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Abstract

Let f(z), z = (z1, . . . , zd), be a rational map from Cd to itself. We describe a method for
finding polynomials p(z) which have the invariance property p(f) = t · p(z) · jf , where t is a
nonzero constant, and jf is the Jacobian determinant of f . In particular, if p(z) and q(z) are
two such invariant polynomials, then r(z) = p(z)/q(z) is an integral of f in the sense that
r(f(z)) = r(z) for almost every z.

1 Birational maps

A mapping f = (f1, . . . , fd) : Cd −→ Cd is said to be rational if each coordinate function is
rational, that is, fi = pi/qi is a quotient of polynomials. A rational map f of Cd induces a map
f̂ = [f̂0 : f̂1 : · · · : f̂d] of Pd through the identification [1 : x1 : · · · : xd] ↔ (x1, . . . , xd).
By dividing out common factors, a rational map f̂ can be written in the form where f̂i’s are
homogenous polynomials of lowest possible degree. A rational map f : Pd −→ Pd is said to be
birational if there exists another rational map g : Pd −→ Pd and an algebraic variety V such that
f ◦ g = g ◦ f = Id on Pd \ V .

Let f = [f0 : f1 : · · · : fd] : Pd −→ Pd be birational. The indeterminacy locus is the set

I(f) = {x ∈ Pd : f0(x) = · · · = fd(x) = 0},

and the birational map f defines a homolorphic map on Pd \ I(f) to Pd. For a ∈ Pd, let

Clf (a) = lim
a′→a

f(a′),

be the set of all limits of f(a′) for a′ ∈ Pd \ I(f) as a′ → a. The cluster set Clf (a) contains
more than one point exactly when a ∈ I. In this case, the cluster set is a connected variety of
dimension at least one. We say that an algebraic variety S is invariant if S is not contained in
I(f) and if the closure of f(S − I(f)) is equal to S. We define jf to be the determinant of the
(d + 1) × (d + 1) matrix

(
∂fi/∂xj

)
0≤i,j≤d. An irreducible subvariety V is called exceptional if

V − I(f) 6= ∅ and if dimf(V − I(f)) < dimV . The exceptional locus, E(f), is the union of all
irreducible exceptional varieties. It is evident that the exceptional locus is where the jacobian of f
vanishes.
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For a homogeneous polynomial h we consider the condition that there exists t ∈ C∗ such that

h ◦ f = t · jf · h. (1)

If h1, . . . , hm satisfy (1), then their linear combination also satisfies (1) and the quotient of any
two of these polynomials will give an invariant function φ in the sense that φ = φ ◦ f . If there
exists such a rational function φ, we say that the corresponding dynamical system is integrable.
Each map on dimension d can have at most d − 1 integrals. If a mapping f has d − 1 integrals,
we say that f is completely integrable. If f has an integral, we say that f is integrable. In case the
dimension d = 2, f can preserve either a rational fibration if deg (fn) grows linearly or an elliptic
fibration if deg (fn) grows quadratically. (See [10] and [12].) If deg (fn) grows exponentially, the
surface map can not preserve a fibration. For a surface automorphism (the case d = 2), exponential
degree growth is equivalent to f having positive entropy. In [2] it is shown that certain surface
automorphisms with positive entropy have an invariant cubic satisfying (1). In [9] and [16], it
was shown that invariant curves have played a useful starting place in the construction of surface
automorphisms with positive entropy. In the case of [9], the invariant curve is useful because it
simplifies the problem of tracking the orbit of the exceptional curve and making it land on the
point of indeterminacy. However, as was shown in [2], invariant curves do not always exist.

Here we also consider the case d ≥ 3. Several authors have considered the Lyness map. (See
for example [6], [7], [8], [13],[14], and [15]). In [4] it was shown that these maps have quadratic
degree growth. In fact, the Lyness process is a special case of the linear fractional recurrences

zd+1 =
a0 + a1z1 + a2z2 + a3z3 + · · ·+ adzd
b0 + b1z1 + b2z2 + b3z3 + · · ·+ bdzd

.

Certain of pseudo-automorphism with positive entropy in dimension ≥ 3 can have more than
one invariant hypersurfaces satisfying (1) and therefore those maps have an invariant foliation.
In contrast with the case d = 2, there are certain linear fractional recurrences which have both
exponential degree growth and integrals. Thus the level sets Sc := {r(z) = c} form an invariant
fibration. In [5] we showed that the generic level sets Sc are K3 surfaces. There are also a finite
number of invariant rational surfaces. Each level set Sc is invariant. From Lemma 1.2 below, we
see that Sc contains the set I(f)∪I(f−1)∪I(r) and thus all the leaves of this fibration intersect.

Lemma 1.1. Let f : Pd −→ Pd be a birational map. Suppose that S = {h = 0} is an f invariant
curve satisfying (1). Then the degree of h = d+ 1.

Proof. Suppose the degree of f is equal to k. It follows that the degree of jf is equal to (d +
1)(k − 1) and the degree of h ◦ f is equal to k · (degree of h). If h satisfies (1) then we have
k · (degree of h) = (d+ 1)(k − 1) + (degree of h).

For each exceptional irreducible hypersurface V ∈ E(f), let us set OV := {Vj = f jV :
f j−1V 6∈ I(f), j ≥ 1} the orbit of the critical image of V . Since V is exceptional, it follows that
codim Vj ≥ 2 for all Vj ∈ OV .

Lemma 1.2. Suppose that S = {h = 0} is an f invariant curve satisfying (1). Then S contains
OV for all exceptional hypersurface V . Furthermore if jf vanishes to order r at V then h will
vanish to order at least r at Vj ∈ OV .

Proof. Since V is exceptional, we have for all x ∈ V , jf (x) = 0. Thus for all x ∈ V \ I(f),
h ◦ f(x) = t · jf (x) · h(x) = 0. It follows that V1 = f(V ) ∈ {h = 0}. Since S is an f invariant,
S also contains every Vj ∈ OV .
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2 Surface maps

For the purposes of illustrating our method, we work in dimension d = 2. Let us consider a family
of birational maps fa,b on P2 of the form

fa,b : [x0 : x1 : x2] 7→ [x0(bx0 + x1) : x2(bx0 + x1) : x0(ax0 + x2)]

f−1a,b : [x0 : x1 : x2] 7→ [x0x2 : x0(ax0 + x1 − bx2) : x1x2].

The exceptional curves for the map f are given by the lines Σ0 = {x0 = 0}, Σβ = {bx0+x1 = 0},
and Σα = {ax0 + x2 = 0}. The indeterminacy locus I(f) = {e2, e1, p} consists of the vertices
of the triangle Σ0ΣαΣβ , that is, e2 = [0 : 0 : 1], e1 = [0 : 1 : 0], p = [1,−b,−a]. Using fa,b and
f−1a,b we see that

fa,b :Σ0 7→ e1,Σβ 7→ e2,Σα 7→ q = [1 : −a : 0]

f−1a,b :{x2 = 0} 7→ e1,Σ0 7→ e2, {ax0 + x1 = 0} 7→ p = [1 : −b : −a].

We define the cubic polynomial jf := x0(bx0 + x1)(ax0 + x2), so {jf = 0} is the exceptional
locus for f . We define the functions:

ϕ1(t) =

(
t− t3 − t4

1 + 2t+ t2
,

1− t5

t2 + t3

)
, ϕ2(t) =

(
t+ t2 + t3

1 + 2t+ t2
,
−1 + t3

t+ t2

)
and

ϕ3(t) =
(
1 + t, t− t−1

)
Theorem 2.1. Let t 6= 0,±1 with t3 6= 1 be given. Then there is a homogeneous cubic polynomial
P satisfying (1) if and only if (a, b) = ϕj(t) for some 1 ≤ j ≤ 3. If this occurs, then (up to a
constant multiple) P is given by (2) below.

Proof. From Lemma 1.2, we know that if P is invariant under fa,b and f−1a,b , P must vanish at
e1, e2, p and q = fa,bΣα = [1 : −a : 0] . Using the conditions P (e1) = P (e2) = P (q) = 0, we
may set

P [x0 : x1 : x2] =(−a2C1 + aC2)x
3
0 + C2x1x

2
0 + C3x2x

2
0 + C1x0x

2
1

+ C4x2x
2
1 + C5x0x

2
2 + C6x1x

2
2 + C7x0x1x2

for some C1, . . . , C7 ∈ C. Since e1, e2, q ∈ {P = 0}, we have P ◦ f = jf · P̃ for some cubic P̃ .
A computation shows that

P̃ =(−ab2C1 + b2C2 + bC3 + aC5)x
3
0 + (−2abC1 + 2bC2 + C3)x1x

2
0

+ (bC1 + C5 + aC6 + bC7)x2x
2
0 + (−aC1 + C2)x0x

2
1 + C1x2x

2
1 + (bC4 + C6)x0x

2
2

+ C4x1x
2
2 + (2bC1 + C7)x0x1x2.

Now setting P̃ = tP and comparing coefficients, we get a system of 8 linear equations in
C1, . . . , C7 of the form

M · [x30, x1x20, x2x20, x0x21, x0x22, x0x1x2, x1x22, x21x2]t = 0.

We check that there exist cubic polynomials satisfying (1) if and only if the two principal minors
of M vanish simultaneously, which means that

b(a+ abt+ abt4 − b2t4 − at5 + bt5) = 0
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−1 + (1− a− b)t+ (a+ b)t2 + b2t3 + b2t4 + (a− 2b)t5 + (1− a+ 2b)t6 − t7 = 0

Solving these two equations for a and b, we obtain ϕj , j = 1, 2, 3 as the only solutions, and then
solving M = 0 we find that P must have the form:

Pt,a,b(x) =ax30(−1 + t)t4 + x1x2(−1 + t)t(x2 + x1t)

+ x0[2bx1x2t
3 + x21(−1 + t)t3 + x22(−1 + t)(1 + bt)] (2)

+ x20(−1 + t)t3[a(x1 + x2t) + t(x1 + (−2b+ t)x2)].

3 Higher Dimension Case

To illustrate the method, let us consider the map known as Lyness process defined by a linear
fractional recurrence relation :

zk+1 =
a+ z2 + z3 + · · ·+ zk

z1
.

For a ∈ C∗ we define a birational map on Pk:

f [x0 : · · · : xk] = [x0x1 : x2x1 : · · · : xkx1 : x0(ax0 + x2 + · · ·+ xk)]

f−1[x0 : · · · : xk] = [x0xk : x0(ax0 + x1 + · · ·+ xk−1) : x1xk : · · · : xk−1xk].

The Jacobian of f is a constant multiple of x0xk−11 (ax0+x2+· · ·+xk). The Jacobian vanishes on
three hypersurfaces Σ0 = {x0 = 0},Σ1 = {x1 = 0}, and Σa = {ax0+x2+· · ·+xk = 0}. These
hypersurfaces are exceptional and are mapped to the lower dimensional linear subspaces. Unlike
the surface map, some of the images of exceptional hypersurfaces are again in the exceptional
locus:

f : Σ0 7→ Σ0k 7→ Σ0 k−1 k 7→ · · · 7→ Σ03...k 7→ e1 = [0 : 1 : 0 : · · · : 0]

Σ1 7→ ek = [0 : · · · : 0 : 1]

Σa 7→ Σk ∩ {ax0 + x1 + · · ·+ xk−1 = 0}
f−1 : Σk 7→ e1

Σ0 7→ Σ01 7→ Σ012 7→ · · · 7→ Σ01···k−2 7→ ek

{ax0 + x1 + · · ·+ xk−1 = 0} 7→ Σ1 ∩ {ax0 + x2 + · · ·+ xk = 0}

where ΣI = {xi = 0, i ∈ I}. To get an invariant hypersurface, we are looking for homogeneous
polynomials P satisfying

P ◦ f = t · (x0xk−11 (ax0 + x2 + · · ·+ xk)) · P (3)

for some t ∈ C∗. Since f is a map on Pk, from Lemma 1.1 we look for polynomials P of degree
k + 1. Recall that f maps Σβ to ek. Thus by (3) we see that P will vanish to order at least k − 1
at ek, since the Jacobian vanishes to order k− 1 at Σ1. Similarly, since f(Σ0) = Σ0,k, we see that
P must vanish at Σ0,k. Now starting with a point z ∈ Σ0,k, we have f(z) ∈ Σ0,k−1,k, so by (3),
P vanishes to order at least 2 on Σ0,k−1,k. Continuing this way, we see that P vanishes to order
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at least k − j on Σj+1,j+2,...,k for 1 ≤ j ≤ k − 1. Finally, since the Jacobian vanishes on Σa,
and f(Σa) = Σk ∩ {ax0 + x1 + · · ·+ xk−1 = 0}, we see that P vanishes on Σk ∩ {ax0 + x1 +
· · ·+ xk−1 = 0}. Iterating this, we see that P must vanish on f j(Σa) for j = 1, . . . , k + 1 since
fk+1Σa ∈ Σ1 ∩ {ax0 + x2 + · · ·+ xk = 0}. This process yields the solutions to (1):

P1 = x0x1x2 . . . xk

P2 = (ax0 + x1 + x2 + · · ·+ xk)(x0 + x1)(x0 + x2) . . . (x0 + xk)

P3 = (x0(ax0 + x1 + x2 + · · ·+ xk) + x1xk)×
× (x0 + x1 + x2)(x0 + x2 + x3) · · · (x0 + xk−1 + xk).

Thus we have rediscovered the invariants which were found earlier in [6], [11], and [14].
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