem 4.3 ([21]). Consider the difference equation of order k ≥ 2

xn+k = fk−1(xn+k−1) · · · f2(xn+2)f1(xn+1)f0(xn),

n = 0, 1, . . . ,with initial conditions xi ∈ (0,∞), and continuous maps fi : (0,∞)→ (0,∞), i =
0, . . . , k−1. Assume that for each x > 0 the one-dimensional map fx(y) := fk−1(x) · · · f2(x)f1(x)f0(y)
is an involution (fx(fx(y)) = y for all x, y > 0). Then, this equation is a (k + 2)–cycle if and
only if one of the following conditions occurs:

1. k = 2, f1(x) = c for all x > 0 and some constant c > 0, and f0 is a decreasing and
bijective map such that (cf0 ◦ cf0) = Id|(0,∞).

2. k ≥ 4 is even and xn+k = c
xn+k−2xn+k−4···xn+2xn

, for any constant c > 0.

3. k ≥ 3 and the difference equation has a potential form

xn+k = x
αk−1

n+k−1 · · ·x
α2
n+2x

α1
n+1xn,

where the constants αj , j = 1, . . . , j − 1 are given by Cases 1 and 3 of Theorem 4.2.

Open problem: Prove that the above theorem remains valid independently of the condition of
symmetry imposed to fx.

4.3 Classification of p–cycles

In this section we recall the well known relationship between difference equations and discrete dy-
namical systems, and with the help of one dynamical concept, namely the topological conjugation,
we try to classify all p–cycles.

4.3.1 Difference equations and discrete dynamical systems

Let X be a metric space, we can associate to the difference equation

xn+k = f(xn+k−1, . . . , xn+1, xn), n ≥ 0, (12)

the following map F : Xk → Xk given by

F (x1, x2, . . . , xk) = (x2, . . . , xk, f(xk, . . . , x2, x1)). (13)

The advantage of transforming a difference equation into a discrete dynamical system was
already noticed in [42]. If (12) is a p−cycle and F is its associated dynamical system, then
F p ≡ Id|Xk , and, reciprocally, if F is given by (13) and p is the smallest positive integer satisfying
F p ≡ Id|Xk then its associated difference equation is a p−cycle.

4.3.2 Topological conjugation

We have presented only some examples of p−cycles. We could think that global periodicity is a
property only satisfied by a few equations, as Lyness one, or rational and potential equations. But
one can realize that the topological conjugation of systems gives us the possibility of finding more
and more p−cycles.
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According to the equivalence between difference equations and discrete dynamical systems
given by Eq. (12) and the map of (13), we can establish whether two difference equations are
conjugate in terms of their correspondent dynamical systems. Remember that if X1, X2 are two
metric spaces and g1 : X1 → X1, g2 : X2 → X2, are two continuous maps, we say that (X1, g1)
and (X2, g2) are topologically conjugate if there is a homeomorphism h : X1 → X2 such that
h ◦ g1 = g2 ◦ h.

So, if xn+k = f(xn+k−1, . . . , xn) is a p–cycle of order k, with f ∈ C((0,∞)k, (0,∞)), and
we consider an arbitrary homeomorphism α defined from (0,∞) into itself, then

F (x1, x2, . . . , xk) = (x2, . . . , xk, f(xk, . . . , x1))

is topologically conjugate toG(x1, x2, . . . , xk) = (x2, . . . , xk, α
−1(f(α(xk), . . . , α(x1)))), there-

fore if xn+k = f(xn+k−1, . . . , xn) is a p−cycle then

xn+k = α−1(f(α(xn+k−1), . . . , α(xn)))

so is.
For instance, if xn+2 = 1+xn+1

xn
is the 5−Lyness cycle and we take α(z) = z2, α−1(z) =

√
z,

we obtain

zn+2 =

√
1 + z2

n+1

z2
n

, a new 5-cycle.

4.3.3 Classification of p–cycles

The above notion of conjugation of difference equations allows us to classify the set of different
p−cycles.

In the case xn+1 = f(xn), f ∈ C((0,∞)), the problem of the classification of cycles is
completely solved, the unique 1−cycle is given by the identity map, and in [18, Theorem B] it is
shown that there is only an equivalence class on the set of 2−cycles, any 2−cycle is topologically
conjugate to xn+1 = 1

xn
. Notice that when we apply the change zn = lnxn we obtain zn+1 =

−zn, a linear cycle.
When the order of the cycle is greater than or equal to 2 we have a few results about the

classification of p−cycles. For instance, all the p−cycles of second order xn+2 = f(xn+1, xn),
with p ≥ 3, are topologically conjugate to rotations of the plane (see [19]). Other general result
classifying all the (k + 1)−cycles of order k is (see also [24]):

Theorem 4.4 ([19, Theorem C]). Let f ∈ C((0,∞)k, (0,∞)) and let Eq. (12) be a (k+1)−cycle.

(i) If k is even, the (k + 1)−cycle is topologically conjugate to

xn+k =
1

xn+k−1xn+k−2 . . . xn
. (14)

(ii) If k is odd, the (k + 1)−cycle is topologically conjugate either to (14) or to

xn+k =

∏(k+1)/2
j=1 xn+2j−2∏(k−1)/2
j=1 xn+2j−1

. (15)
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The proof of the theorem is constructive, we explicitly define the homeomorphisms of conju-
gation, given by

h(x1, . . . , xk) =

(
f(xk, xk−1, . . . , x1)

xk
,

x1

f(xk, xk−1, . . . , x1)
,
x2

x1
, . . . ,

xk−1

xk−2

)
and

h(x1, . . . , xk) = (x1f(xk, xk−1, . . . , x1), x2x1, x3x2, . . . , xkxk−1).

Therefore, the number of different equivalence classes for (k + 1)−cycles of order k defined for
positive real numbers is either 1 or 2.

Notice that the canonical representatives are Eq. (14) and Eq. (15), two potential cycles. In fact,
all potential p−cycles of order k are topologically conjugate to linear p−cycles via the homeo-
morphism h((xj)

k
j=1) = ((ln(xj))

k
j=1). Next, we present an example illustrating how to construct

linear cycles.

Example 4.1. To construct a linear 5−cycle of order 3, take three 5−roots of the unity such that
not all of them are s−roots of the unity, for s < 5. For instance:

λ1 = 1, λ2 = cos

(
2π

5

)
+ i sin

(
2π

5

)
, and λ3 = cos

(
2π

5

)
− i sin

(
2π

5

)
.

Then its characteristic polynomial will be P (λ) = λ3−
(
1 + cos

(
2π
5

))
λ2 +

(
1 + cos

(
2π
5

))
λ−1,

and

yn+3 =

(
1 + cos

(
2π

5

))
yn+2 −

(
1 + cos

(
2π

5

))
yn+1 + yn

is a linear 5−cycle since all the solutions are linear combinations of the linearly independent
solutions

{1n}n,
{

cos

(
2πn

5

)}
n

, and
{

sin

(
2πn

5

)}
n

.

In potential form, if we make the change of variables yj = ln(xj) we find the 5−cycle

xn+3 = xn

(
xn+2

xn+1

)1+2 cos( 2π
5 )
.

Consequently, in the set of p−cycles of order k there exist classes whose canonical representa-
tive is a potential cycle (if we move into (0,∞)) or a linear cycle (if we consider R as the ambient
space).

Open problem: Determine whether or not any p−cycle of order k is linearizable, or equiva-
lently, is conjugate to a potential cycle. As a first step it would be interesting to focus attention on
the set of (k + 2)−cycles of order k.

Open problem: If a p–cycle separates variables, is it conjugate to a potential cycle? And if the
cycle does not separate variables?
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4.4 Existence of equilibrium points

We have seen that the difference equation (12) is a p−cycle if and only if the map given by (13) is
a periodic homeomorphism, that is, F p = Id|X .

This functional equation receives the name of Babbage’s equation. From this point of view,
recently some authors concentrate their attention in some classes of rational maps (see [7, 56])
and try to search discrete rational systems F satisfying F p = Id|X . Notice that these systems do
not come necessarily from a difference equation, that is, the map F does not have necessarily the
form (13)

Realize that it is impossible to find a periodic homeomorphism F from a Euclidean space into
itself such that all the points of the space are periodic for F and the map contains an infinite set of
periods: indeed, according to [54] if all the points of the space are periodic for some homeomor-
phism F , then necessarily F k = Id for some positive integer k, so the set of periods is bounded
and, consequently, there are no “∞−cycles” when we consider autonomous difference equations
taking real values.

All the p−cycles showed in this talk have equilibrium points, or equivalently all the associated
homeomorphisms present fixed points. But does any periodic transformation of a Euclidean space,
En, always admit a fixed point?

This question was posed by P.A. Smith in 1946 (see [29]). Smith knew that the answer is
positive if the period p of the transformation is a prime number [62] or a power of a prime number
[63]. In view of the precedents, Smith conjectured that the periodic transformations of a Euclidean
space have a fixed point.

However, in 1961, by using a slight modification of the Conner-Floyd’s example [25], it was
possible in [37] to show examples of periodic homeomorphisms on En without fixed points.

But, it is still an open problem to determine whether the periodic transformation given by
Eq. (13) has or not equilibrium points, or equivalently, whether the corresponding p–cycle given by
Eq. (12) has or not equilibrium points. If we look for a counterexample, a possible strategy would
be to analyze the Conner-Floyd’s and Kister’s examples and to realize if these transformations
could be written in the form T (x1, x2, . . . , xk) = (x2, . . . , xk, ϕ(x1, . . . , xk)).

If we were able to find a counterexample of a p−cycle without equilibria points, at the same
time we would find a new class of p−cycles not conjugate to potential or linear cycles, and conse-
quently we would deduce that the classification by conjugation of p–cycles cannot be reduced to
the class of potential or linear cycles.
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finies, Amer. J. Math. 7 (1885), 203–258 (in French).
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