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Abstract

This work deals with non-autonomous Lyness type recurrences of the form

xn+2 =
an + xn+1

xn
,

where {an}n is a k-periodic sequence of positive numbers with minimal period k. We treat
such non-autonomous recurrences via the autonomous dynamical system generated by the
birational map Fak

◦ Fak−1
◦ · · · ◦ Fa1

where Fa is defined by Fa(x, y) = (y, a+y
x ). When

k ∈ {1, 2, 3, 6} the behavior of the sequence {xn}n is simple (integrable). In fact, the cor-
responding mappings have a rational first integral. We show that for k = 4 the dynamical
system is, generically, no longer rationally integrable, by calculating its dynamic degree. We
also show that for k = 5̇ and for most values of the parameters the dynamical system has no
meromorphic first integral.

This paper is based on the joint work with A. Gasull and V. Mañosa, Integrability and
non-integrability of periodic non-autonomous Lyness recurrences and also on the joint work
with S. Zafar, Dynamical degree of periodic non-autonomous Lyness recurrences.

1 Introduction

Autonomous recurrences are frequently used to model ecological systems. One of the modifica-
tions applied in the models in order to adapt them to more realistic situations consists in converting
the recurrences into non-autonomous ones changing one of the constant parameters by a periodic
cycle. In this situation it is said that the model takes into account seasonality. For instance a pa-
rameter taking values in a cycle of period 2 could model an ecological situation that has different
features during summer or winter.

Consider the non-autonomous Lyness difference equations of the form

xn+2 =
an + xn+1

xn
, (1)

where {an}n is a k-periodic sequence of positive numbers. Such recurrences have been studied in
[6, 9, 12, 14, 15] and recently in [7].
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For each k, the composition maps are

Fak,... ,a2,a1 := Fak ◦ · · · ◦ Fa2 ◦ Fa1 (2)

where each Fai is defined by

Fai(x, y) =

(
y,
ai + y

x

)
and a1, a2, . . . , ak are the k elements of the cycle. The values a1, a2, . . . , ak will be usually called
parameters.

When there is no confusion, for the sake of shortness, we also will use the notation F[k] :=
Fak,... ,a2,a1 . Note that these maps are birational maps, that

(x1, x2)
Fa1−−→ (x2, x3)

Fa2−−→ (x3, x4)
Fa3−−→ (x4, x5)

Fa4−−→ (x5, x6)
Fa5−−→ · · ·

and in general,

F[k](x1, x2) = (xk+1, xk+2).

For instance, when k = 2, by setting

an =

{
a for n = 2`+ 1,
b for n = 2`,

(3)

we get

Fb,a(x, y) := Fb ◦ Fa(x, y) =

(
a+ y

x
,
a+ bx+ y

xy

)
,

and when k = 3,

an =


a for n = 3`+ 1,
b for n = 3`+ 2,
c for n = 3`,

(4)

and

Fc,b,a(x, y) := Fc ◦ Fb ◦ Fa(x, y) =

(
a+ bx+ y

xy
,
a+ bx+ y + cxy

y (a+ y)

)
.

Clearly the study of the dynamics of the recurrences given by (1) can be deduced from the
dynamics generated by the composition maps (2).

It is known that for the cases k ∈ {1, 2, 3, 6} and for all values of the parameters, the mappings
Fa, Fb,a, Fc,b,a and Ff,e,d,c,b,a have a rational first integral, see [7].

Next, we will present some typical phase portraits that can be found when doing some numer-
ical explorations. All the pictures of the paper are done with the maps

Ga(x, y) = (y,−x+ ln(a+ exp(y)),

which are conjugate withFa(x, y) in the first quadrantQ+, trough the change Φ(x, y) = (ln(x), ln(y)).
These new variables allow us to “observe” much better the behavior of the orbits in Q+.

The typical picture for the orbits of G[k] when k = 1, 2, 3, 6 is shown in Fig. 1.
Figure 2 shows a picture of some of the orbits of a map G[4] for concrete values of a, b, c, d.
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Figure 1: Typical phase portrait of a map G[k] in the rationally integrable case, that is, when
k = 1, 2, 3, 6.

Figure 2: Typical phase portrait of a map G[4].

The picture in Fig. 2 suggests that the map is not integrable. In fact we show that for a generic
set of values of the parameters the map F[4] has dynamical degree bigger than 1. From the works
[4] and also [11], we conclude that generically F[4] does not have a rational first integral.

Concerning the case k = 5 all our numerical approaches seem to show that the maps F[5] are
integrable.

As we see in Fig. 3, the phase portrait does not coincide with the ones found in all the rational
integrable cases. However, in this case we can prove that for most of the values of the parameters
the map F[5] has not a meromorphic first integral.

All the results that we mention in this paper are proved in [7] except the one concerning the
dynamical degree for the case k = 4 which is proved in the forthcoming paper [8], a joint work
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Figure 3: Phase portrait of a map G[5].

with S. Zafar.

2 Rational integrability and associated dynamics

This section deals with the integrable cases. The results are the following:

Theorem 2.1. The maps Fak...a2a1 , for k ∈ {1, 2, 3, 6}, have the first integrals:

Va(x, y) =
a+ (a+ 1)x+ (a+ 1)y + x2 + y2 + x2y + xy2

xy

Vb,a(x, y) =
ab+ (a+ b2)x+ (b+ a2)y + bx2 + ay2 + ax2y + bxy2

xy

Vc,b,a(x, y) =
ac+ (a+ bc)x+ (c+ ab)y + bx2 + by2 + cx2y + axy2

xy

Vf,e,d,c,b,a(x, y) =
af + (a+ bf)x+ (f + ae)y + bx2 + ey2 + cx2y + dxy2

xy

Theorem 2.2. Assume that a, b, c are positive constants. Then the following hold:

(i) The level sets of Va, Vba and Vcba in the first quadrant Q+ are homeomorphic to a circles
surrounding a unique fixed point of Fa, Fba and Fcba respectively.

(ii) The action of Fa, Fba and Fcba on each level set contained in Q+ is conjugated to a rotation
of the circle.

When k = 6 we are confident that the same result holds but we have only been able to prove
the result when F[6] has a unique fixed point in the first quadrant.

Theorem 2.3. Assume that a, b, c, d, e, f are positive constants and that Ff,e,d,c,b,a has a unique
fixed point in the first quadrant Q+. Then:
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(i) The level sets of Vf,e,d,c,b,a in the first quadrantQ+ are homeomorphic to a circles surround-
ing the unique fixed point of Ff,e,d,c,b,a.

(ii) The action of Ff,e,d,c,b,a on each level set contained in Q+ is conjugated to a rotation of the
circle.

Next result collects our integrability results for any k 6= 5. To state it, we need the following
definitions: given a periodic sequence {an}n of prime period k we will say that its rank is m if

Card{a1, a2, . . . , ak} = m ∈ N.

In our context the recurrence (1) is called persistent if for any sequence {xn}n there exist two real
positive constants c and C, which depend on the initial conditions, such that for all n, 0 < c <
xn < C <∞.

Theorem 2.4. (i) For any k ≥ 15, there exist sequences {an}n of primitive period k and rank
k such that F[k] = Fak,... ,a2,a1 is rationally integrable and the corresponding recurrence (1)
is persistent.

(ii) For any k < 15, k 6= 5, there exist sequences {an}n of primitive period k with the ranks
as in Table 1, such that F[k] is rationally integrable and the corresponding recurrence (1) is
persistent.

(iii) Moreover it is possible to take in all the above cases parameters a1, a2, . . . ak such that each
sequence {xn}n is either periodic, with period a multiple of k, or it densely fills at most k
disjoint intervals of R+.

k 1 2 3 4 5 6 7 8 9 10 ≤ k ≤ 14 k≥ 15

Rank 1 2 3 4 - 6 3 4 5 k − 5 k

Table 1. Possible ranks for integrable F[k].

3 Algebraic non-integrability for the case k = 4

As usual we say that a set of k parameters a1, a2, . . . , ak is generic if {(a1, a2, . . . , ak) ∈ Rk} is
an open and dense subset of Rk with the usual topology.

We notice that the maps Fak,... ,a2,a1 : R2 → R2 are birational maps. A birational map is a
map F with rational components such that there exists an algebraic curve V and another rational
map G such that F ◦G = G◦F = id in C2 \V . We are going to use the embedding (x1, x2) 7−→
[x0 : x1 : x2] ∈ PC2 to extend the maps to PC2 in the usual way, by getting a homogeneous map
which has an associated degree, called the degree of the map. Let dn be the degree of the iterates
Fn = F ◦ · · · ◦ F. The dynamical degree of F is defined as

δ(F ) = lim
n→∞

(dn)
1
n .

And its logarithm is called the algebraic entropy of F.
It is known (see Corollary 2.2 of [11] for instance) that given a birational f : PC2 → PC2

and calling dn the degree of fn then the sequence dn satisfies a homogeneous linear recurrence
with constant coefficients:

dn+k = −(ck−1dn+k−1 + · · ·+ c0dn).
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Theorem 3.1. For a generic set of the values of the parameters a, b, c, d ∈ R, the dynamical
degree of the map Fd,c,b,a := Fd◦Fc◦Fb◦Fa is the largest root of the polynomial z3−2 z2−3 z−1,
which aproximatelly is 3.079595623.

It is also known that the existence of a foliation of the space by algebraic invariant curves
implies that the dynamical degree is one, see [4] for instance, also [11]. So, Theorem 2.1 implies
that for generic values of a, b, c, d ∈ R, the map Fd,c,b,a is not rationally integrable.

We deal with the maps:

Fd,c,b,a(x, y) := Fd◦Fc◦Fb◦Fa(x, y) =

(
bxy + cx+ d+ y

y (d+ y)
,
x
(
ayd+ ay2 + bxy + cx+ d+ y

)
(d+ y) (cx+ d+ y)

)
.

By extending it to PC2 we get the map f [x0 : x1 : x2] with components

f1[x0 : x1 : x2] = x0 x2 (dx0 + x2) (cx1 + dx0 + x2) ,
f2[x0 : x1 : x2] = x0

(
bx1 x2 + cx0 x1 + dx0

2 + x0 x2
)

(cx1 + dx0 + x2) ,
f3[x0 : x1 : x2] = x1 x2

(
ax2 dx0 + ax2

2 + bx1 x2 + cx0 x1 + dx0
2 + x0 x2

)
.

Notice that d1 = 4. In [8] we prove that the sequence of the degrees dn of f [x0 : x1 : x2] satisfies
the recurrence

dn+3 = 2dn+2 + 3dn+1 + dn

and since d1 = 4, d2 = 12 and d3 = 37, the sequence of the degrees is

4 , 12 , 37 , 114 , 351 , 1081 , 4059 , 11712 , ....

4 Meromorphic non-integrability for the case k = 5̇

Two analytic functions P,Q : U ⊂ C2 → C are said to be coprime if the points of the set
{(x, y) ∈ U : P (x, y) = Q(x, y) = 0} are isolated. A function H = P/Q, with P and Q
coprime, will be called a meromorphic function. A meromorphic first integral of an analytic map
F : U → C2 is a meromorphic function H = P/Q such that

P (F (x, y))Q(x, y) = P (x, y)Q(F (x, y)) for all (x, y) ∈ U .

Observe that from this definition H(F (x, y)) = H(x, y) for all points of U for which both terms
of this last equality are well-defined. When P and Q are polynomials then it is said that H is a
rational first integral. Similarly we can talk about meromorphic or rational invariants. The first
result is a necessary condition for the meromorphic integrability of planar maps near a fixed point.
Our approach follows the guidelines of Poincaré when he studied the same problem for ordinary
differential equations, see [16] and the references there in for the approach to ordinary differential
equations. We apply the results below to study the case k = 5̇.

Theorem 4.1. Let F : C2 → C2 an analytic map defined in U , an open neighborhood of the
origin, such that F (0, 0) = (0, 0) and DF (0, 0) is diagonalizable with eigenvalues λ and µ.
Assume that F has a meromorphic first integral H in U .

(i) If λµ 6= 0 then there exists (p, q) ∈ Z2, (p, q) 6= (0, 0), such that λpµq = 1.
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(ii) If λ 6= 0 and µ = 0 then there exists n ∈ N+ such that λn = 1.

When the map F : U ⊂ R2 → R2 is real valued and of class C2(U) the proof of Theorem 4.1
can be adapted following the same steps. Taking into account that in this case, when λ ∈ C is an
eigenvalue of DF (0, 0), then λ̄ it is so, and we have to deal with the resonant condition λpλ̄q = 1,
we obtain the following result:

Corollary 4.2. Let F : U ⊂ R2 → R2 be a C2(U) map such that F (0, 0) = (0, 0) ∈ U and
DF (0, 0) is diagonalizable, with eigenvalues λ and µ. Assume that F has a meromorphic first
integral H in U .

(i) If λ, µ ∈ R, λµ 6= 0, then there exists (0, 0) 6= (p, q) ∈ Z2 such that λpµq = 1.

(ii) If 0 6= λ ∈ C \ R (hence µ = λ̄), then either |λ| = 1 or λ = |λ|eiθ and there exists
0 6= n ∈ N such that (eiθ)2n = 1.

(iii) If λ 6= 0 and µ = 0 then there exists a n ∈ N+ such that λn = 1.

Our main result is the following theorem:

Theorem 4.3. For k = 5̇ and for most values of the parameters {an}n the map F[k] has no
meromorphic first integral.

In the above result, for “most values of the parameters” we exactly mean that the set of the
parameters for which the theorem does not necessarily hold has Lebesgue measure equal zero.Its
proof is a consequence of the following result:

Proposition 4.4. For k = 5̇ let φi, i = 1, . . . , 5 be defined by

φi =
∏

n ≡ i (mod 5)
n = 1, . . . , k

an.

Then if {φ2, φ3, φ4, φ5} 6⊂ {φr1, r ∈ Q} the map F[k] has no meromorphic first integral.
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[15] M.R.S. Kulenović and Z. Nurkanović, Stability of Lyness’ equation with period–three coef-
ficient, Radovi Matematički 12 (2004), 153–161.
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