
Electronic Journal of Qualitative Theory of Differential Equations
2018, No. 43, 1–14; https://doi.org/10.14232/ejqtde.2018.1.43 www.math.u-szeged.hu/ejqtde/

On the stability properties of a delay differential
neoclassical model of economic growth

Dedicated to Professor László Hatvani on the occasion of his 75th birthday

Sebastián Buedo-Fernández1 and Eduardo LizB 2

1Departamento de Estatística, Análise Matemática e Optimización,
Universidade de Santiago de Compostela, Facultade de Matemáticas,

Campus Vida, 15782 Santiago de Compostela, Spain
2Departamento de Matemática Aplicada II, Universidade de Vigo,

Campus Universitario, 36310 Vigo, Spain

Received 31 October 2017, appeared 26 June 2018

Communicated by Tibor Krisztin

Abstract. The main aim of this paper is to establish sharp global stability conditions
for the positive equilibrium of a well-known model of economic growth when a delay
is considered in the production function. In order to deal with a broad scenario, we
establish some results of global attraction for a general family of differential equations
with variable delay; for it, we use the notion of strong attractor, which allows us to
simplify the proofs, as well as to generalize previous results. Our study reveals that
sometimes production delays are not able to destabilize the positive equilibrium, even
if they are large. In other cases, the stability properties of the equilibrium depend on the
interaction between the delay and other relevant model parameters, leading sometimes
to stability windows in the bifurcation diagram.
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1 Introduction

The neoclassical aggregate growth model, also called Solow–Swan model [2], is an economic
model that attempts to explain long-run economic growth based on capital accumulation
and labor or population growth. The fundamental equation of this theory was proposed by
Solow in 1956 [36], and it is based on the assumption that there is only one commodity and
its rate of production is defined by a function P = P(K, L), where K and L are the capital
stock and labor’s rate of input, respectively. Capital represents the durable physical inputs,
such as machines, while labor represents the inputs associated with human body, such as
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the number of workers and the amount of time they work. It is also supposed that part of
the instantaneous output is consumed and the rest is saved and invested. Introducing a new
variable x = K/L (the capital–labor rate, that is, the capital stock per unit of effective labor),
and assuming constant returns to scale (which in mathematical terms means that the function
P is homogeneous of degree one), Solow arrived at the ordinary differential equation

x′(t) = −αx(t) + s(x(t))P(x(t), 1), (1.1)

where α is the rate of growth of the labor force (population growth rate), and s(x) is the
instantaneous rate of saving. See [2,36] for more details about the derivation of (1.1). Roughly
speaking, equation (1.1) states that the rate of change of the capital–labor ratio is the difference
between the increment of capital and the increment of labor [36]. The simplest case of equation
(1.1) assumes a constant saving ratio s, leading to equation

x′(t) = −αx(t) + s p1(x(t)), (1.2)

where p1(x) = P(x, 1). The typical assumptions for the neoclassical production function
P(K, L) (see, e.g., [2, pp. 26–28]) ensure that (1.2) has a unique positive equilibrium x∗, which
is globally asymptotically stable; this means that, regardless of the initial value of the capital–
labor ratio, the system will develop towards a state of balanced growth at the natural rate [36].
See also [12, 13] for more discussions on the global stability of neoclassical models.

Attempting to show how cyclic and complex behavior can emerge from a neoclassical
model, Day [5] proposed to express the neoclassical growth model (1.1) as a difference equa-
tion

xn+1 =
s(xn)p1(xn)

1− λ
, (1.3)

where λ is the natural rate of population growth. In the same paper, an alternative model is
suggested where s is constant but the productivity is reduced by a “pollution effect” caused
by increasing concentrations of capital, thus leading to an equation

xn+1 =
s p1(xn)p2(xn)

1− λ
, (1.4)

where the pollution function p2(x) is a decreasing function of x.
Recently, Matsumoto and Szidarovsky [29, 30] suggested another way to introduce a pro-

duction lag in Solow’s model (1.1), using a delay differential equation. They consider constant
saving rate, constant population growth rate, and a negative factor in the production function
in the direction suggested by Day, thus arriving at the following generalization of equation
(1.2):

x′(t) = −αx(t) + s f (x(t− τ)), (1.5)

where f (x) = p1(x)p2(x), and τ > 0 represents the time delay inherent in the production
process. A more general form of (1.5), allowing variable and instantaneous saving rate would
lead to equation

x′(t) = −αx(t) + s(x(t)) f (x(t− τ)). (1.6)

The possibility of cycles and complex dynamics both in the discrete models (1.3), (1.4), and
in the delay differential equation (1.5) for large values of the delay τ was shown in [5] and
[29, 30], respectively. Thus, it is important to find sufficient conditions to ensure the global
attractivity of the balanced equilibrium in these models.
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For differential equations with delay such as (1.6), the issue of global stability is consider-
ably more complicated than for ordinary differential equations, and different approaches have
been recently applied to some economic models (see, e.g., [1, 3, 23]). As in [23], in this paper
we apply an approach based on the interplay between delay differential equations and maps,
which goes back at least up to [15, 27], and has been generalized and successfully employed
to prove global stability results for many different models in the past fifteen years (e.g., see
[14, 21–26]).

It is worth mentioning here that stability theory for delayed functional differential equa-
tions has been one of the main research topics addressed by Professor Hatvani, who published
very influential papers such as [4].

2 Neoclassical models with the Cobb–Douglas function

For the production function, a common choice is the well-known Cobb–Douglas function
P(K, L) = BKγL1−γ, where B > 0 refers to the level of labor-augmenting technology, and
γ ∈ (0, 1) represents the output elasticity of capital, that is, the part of the output produced
by the capital. Using this form in equation (1.6) leads to

x′(t) = −αx(t) + s(x(t))Bxγ(t− τ)p2(x(t− τ)). (2.1)

In his seminal paper [36], Solow suggested several examples involving the Cobb–Douglas
function and some of its generalizations. For example, assuming constant saving ratio s > 0,
equation (1.2) becomes

x′(t) = −αx(t) + βxγ(t), (2.2)

with β = sB. It is easy to check that the positive balanced equilibrium x∗ = (β/α)1/(1−γ) is
globally asymptotically stable [28, 36].

In this paper we consider several examples of equation (2.1). Matsumoto and Szidarovszky
[30] studied the local stability of the equilibrium in (2.1), for constant saving ratio s, and the
“pollution effect” function p2(x) = e−δx, that is, they considered the delay differential equation

x′(t) = −αx(t) + βxγ(t− τ)e−δx(t−τ). (2.3)

Equation (2.3) belongs to a well-known family of differential equations with instantaneous
linear decay and delayed feedback (e.g., see [17]). Actually, for γ = 1, (2.3) becomes the
celebrated Nicholson’s blowflies equation [8]; for γ = 0, (2.3) is the equation for the red-blood
cell system proposed by Wazewska-Czyzewska and Lasota [37]; Lasota himself proposed
equation (2.3) with positive values of γ in a later paper [18]; finally, for γ > 1, (2.3) can be used
as a model for populations subject to Allee effects [11, 25]. However, a suitable formulation
for (2.1) is the more general family of delay differential equations considered by Ivanov, Liz
and Trofimchuk in [14], namely,

x′(t) = −g1(x(t)) f2(x(t− τ)) + f1(x(t− τ))g2(x(t)), (2.4)

where f1, f2, g1, g2 are positive functions.
Our main results in this paper are the following: first, we generalize a global stability

result for equation (2.4), allowing for variable delays, and apply it to some examples of (2.1),
including the possibility of variable saving ratio. Then we consider a variation of (2.3), replac-
ing the pollution function e−δx with p2(x) = 1/(1 + δx), δ > 0; in this case, we prove that the
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positive equilibrium is globally attracting regardless the value of the delay, which highlights
the key role of the pollution function in the stability properties of neoclassical models with
delay. The rest of the paper is devoted to equation (2.3); we prove a sharp global result of ab-
solute (delay-independent) stability for the positive equilibrium, and also a delay-dependent
global stability result. Moreover, we analyze how the parameter γ influences the stability of
the equilibrium in a subtle way, depending on the other model parameters, and leading in
some cases to stability windows in the bifurcation diagram.

3 Global stability results

In this section, we consider equation (2.4) with a continuous variable delay τ : [0, ∞)→ [0, h],
that is,

x′(t) = −g1(x(t)) f2(x(t− τ(t))) + f1(x(t− τ(t)))g2(x(t)). (3.1)

First we introduce some definitions and assumptions. If I is a real interval, we say that a fixed
point x∗ ∈ I of a map F : I → I is a global attractor for F on (a, b) if

lim
n→∞

Fn(x) = x∗, ∀ x ∈ (a, b),

where, as usual, Fn =

n︷ ︸︸ ︷
F ◦ · · · ◦ F .

We assume the following hypotheses on functions fi, gi, i = 1, 2:

(H1) f1, f2, g1 and g2 are continuous and positive functions defined in a real interval (a, b),
with 0 ≤ a < b ≤ ∞, and g := g1/g2 is strictly increasing.

(H2) If f := f1/ f2, then there is a unique solution x∗ ∈ (a, b) of equation g(x) = f (x).
Moreover, the function F(x) := g−1( f (x)) maps (a, b) in (a, b), and x∗ is a global attractor
for F on (a, b).

To prove the main result in this section, which generalizes some previous results in [14,24],
we need the following auxiliary result from [24], whose proof was provided by Víctor Jiménez
López [16].

Lemma 3.1. Let F : (a, b) → (a, b) be a continuous map, and let x∗ be the global attractor of F on
(a, b). Then x∗ is a strong attractor of F on (a, b), that is, for every compact set K ⊂ (a, b), there exists
a family of non-degenerate intervals {In} = {[an, bn]}, n ≥ 1, such that the following properties hold:

(A1) K ⊂ Int(I1) ⊂ (a, b).

(A2) F(In) ⊂ In+1 ⊂ Int(In), ∀ n ≥ 1.

(A3)
∞⋂

n=1

In = {x∗}.

We are now in a position to prove the main result of this section. We assume that for any
continuous initial condition φ : [−h, 0] → (a, b), the corresponding solution x(t) = x(t, φ) of
(3.1) exists for all t ≥ 0, and it is unique. For example, under conditions (H1) and (H2), it is
enough to assume that g1 and g2 are Lipschitz continuous (see [14]).
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Theorem 3.2. Assume that conditions (H1) and (H2) hold. Then, x∗ is a global attractor of (3.1) on
(a, b), that is, if x(t) = x(t, φ) is the solution of (3.1) with initial condition φ : [−h, 0]→ (a, b), then

lim
t→∞

x(t, φ) = x∗.

Proof. For a given continuous function φ : [−h, 0]→ (a, b), define the compact set

K =

[
min

t∈[−h,0]
φ(t), max

t∈[−h,0]
φ(t)

]
⊂ (a, b),

and consider the family {In} = {[an, bn]} defined in Lemma 3.1. First we prove that x(t) ∈
I1 = [a1, b1] for all t ≥ 0. Assume, by the contrary, that there exists a first instant t0 > 0 such
that x(t0) = b1 (the same argument applies if x(t0) = a1). Since F(I1) ⊂ Int(I1), it follows that
F(x(t0 − τ(t0))) < b1, which is equivalent to f (x(t0 − τ(t0))) < g(b1). Then, using (3.1), we
have:

x′(t0)

f2(x(t0 − τ(t0)))g2(x(t0))
= −g(x(t0)) + f (x(t0 − τ(t0))) = −g(b1) + f (x(t0 − τ(t0))) < 0,

which is a contradiction, because x′(t0) ≥ 0.
Next we show that there is t1 > 0 such that x(t) ∈ I2 for all t ≥ t1. Following the previous

argument, and using that F(I1) ⊂ I2, it is easy to prove that if there is t1 such that x(t1) ∈ I2,
then x(t) ∈ I2 for all t ≥ t1. Thus, we prove the existence of such a point t1. Assume, by
contradiction, that t1 does not exist, and, to fix ideas, assume that x(t) > b2 for all t ≥ 0 (the
same arguments apply to the case x(t) < a2 for all t ≥ 0). Then, using (3.1) and the increasing
character of g, we have:

x′(t)
f2(x(t− τ(t))g2(x(t))

= −g(x(t)) + f (x(t− τ(t))) < 0 , ∀ t > 0.

Indeed, notice that

x(t) > b2 =⇒ g(x(t)) > g(b2),

x(t− τ(t)) ∈ I1 =⇒ F(x(t− τ(t))) ∈ I2 =⇒ f (x(t− τ(t))) ≤ g(b2).

Hence, x(t) is a decreasing function, and there is limt→∞ x(t) = L ≥ b2. This is a contradiction
because the only possible limit of x(t) is x∗, and x∗ < b2.

An inductive argument, using the same reasoning employed above, proves that, for each
n > 1, there exists a point tn > 0 such that x(tn) ∈ In+1, for all t ≥ tn. Finally, it follows by
(A3) that limt→∞ x(t) = x∗.

We notice that Theorem 3.2 generalizes Theorem 3 in [14], and its proof is much simpler.
For the case of constant functions f2 = g2 = 1, a multi-dimensional version of Theorem 3.2
has been proved in [24].

In order to check condition (H2) in applications, we recall that the Schwarzian derivative
of a C3 map F : (a, b) → (a, b) is defined for every x ∈ (a, b) such that F′(x) 6= 0, by the
expression

(SF)(x) =
(

F′′′(x)
F′(x)

)
− 3

2

(
F′′(x)
F′(x)

)2

.
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Corollary 3.3. Assume that (H1) holds and F : (a, b) → (a, b) satisfies condition (C0) and at least
one of conditions (C1)–(C3) below.

(C0) There is x∗ ∈ (a, b) such that (F(x)− x)(x− x∗) < 0 for every x 6= x∗.

(C1) F is increasing.

(C2) F is a C3 unimodal map, with a unique critical point c, which is a local maximum. Moreover, F
has a unique fixed point x∗ in (a, b), −1 ≤ F′(x∗) < 1, and (SF)(x) < 0 for all x > c.

(C3) Equation F2(x) = x has no solutions on (a, b) different from x∗.

Then x∗ is a global attractor of (3.1) on (a, b).

Proof. The result follows from a combination of Theorem 3.2 and global stability conditions
for difference equations. When (C1) or (C2) hold, it is a consequence of Corollaries 2.9 and
2.10 from [6]. When (C3) holds, the result follows from a classical result (see, e.g., [35, Section
9.3]).

Remark 3.4. It is easy to check that (C0) is equivalent to say that ( f (x)− g(x))(x − x∗) < 0
for all x 6= x∗, and, assuming (H1) is satisfied, (C1) holds if f is increasing.

Next we state a delay-dependent stability result for delay differential equations with con-
stant delay τ of the form (1.5). It is a straightforward consequence of Corollary 17 in [10] and
Corollary 2.10 in [6].

Theorem 3.5. Denote by F(x) = (1/α) f (x). Assume that F is a C3 unimodal map, with a unique
critical point c, which is a local maximum. Moreover, F has a unique fixed point x∗ in (a, b), and
(SF)(x) < 0 for all x > c. If −1 ≤ F′(x∗) < 1, or F′(x∗) < −1 and

e−ατ ≥ 1 +
1

F′(x∗)
(3.2)

then x∗ is a global attractor on (a, b) for equation

x′(t) = −αx(t) + f (x(t− τ)). (3.3)

4 Applications

4.1 Constant saving ratio and no pollution effects

The first application of the results in Section 3 is that if we consider equation (2.2) with
continuous variable delay τ(t) ∈ [0, h], that is,

x′(t) = −αx(t) + βxγ(t− τ(t)), (4.1)

then the positive equilibrium x∗ = (β/α)1/(1−γ) is still a global attractor. This result is a
consequence of Corollary 3.3, because (H1) holds with f1(x) = βxγ, f2(x) = 1, g(x) = g1(x) =
αx, and g2(x) = 1, while conditions (C0) and (C1) are satisfied with F(x) = (β/α)xγ and
(a, b) = (0, ∞).



Stability of a delay differential neoclassical model 7

4.2 Variable saving ratio and no pollution effects

Next we introduce a variable saving ratio s(x(t)) in equation (4.1). As it had been argued by
Solow in [36, p. 88], it is natural to assume that the savings ratio depends inversely on the
capital–labor ratio x, and that for sufficiently large x, s(x) approaches zero . Thus, we assume
that s(x) is decreasing and tends to 0 as x tends to infinity. We prove the following result:

Theorem 4.1. Assume that s : (0, ∞) → (0, ∞) is decreasing, limx→∞ s(x) = 0, and x/s(x) is
convex. Then the equation

x′(t) = −αx(t) + s(x(t))Bxγ(t− τ(t)) (4.2)

has a unique positive equilibrium x∗, and it is a global attractor on (0, ∞).

Proof. Equation (4.2) is of the form of (3.1), with g1(x) = αx, f2(x) = 1, f1(x) = Bxγ, and
g2(x) = s(x). Since s is decreasing and γ > 0, it follows that g(x) = g1(x)/g2(x) = αx/s(x)
and f (x) = f1(x)/ f2(x) = Bxγ are increasing; thus (C1) holds. Next, since f is concave,
f ′(0+) = ∞, and g is convex, it is clear that (C0) also holds (see Remark 3.4). An application
of Corollary 3.3 provides the desired result.

Remark 4.2. Conditions of Theorem 4.1 are satisfied, for example, if we choose the saving
functions s(x) = s0e−δx or s(x) = s0/(1 + δx), with s0 > 0, δ > 0.

4.3 Constant saving ratio and pollution effects

In this subsection, we consider equation (2.1) with constant s, which includes as a particular
case the Matsumoto–Szidarovszky equation (2.3). These authors considered a pollution effect
given by a function p2(x) = e−δx, in such a way that the production function f (x) = βxγe−δx

is unimodal, has zero value at x = 0, and converges to zero as x tends to infinity. They showed
that a sufficiently large value of the delay τ is able to destabilize the positive equilibrium of
(2.3).

To show that not any pollution function p2 such that f (x) = βxγ p2(x) satisfies the above
mentioned conditions leads to destabilization, we first consider a simpler example in which
p2(x) = 1/(1 + δx). That is, we consider equation

x′(t) = −αx(t) +
βxγ(t− τ(t))

1 + δx(t− τ(t))
, (4.3)

where τ : [0, ∞)→ [0, h] is continuous.
We need the following result which can be derived from Proposition 1 and Theorem 3.1

in [20].

Proposition 4.3. The map F(x) = (β/α)xγ/(1 + δx) (β, α, δ > 0, 0 < γ < 1) is of class C∞ in
(0, ∞), and the following properties hold:

(i) F(0) = 0, F(x) > 0 for all x > 0, limx→∞ F(x) = 0, and limx→0+ F′(x) = ∞.

(ii) F is unimodal, with a unique critical point at

c =
γ

δ(1− γ)
,

where F attains its global maximum.
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(iii) There is a unique x∗ ∈ (0, ∞) such that F(x∗) = x∗. Moreover, (F(x)− x)(x − x∗) < 0 for
every x 6= x∗, and equation F2(x) = x has no positive solutions different from x∗.

Our next result follows as a direct consequence of Proposition 4.3 and Corollary 3.3.

Theorem 4.4. Equation (4.3) has a unique positive equilibrium x∗, and it is a global attractor on
(0, ∞).

The rest of the paper is devoted to the differential equation with constant delay (2.3), which
we write again for convenience of the reader:

x′(t) = −αx(t) + βxγ(t− τ)e−δx(t−τ). (4.4)

As before, we first list some basic properties of the production map f (x) = βxγe−δx, which
is referred to as the gamma-Ricker map. See Propositions 1 and 2, and Theorem 1 in [19].

Proposition 4.5. The map F(x) = (β/α)xγe−δx (α, β, δ > 0, 0 < γ < 1) satisfies the following
properties:

(i) F(0) = 0, F(x) > 0 for all x > 0, limx→∞ F(x) = 0, and limx→0+ F′(x) = ∞.

(ii) F is a C∞-unimodal map, with a unique critical point at c = γ/δ, where F attains its global
maximum.

(iii) There is a unique x∗ ∈ (0, ∞) such that F(x) = x. Moreover, (F(x)− x)(x− x∗) < 0 for every
x 6= x∗.

(iv) (SF)(x) < 0 for all x > c.

(v) F′(x∗) = γ− δx∗.

(vi) Inequalities −1 ≤ F′(x∗) < 1 hold if and only if the following inequality is satisfied:

β

α
≤ eγ+1

(
γ + 1

δ

)1−γ

. (4.5)

The main result for equation (4.4) is the following.

Theorem 4.6. The unique positive equilibrium x∗ of (4.4) is a global attractor of all solutions x(t, φ),
with φ ∈ C([−τ, 0], (0, ∞)), if the following inequality is satisfied:

β

α
≤ eγ+ 1

1−e−ατ

(
1
δ

(
γ +

1
1− e−ατ

))1−γ

. (4.6)

Proof. It is easy to prove that (4.6) is equivalent to

e−ατ ≥ 1 +
1

F′(x∗)
= 1 +

1
γ− δx∗

and therefore the conclusion of the theorem is a consequence of Theorem 3.5 and Proposi-
tion 4.5.

Remark 4.7. Some remarks are in order:
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(1) It is clear that (4.5) implies (4.6). Actually, inequality (4.5) is a sharp delay-independent
(absolute) global stability condition for the positive equilibrium of (4.4). Indeed, if (4.5)
does not hold, then there is τ∗ > 0 such that x∗ is asymptotically stable for 0 < τ < τ∗

and unstable if τ > τ∗. Taking into account Proposition 4.5 (v) and [33, Theorem 4.7],
the value of τ∗ can be calculated as

τ∗ =
arccos

(
1

γ−δx∗

)
α

√
−1 + (γ− δx∗)2

. (4.7)

(2) As a consequence of Corollary 3.3, condition (4.5) ensures that the positive equilibrium
x∗ is a global attractor of (4.4) on (0, ∞) for all values of the delay τ, even if we consider
continuous variable delays τ(t) ∈ [0, h] instead of a constant delay τ in (4.4).

(3) The limit form of (4.5) as γ → 1 provides the well-known absolute global stability
condition β ≤ αe2 for the Nicholson’s blowflies equation (see, e.g., [10]). For γ = 0, (4.5)
gives the global stability condition βδ ≤ αe for the Wazewska-Czyzewska and Lasota
equation (see, e.g., [9]).

(4) The delay-dependent global stability condition (4.6) proves that, for a sufficiently small
value of the delay, the positive equilibrium x∗ of (4.4) is globally asymptotically stable.

From Remark 4.7 (1), it is clear that for fixed values of the parameters α, β, γ, δ for which
(4.5) does not hold, an increasing value of τ destabilizes the positive equilibrium of (4.4); this
property has already been observed in [30].

It is interesting to study the role of the other parameters on the stability properties of (4.4).
For example, inequalities (4.5) and (4.6) suggest that the equilibrium is also destabilized by
increasing either β or δ, keeping constant the value of the other involved parameters. In [30],
δ is assumed to reflect the strength of the negative effect caused by increasing concentration
of capital.

The role of parameter γ is subtler. From (4.5), it is easy to prove that x∗ is absolutely
globally asymptotically stable for all γ ∈ (0, 1) if the ratio β/α is small enough; specifically, a
sufficient condition is β/α ≤ min{e/δ, e2}. However, for other values of β, γ, δ, τ, increasing γ

can be stabilizing, destabilizing or even can give rise to a pair of stability switches (see, e.g.,
[19, Proposition 3]). In Figure 4.1, we show the three possible situations via stability diagrams
in the parameter plane (γ, τ) for α = 1 and different values of β and δ.

• Figure 4.1 (a) corresponds to β = 2, δ = 2, for which e2 > β/α > e/δ. The positive
equilibrium of (4.4) is globally asymptotically stable for γ ≥ γ∗, with γ∗ ≈ 0.156, and
it is asymptotically stable for τ < τ∗ ≈ 3.826. For larger values of τ, increasing γ is
stabilizing.

• Figure 4.1 (b) corresponds to β = 7.7, δ = 0.5, for which β/α > max{e/δ, e2}. The
positive equilibrium of (4.4) is globally asymptotically stable for γ ∈ [γ∗, γ∗], with γ∗ ≈
0.469 and γ∗ ≈ 0.871, and it is asymptotically stable for τ < τ∗ ≈ 4.102. For values of
τ > 9.857, increasing γ leads to a pair of stability switches.

• Figure 4.1 (c) corresponds to β = 10, δ = 0.13, for which e/δ > β/α > e2. The positive
equilibrium of (4.4) is globally asymptotically stable for γ ≤ γ∗, with γ∗ ≈ 0.815, and
it is asymptotically stable for τ < τ∗ ≈ 2.93. For larger values of τ, increasing γ is
destabilizing.



10 S. Buedo-Fernández and E. Liz

pr
od

uc
ti

on
de

la
y,

τ

elasticity of capital, γ

(a) β = 2, δ = 2

STABILITY STABILITYSTABILITY

elasticity of capital, γ

(b) β = 7.7, δ = 0.5

elasticity of capital, γ

(c) β = 10, δ = 0.13

0.0 0.2 0.4 0.6 0.8 1.0
0

2

4

6

8

10

0.0 0.2 0.4 0.6 0.8 1.0
0

5

10

15

20

25

0.0 0.2 0.4 0.6 0.8 1.0
0

2

4

6

8

10

Figure 4.1: Stability diagrams for equation (4.4) in the plane (γ, τ), with α = 1
and different values of β and δ. The blue solid lines represent the boundaries of
asymptotic stability, where supercritical Hopf bifurcations occur. Dashed lines
correspond to threshold values of γ and τ (see the text).

In Figure 4.2, we plot some numerical simulations for the solutions of (4.4) in the case (b)
(α = 1, β = 7.7, δ = 0.5), with τ = 15 and different values of γ, illustrating the stability
switches.
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Figure 4.2: Numerical simulations of the solutions of equation (4.4), with α = 1,
β = 7.7, δ = 0.5, τ = 15, and different values of γ. For γ = 0.38 and γ = 0.95,
the equilibrium x∗ is unstable, and there are sustained oscillations; for γ = 0.7,
x∗ is globally asymptotically stable.

5 Discussion

Solow’s paper [36] is one of the most influential works in economic theory [2, 28]. Although
the original model is defined by an ordinary differential equation, the role of time delays
in the production processes has been discussed both for the one-sector Solow’s model by
Matsumoto and Szidarovszky [30], and by Gori et al. [7] for the two-sector generalization
proposed by Mankiw et al. [28]. These papers focus on a local stability analysis of the positive
equilibrium, and Hopf bifurcations leading to sustained oscillations as time delay increases.

In this paper, we have carried out a deeper analysis about the role of time delays in the
original Solow equation, allowing the possibility of variable saving rate, and a delayed produc-
tion function with two factors: a positive factor xγ coming from the Cobb–Douglas production
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function, and a negative factor p2(x), which represents a “pollution effect” due to increasing
concentrations of capital [5]. These considerations lead to a general form of Solow’s model
given by equation (2.1). With this model, we showed that the influence of time delays on the
stability properties of the positive equilibrium depends in an essential way on several factors,
including the choice of the decreasing function p2(x), and the interplay among the different
parameters involved in the model. It is of particular interest the role of parameter γ, which
measures the responsiveness of output to a change in the level of capital used in production.
Two remarkable consequences of our results are the following: first, under mild assumptions,
variable saving rates and variable delays in the production function are not able to destabilize
the positive equilibrium if a pollution effect is not considered, so the generalization of Solow’s
equation given by (4.2) still predicts convergence to the steady-state capital–labor ratio. Sec-
ond, even if a negative factor is introduced in the production function, the particular form
of this factor may prevent instabilities due to large delays. Roughly speaking, the “pollution
function” p2(x) needs to have a fast rate of convergence to zero as x tends to infinity.

In contrast with other papers, our stability analysis focus on global results and allow for
variable delays. In particular, we establish sharp delay-independent global stability condi-
tions, and also prove that small delays cannot destroy the global stability of the equilibrium.
The mathematical approach we use to get global stability results for (2.1) is not new; however,
the use of the notion of strong attractor introduced in [24] has some advantages: on the one
hand, the proofs are much simpler than in previous papers [14, 15]; on the other hand, it is
easy to consider variable delays, providing more general results.

Another interesting novelty of our results is that we use a generalization of Singer’s theory
for maps with negative Schwarzian derivative [34], due to El-Morshedy and Jiménez-López
[6]. This result is crucial in the analysis of equation (2.3) because, in contrast with other cases
(γ = 0, γ ≥ 1), the nonlinearity f (x) = βxγe−δx does not have negative Schwarzian derivative
everywhere if 0 < γ < 1. In this way, our results fill a gap in the stability theory of equation
(2.3). As far as we know, equation (2.3) has been introduced for the first time by A. Lasota
in 1977 [18], to model blood cell production (erythropoiesis). Lasota formulated a conjecture
concerning ergodic properties of (2.3), see [32]. An interesting biological interpretation of
parameter γ in the model has been given by P. J. Mitkowski in his Ph.D. thesis [31]. It is
related to disturbed erythropoiesis (dyserythropoiesis), when the feedback loop that regulates
the production of cells in the red bone marrow does not work properly. Roughly speaking, γ

represents the degree of disturbance of the normal erythropoietic response. When γ = 0, the
answer is correct, but when γ > 0, the response is inhibited and the greater is the inhibition,
the greater is the value of γ.

It is remarkable that the same equation with different values of γ has been used for differ-
ent mathematical models governed by delay differential equations:

• For γ = 0, it is a model for blood-cell production, proposed by Wazewska-Czyzewska
and Lasota [37], and later modified by Lasota [18], allowing for positive values of γ.

• For 0 < γ < 1, it is a model in economics, proposed by Matsumoto and Szidarovszky
[30], as a generalization of the fundamental Solow’s equation [36].

• For γ = 1, it is the famous equation introduced by Gurney, Blythe and Nisbet [8] to ex-
plain some qualitative aspects of Nicholson’s classic experiments on laboratory cultures
of sheep blowflies.
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• For γ > 1, equation (2.3) has been proposed to study the dynamics of single-species
populations subject to Allee effects [11, 25].

Finally, it is worth mentioning that the Lasota equation (2.3) can be seen as a continuous
version of the gamma-Ricker map, which has been used as a flexible discrete model for animal
populations, and in the context of cooperative interaction in a group of individuals [19].
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[9] I. Győri, Global attractivity in delay differential equations using a mixed monotone tech-
nique, J. Math. Anal. Appl. 152(1990), 131–155. https://doi.org/10.1016/0022-247X(90)
90096-X; MR1072931; Zbl 0719.34129

https://doi.org/10.1007/s10884-017-9583-5
https://doi.org/10.1007/s10884-004-4285-1
https://doi.org/10.1007/s10884-004-4285-1
https://www.ams.org/mathscinet-getitem?mr=2105782
https://zbmath.org/?q=an:1078.34061
https://doi.org/10.2748/tmj/1178227868
https://doi.org/10.2748/tmj/1178227868
https://www.ams.org/mathscinet-getitem?mr=0985304
https://zbmath.org/?q=an:0677.34060
https://doi.org/10.1080/10236190701671632
https://doi.org/10.1080/10236190701671632
https://www.ams.org/mathscinet-getitem?mr=2400343
https://zbmath.org/?q=an:1142.39009
https://doi.org/10.1063/1.4963372
https://doi.org/10.1063/1.4963372
https://www.ams.org/mathscinet-getitem?mr=3551572
https://zbmath.org/?q=an:06848778
https://doi.org/10.1038/287017a0
https://doi.org/10.1016/0022-247X(90)90096-X
https://doi.org/10.1016/0022-247X(90)90096-X
https://www.ams.org/mathscinet-getitem?mr=1072931
https://zbmath.org/?q=an:0719.34129


Stability of a delay differential neoclassical model 13
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