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Abstract

In this survey article we briefly describe some properties of difference equations obtained
by the iterated applications of two-dimensional maps of the plane and we try to characterize
the qualitative changes (or bifurcations) of the asymptotic behavior of the solutions, as some
parameters are varied, in terms of contacts between particular curves and invariant sets which
characterize the global properties of the iterated maps. In particular we consider the role
of critical curves in noninvertible maps of the plane and the contacts involving focal points
and prefocal sets in maps of the plane characterized by the presence (in the map or in some
inverse map) of a denominator that vanishes along a curve of the plane. The effects of the
global bifurcations given by contacts involving such singular curves on the attractors and
their basins are described through some examples.

1 Introduction

Second order difference equations are often expressed in the form of a two-dimensional discrete
dynamical system

xn+1 = T (xn) (1)

where x ∈R2, T is a map of the plane into itself and t ∈ N. Given an initial condition x0 ⊆ R2

in the domain of the map T the sequence xt generated by the iteration of a map T is obtained
inductively. So, even if a closed form (analytic) solution cannot be obtained in general, the study
of the qualitative asymptotic properties of the sequences generated is an interesting and useful
goal. Indeed, the sequence defined by (1) may converge to a given steady state (or equilibrium)
or to a more complex attractor, that may be periodic, quasi-periodic or chaotic. In such cases, a
delimitation of a bounded region of the plane where the system dynamics are ultimately trapped,
despite of the complexity of the long-run time patterns, may be an useful information for practical
applications. Moreover, as some parameter is varied, global bifurcations may cause sudden qual-
itative changes in the properties of the attracting sets (see the contact bifurcations in [40] and the
so called crises in [31]).

Another problem which often arises in the study of nonlinear maps concerns the existence of
several attracting sets, each with its own basin of attraction. This naturally leads to the delimitation
of the basins of attraction and their changes as the parameters of the model vary.
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These two problems lead to two different routes to complexity, one related to the complexity
of the attracting sets which characterize the long run time evolution of the dynamic process, the
other one related to the complexity of the boundaries which separate the basins when several
coexisting attractors are present. These two different kinds of complexity are not related in general,
in the sense that very complex attractors may have simple basin boundaries, whereas boundaries
which separate the basins of simple attractors, such as coexisting stable equilibria, may have very
complex structures.

Both the questions outlined above require an analysis of the global dynamical properties of
the dynamical system, that is, an analysis which is not based on the linear approximation of the
map (1). When it is noninvertible, the global dynamical properties can be usefully characterized
by the method of critical sets, a powerful tool introduced in the seventies (see [29, 37] and [40]).
Geometrically, the action of a noninvertible map can be expressed by saying that it “folds and
pleats” the phase space along the critical sets, so that two or more distinct points are mapped into
the same point, or, equivalently, that several inverses are defined which “unfold” the plane. The
iterated application of a noninvertible map repeatedly folds the state space, and often this allows
one to define a bounded region where asymptotic dynamics are trapped. Conversely, the iterated
application of the inverses repeatedly unfolds the state space, so that a neighborhood of an attractor
may have preimages far from it. This may give rise to complicated topological structures of the
basins, that can even be formed by the union of several disjoint portions. If a parameter variation
causes a crossing between a basin boundary and a critical set, so that a portion of a basin enters a
region where an higher number of inverses is defined, then new components of the basin suddenly
appear after the contact. The detection of these contact bifurcations are easily obtained in one-
dimensional nonlinear maps, whereas in the study of two-dimensional maps an interplay between
analytic, geometric and numerical methods is often necessary, and contacts are often shown by
computer-assisted proofs. Instead, an extension to the study of higher dimensional noninvertible
maps leads to nontrivial practical problems, as the visualization, in a computer screen, of contacts
between objects in a space of dimension greater than two becomes a difficult task.

An important role of critical sets has been recently emphasized in problems of chaos synchro-
nization, i.e. chaotic dynamical systems with an invariant submanifold of lower dimensionality
than the total phase. Milnor attractors which are, unstable in Lyapunov sense appear quite nat-
urally in this context, together with new phenomena like on-off intermittency and riddled basins,
as well as riddling and blowout bifurcations (see [10, 21] and [33]). Even if the occurrence of
these bifurcations is detected through the study of the transverse Lyapunov exponents, their effects
strongly depend on the action of the nonlinearities far from the invariant subset. When the iterated
map is noninvertible, as generally occurs in problems of chaos synchronization, the method of
critical sets can be used to characterize the global fate of the locally repelled trajectories after a
riddling bifurcation, as proposed in [4, 6] where the critical curves are used to obtain the boundary
of a compact trapping region inside which intermittency and blowout phenomena are confined.

Another example where the critical curve may play an important role comes from the study of
iterated rational maps not defined everywhere due to the vanishing of a denominator. The global
bifurcations of noninvertible maps with a vanishing denominator have been recently characterized
by contacts between stable or unstable manifolds, critical sets, and new kinds of singularities,
called focal points, prefocal curves and sets of nondefinition, recently introduced in [13, 15] and
[16] (see also [14] and [26]).

Some general properties of noninvertible maps of the plane and the contact bifurcations in-
volving the critical curves are described in Section 2, their applications to the study of chaotic
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synchronization, riddling and on-off intermittency phenomena is summarized in Section 3 and
some definitions and properties of iterated maps with a vanishing denominator are given in Sec-
tion 4.

2 Noninvertible maps and critical sets

In this section we give some definitions, properties and simple examples about recurrences repre-
sented by the iteration of noninvertible maps.

2.1 Definitions and simple examples

A map T : S → S, S ⊆ R2, defined by x′ = T (x), transforms a point x ∈ S into a unique
point x′ ∈ S. The point x′ is called the rank-1 image of x, and a point x such that T (x) = x′ is a
rank-1 preimage of x′. If x 6= y implies T (x) 6= T (y) for each x, y in S, then T is an invertible
map in S, because the inverse mapping x = T−1 (x′) is uniquely defined; otherwise T is a said to
be a noninvertible map, because points x exist that have several rank-1 preimages, i.e. the inverse
relation x = T−1 (x′) is multivalued. So, noninvertible means “many-to-one”, that is, distinct
points x 6= y may have the same image, T (x) = T (y) = x′.

Geometrically, the action of a noninvertible map can be expressed by saying that it “folds and
pleats” the space S, so that distinct points are mapped into the same point. This is equivalently
stated by saying that several inverses are defined in some points of S, and these inverses “unfold”
S.

For a noninvertible map, S can be subdivided into regions Zk, k ≥ 0, whose points have k
distinct rank-1 preimages. Generally, for a continuous map, as the point x′ varies in Rn, pairs of
preimages appear or disappear as it crosses the boundaries separating different regions. Hence,
such boundaries are characterized by the presence of at least two coincident (merging) preimages.
This leads us to the definition of the critical sets, one of the distinguishing features of noninvertible
maps (see [29] and [40]):

Definition 2.1. The critical set CS of a continuous map T is defined as the locus of points having
at least two coincident rank-1 preimages, located on a set CS−1, called set of merging preimages.

Portions of CS separate regions Zk of the plane characterized by a different number of rank-1
preimages, for example Zk and Zk+2 (this is the standard occurrence for continuous maps). In
the case of a two-dimensional noninvertible map the critical set CS coincides with the notion of
critical curve LC1, and can be seen as the 2-dimensional generalization of the notion of local
minimum or local maximum value of a one-dimensional map. The set CS−1 is the fold curve
LC−1 of a two-dimensional noninvertible maps, the generalization of local extremum point of a
one-dimensional map.

As an illustration, we consider the one-dimensional quadratic map (logistic map)

x′ = f(x) = µx(1− x). (2)

This map has a unique critical point c = µ/4, which separates the real line into the two subsets:
Z0 = (c,+∞), where no inverses are defined, and Z2 = (−∞, c), whose points have two rank-1

1This terminology, and notation, originates from the notion of critical point as it is used in the classical works of
Julia and Fatou.
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preimages. These preimages can be computed by the two inverses

x1 = f−1
1 (x′) =

1

2
−
√
µ (µ− 4x′)

2µ
; x2 = f−1

2 (x′) =
1

2
+

√
µ (µ− 4x′)

2µ
. (3)

If x′ ∈ Z2, its two rank-1 preimages, computed according to (3), are located symmetrically with
respect to the point c−1 = 1/2 = f−1

1 (µ/4) = f−1
2 (µ/4). Hence, c−1 is the point where the two

merging preimages of c are located. As the map (2) is differentiable, at c−1 the first derivative
vanishes.

Figure 1.

We remark that in general the condition of vanishing derivative is not sufficient to define the
critical points of rank-0 since such condition may be also satisfied by points which are not local
extrema (e.g. the inflection points with horizontal tangent). Moreover, for continuous and piece-
wise differentiable maps the condition of vanishing derivative is not necessary as well, because
such maps may have the property that the images of points where the map is not differentiable are
critical points, according to the definition given above. This occurs whenever such points are local
maxima or minima, like in the cases shown in Figures 2a and 2b. In Figure 2a, a typical Z0 − Z2

tent map is shown, where the kink point behaves like the critical point of the logistic map even if
it is not obtained as image of a point of vanishing derivative. The same reasoning applies to the
“bimodal” Z1 − Z3 − Z1 piecewise linear function shown in Figure 2b.

The properties of critical points can easily be extended also to piecewise continuous maps T .
In this case a point of discontinuity may behave as a critical point of T , even if the definition in
terms of merging preimages cannot be applied. This happens when the ranges of the map on the
two sides of the discontinuity have an overlapping zone, so that at least one of the two limiting
values of the function at the discontinuity separates regions having a different number of rank-1
preimages (see the map shown in Figure 2c, for example). The difference with respect to the
case of a continuous map is that now the number of distinct rank-1 preimages through a critical
point differs generally by one (instead of two), that is, a critical value c (in general the critical set
CS) separates regions Zk and Zk+1. A one-dimensional example is shown in Figure 2c, where
the point of discontinuity is a critical point c−1, and both the two limiting values of the function
in c−1 are critical points, say c1 and c2, associated with c−1, as both c1 and c2 separate regions
Z1 and Z2. Notice that now the critical points have no merging rank-1 preimages. However, the



CONTACT BIFURCATIONS, CRITICAL SETS, FOCAL POINTS 19

graph of the Z1 − Z2 − Z1 map shown in Figure 2c may be considered as a limiting case of the
Z1 − Z3 − Z1 obtained. More on the properties and bifurcations of discontinuous maps of the
plane can be found in [40].

Figure 2.

In order to explain the geometric action of a critical point in a continuous map, let us consider,
again, the logistic map, and let us notice that as xmoves from 0 to 1 the corresponding image f(x)
spans the interval [0, c] twice, the critical point c being the turning point. In other words, if we
consider how the segment γ = [0, 1] is transformed by the map f , we can say that it is folded and
pleated to obtain the image γ′ = [0, c]. Such folding gives a geometric reason why two distinct
points of γ, say x1 and x2, located symmetrically with respect to the point c−1 = 1/2, are mapped
into the same point x′ ∈ γ′ due to the folding action of f (see Figure 1). The same arguments
can be explained by looking at the two inverse mappings f−1

1 and f−1
2 defined in (−∞, a/4]

according to (3). We can consider the range of the map f formed by the superposition of two half-
lines (−∞, a/4], joined at the critical point c = a/4, and on each of these half-lines a different
inverse is defined. In other words, instead of saying that two distinct maps are defined on the
same half-line we say that the range is formed by two distinct half lines on each of which a unique
inverse map is defined. This point of view gives a geometric visualization of the critical point c as
the point in which two distinct inverses merge. The action of the inverses, say f−1 = f−1

1 ∪ f−1
2 ,

causes an unfolding of the range by mapping c into c−1 and by opening the two half-lines one on
the right and one on the left of c−1, so that the whole real line R is covered. So, the map f folds
the real line, the two inverses unfold it.

Another interpretation of the folding action of a critical point is the following. Since f(x) is
increasing for x ∈ [0, 1/2) and decreasing for x ∈ (1/2, 1], its application to a segment γ1 ⊂
[0, 1/2) is orientation preserving, whereas its application to a segment γ2 ⊂ (1/2, 1] is orientation
reversing. This suggests that an application of f to a segment γ3 = [a, b] including the point
c−1 = 1/2 preserves the orientation of the portion [a, c−1], i.e. f([a, c−1]) = [f(a), c], whereas it
reverses the portion [c−1, b], i.e. f([c−1, b]) = [f(b), c], so that γ

′
3 = f (γ3) is folded, the folding

point being the critical point c.
Let us now consider the case of a continuous two-dimensional map T : S → S, S ⊆ R2,

defined by

T :

{
x′1 = T1(x1, x2)
x′2 = T2(x1, x2) ,

(4)
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If we solve the system of the two equations (4) with respect to the unknowns x1 and x2, then,
for a given (x′1, x

′
2), we may have several solutions, representing rank-1 preimages (or backward

iterates) of (x′1, x
′
2), say (x1, x2) = T−1 (x′1, x

′
2), where T−1 is in general a multivalued relation.

In this case we say that T is noninvertible, and the critical set (formed by critical curves, denoted
by LC from the French “Ligne Critique”) constitutes the set of boundaries that separate regions
of the plane characterized by a different number of rank-1 preimages. According to the definition,
along LC at least two inverses give merging preimages, located on LC−1 (Following the notations
of [29] and [40]).

For a continuous and (at least piecewise) differentiable noninvertible map of the plane, the set
LC−1 is included in the set where detDT (x1, x2) changes sign, since T is locally an orientation
preserving map near points (x1, x2) such that detDT (x1, x2) > 0 and orientation reversing if
detDT (x1, x2) < 0. In order to explain this point, let us recall that when an affine transformation
x′ = Ax + b, where A = {aij} is a 2× 2 matrix and b ∈R2, is applied to a plane figure, then the
area of the transformed figure grows, or shrinks, by a factor ρ = |detA|, and if detA > 0 then the
orientation of the figure is preserved, whereas if detA < 0 then the orientation is reversed. This
property also holds for the linear approximation of (4) in a neighborhood of a point p = (x1, x2),
given by an affine map with A = DT , DT being the Jacobian matrix evaluated at the point p

DT (p) =

(
∂T1/∂x1 ∂T1/∂x2

∂T2/∂x1 ∂T2/∂x2

)
(p) . (5)

A qualitative visualization is given in Figure 3. Of course, if the map is continuously differen-
tiable then the change of the sign of DT occurs along points where DT vanishes, thus giving the
characterization of the fold line LC−1 as the locus where the jacobian vanishes.

Figure 3.

In order to give a geometrical interpretation of the action of a multi-valued inverse relation T−1, it
is useful to consider a region Zk as the superposition of k sheets, each associated with a different
inverse. Such a representation is known as Riemann foliation of the plane (see e.g. [40]). Different
sheets are connected by folds joining two sheets, and the projections of such folds on the phase
plane are arcs of LC. This is shown in the qualitative sketch of Figure 3 (right), where the case
of a Z0 − Z2 noninvertible map is considered. This graphical representation of the unfolding
action of the inverses also gives an intuitive idea of the mechanism which causes the creation of
non-connected basins for noninvertible maps of the plane.
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To give an example, let us again consider a quadratic map T : (x, y) → (x′, y′), extensively
studied in [40], see also [3], defined by

T :

{
x′ = ax+ y
y′ = b+ x2 (6)

Given x′ and y′, if we try to solve the algebraic system with respect to the unknowns x and y we
get two solutions, given by

T−1
1 :

{
x = −

√
y′ − b

y = x′ + a
√
y′ − b ; T−1

2 :

{
x =
√
y′ − b

y = x′ − a
√
y′ − b (7)

if y′ ≥ b, and no solutions if y′ < b. So, (6) is a Z0 − Z2 noninvertible map, where Z0 (region
whose points have no preimages) is the half plane Z0 = {(x, y) |y < b} and Z2 (region whose
points have two distinct rank-1 preimages) is the half plane Z2 = {(x, y) |y > b}. The line y = b,
which separates these two regions, is LC, i.e. the locus of points having two merging rank-1
preimages, located on the line x = 0, that represents LC−1. Being (6) a continuously differ-
entiable map, the points of LC−1 necessarily belong to the set of points at which the Jacobian
determinant vanishes, i.e. LC−1 ⊆ J0, where J0 = {(x, y) |detDT (x, y) = −2x = 0}. In this
case LC−1 coincides with J0 (the vertical axis x = 0) and the critical curve LC is the image by
T of LC−1, i.e. LC = T (LC−1) = T ({x = 0}) = {(x, y) |y = b}.

In order to show the folding action related to the presence of the critical lines fact, we consider
a plane figure (a circle) U separated by LC−1 into two portions, say U1 ∈ R1 and U2 ∈ R2

(Figure 4a) and we apply the map (6) to the points of U . The image T (U1)∩T (U2) is a nonempty
set included in the region Zk+2, which is the region whose points p′ have rank-1 preimages p1 =
T−1

1 (p′) ∈ U1 and p2 = T−1
2 (p′) ∈ U2. This means that two points p1 ∈ U1 and p2 ∈ U2,

located at opposite sides with respect to LC−1, are mapped in the same side with respect to LC,
in the region Zk+2. This is also expressed by saying that the ball U is “folded” by T along LC on
the side with more preimages (see Figure 4). The same concept can be equivalently expressed by
stressing the “unfolding” action of T−1, obtained by the application of the two distinct inverses in
Zk+2 which merge along LC. Indeed, if we consider a ball V ⊂ Zk+2, then the set of its rank-1
preimages T−1

1 (V ) and T−1
2 (V ) is made up of two balls T−1

1 (V ) ∈ R1 and T−1
2 (V ) ∈ R2. These

balls are disjoint if V ∩ LC = ∅ (Figure 4b).

Figure 4.
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Many of the considerations made above, for 1-dimensional and 2-dimensional noninvertible
maps, can be generalized to n-dimensional ones, even if their visualization becomes and in partic-
ular the visualization of the contacts involved becomes more difficult (see e.g. [19] and [22]). In
any case, the importance of the critical sets CS lies in the fact that their points separate regions
Zk characterized by different number of preimages.

2.2 Discrete dynamical system as iterated maps

A discrete-time dynamical system, defined by the difference equation (1) can be seen as the result
of the repeated application (or iteration) of the map T . Indeed, the point x represents the state of
a system, and T represents the “unit time advancement operator” T : xt → xt+1. Starting from
an initial condition x0 ∈ S, the iteration of T inductively defines a unique trajectory

τ(x0) =
{
xt = T t(x0), t = 0, 1, 2, . . .

}
, (8)

where T 0 is the identity map and T t = T (T t−1). As t→ +∞, a trajectory may diverge, or it may
converge to a fixed point of the map T , i.e. a point x such that T (x) = x, or it may asymptotically
approach another kind of invariant set, such as a periodic cycle, or a closed invariant curve or a
more complex attractor, for example a so called chaotic attractor ([24, 28]). We recall that a set
A ⊂ R2 is invariant for the map T if it is mapped onto itself, T (A) = A. This means that if
x ∈ A then T (x) ∈ A, i.e. A is trapping, and every point of A is image of some point of A. A
closed invariant set A is an attractor if (i) it is Lyapunov stable, i.e. for every neighborhood W of
A there exists a neighborhood V of A such that T t(V ) ⊂ W for all t ≥ 0; (ii) a neighborhood U
of A exists such that T t(x)→ A as t→ +∞ for each x ∈ U .

The basin of an attractor A is the set of all points that generate trajectories converging to A

B (A) =
{
x|T t(x)→ A as t→ +∞

}
(9)

Let U(A) be a neighborhood of an attractor A whose points converge to A. Of course U(A) ⊆
B (A), and also the points that are mapped into U after a finite number of iterations belong to
B (A). Hence, the basin of A is given by

B (A) =

∞⋃
n=0

T−n(U(A)) (10)

where T−1(x) represents the set of the rank-1 preimages of x (i.e. the points mapped into x by
T ), and T−n(x) represents the set of the rank-n preimages of x (i.e. the points mapped into x
after n applications of T ).

Let B be a basin of attraction and ∂B its boundary. From the definition it follows that B
is trapping with respect to the forward iteration of the map T and invariant with respect to the
backward iteration of all the inverses T−1. Points belonging to ∂B are mapped into ∂B both under
forward and backward iteration of T . This implies that if an unstable fixed point or cycle belongs
to ∂B then ∂B must also contain all of its preimages of any rank. Moreover, if a saddle-point, or
a saddle-cycle, belongs to ∂B, then ∂B must also contain the whole stable set (see [29] and [40]).

A problem that often arises in the study of nonlinear dynamical systems concerns the existence
of several attracting sets, each with its own basin of attraction. In this case the dynamic process
becomes path-dependent, i.e. which kind of long run dynamics characterizes the system depends
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on the starting condition. Another important problems in the study of applied dynamical systems is
the delimitation of a bounded region of the state space where the system dynamics are ultimately
trapped, despite of the complexity of the long-run time patterns. This is an useful information,
even more useful than a detailed description of step by step time evolution.

Both these questions require an analysis of the global dynamical properties of the dynamical
system, that is, an analysis which is not based on the linear approximation of the map. When the
map T is noninvertible, its global dynamical properties can be usefully characterized by using the
formalism of critical sets, by which the folding action associated with the application of the map,
as well as the “unfolding” associated with the action of the inverses, can be described. Loosely
speaking, the repeated application of a noninvertible map repeatedly folds the state space along
the critical sets and their images, and often this allows one to define a bounded region where
asymptotic dynamics are trapped. As some parameter is varied, global bifurcations that cause
sudden qualitative changes in the properties of the attracting sets can be detected by observing
contacts of critical curves with invariant sets. Instead, the repeated application of the inverses
“repeatedly unfold” the state space, so that a neighborhood of an attractor may have preimages far
from it, thus giving rise to complicated topological structures of the basins, that may be formed by
the union of several (even infinitely many) non connected portions. In fact, from (10) it follows that
in order to study the extension of a basin and the structure of its boundaries one has to consider the
properties of the inverse relation T−1. The route to more and more complex basin boundaries, as
some parameter is varied, is characterized by global bifurcations, also called contact bifurcations,
due to contacts between the critical set and the invariant sets that form the basins’ boundaries.

2.3 Critical sets and the delimitation of trapping regions.

Portions of the critical setCS and its imagesCSk = T k(CS) can be used to obtain the boundaries
of trapping regions where the asymptotic dynamics of the iterated points of a noninvertible map
are confined. This can be easily explained for a one-dimensional noninvertible map, for example
the quadratic map (2). In fact, it is quite evident that if we iterate the logistic map for 3 < µ < 4
starting from an initial condition inside the interval [c1, c], with c1 = f(c), no images can be
obtained out of this interval (see Figure 5), i.e. the interval formed by the critical point c and its
rank-1 image c1 is trapping. Moreover, any trajectory generated from an initial condition in (0, 1),
enters [c1, c] after a finite number of iterations. Following the terminology introduced in [40], the
interval [c1, c] is called absorbing.

Figure 5.
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In general, for an n-dimensional map, an absorbing region A (intervals in R, areas in R2,
volumes in R3, ...) is defined as a bounded set whose boundary is given by portions of the critical set
CS and its images of increasing order CSk = T k (CS), such that a neighborhood U ⊃ A exists
whose point enter A after a finite number of iterations and then never escape it, since T (A) ⊆ A,
i.e. A is trapping (see [40] for more details).

Loosely speaking, we can say that the iterated application of a noninvertible map, folding and
folding again the space, defines trapping regions bounded by critical sets of increasing order.

Sometimes, smaller absorbing regions are nested inside a bigger one. This can be illustrated,
again, for the logistic map (2), as shown in Figure 6a, where inside the absorbing interval [c1, c]
a trapping subset is obtained by higher rank images of the critical point, given by A = [c1, c3] ∪
[c2, c]. In Figure 6b it is shown that, for the same parameter value µ = 3.61 as in Figure 6a, the
numerical iteration of the logistic map gives points which are trapped inside the two-cyclic interval
A.

Figure 6.

Inside an absorbing region one or more attractors may exist. However, if a chaotic attractor
exists which fills up a whole absorbing region then boundary of the chaotic attractor is formed by
portions of critical sets.

This is the situation shown in Figure 6, where the absorbing interval A = [c1, c3] ∪ [c2, c] is
invariant and filled up by a chaotic trajectory, as shown in Figure 6b. To better illustrate this point,
we also give a two-dimensional example, obtained by using the map (6). In Figure 7a chaotic
trajectory is shown, and in Figure 7b its outer boundary is obtained by the union of a segment of
LC and three iterates LCi = T i(LC), i = 1, 2, 3.

Indeed, following [40] (see also [10]) a practical procedure can be outlined in order to obtain
the boundary of an absorbing area (although it is difficult to give a general method). Starting
from a portion of LC−1, approximately taken in the region occupied by the area of interest, its
images by T of increasing rank are computed until a closed region is obtained. When such a
region is mapped into itself, then it is an absorbing area A. The length of the initial segment is
to be taken, in general, by a trial and error method, although several suggestions are given in the
books referenced above. Once an absorbing area A is found, in order to see if it is invariant or
not the same procedure must be repeated by taking only the portionγ = A∩ LC−1 as the starting
segment. Then, one of the following two cases occurs:
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Case I: the union of m iterates of γ (for a suitable m) covers the whole boundary of A; in which
case A is an invariant absorbing area, and

∂A ⊂
m⋃
k=1

T k(γ) (11)

Case II: no natural m exists such that
⋃m
i=1 T

i(γ) covers the whole boundary of A; in which
case A is not invariant but strictly mapped into itself. An invariant absorbing area is obtained by
∩n>0T

n(A) (and may be obtained by a finite number of images of A).

The application of this procedure to the problem of the delimitation of the chaotic area of
Figure 7a by portions of critical curves suggests us, on the basis of Figure 7b, to take a smaller
segment γ and to take an higher number of iterates in order to obtain also the inner boundary. The
result is shown in Figure 8a, where by four iterates we get the outer boundary. By a few more
iterates also the inner boundary of the chaotic area is get, as shown in Figure 8b. As it can be
clearly seen, and as clearly expressed by the strict inclusion in (11), the union of the images also
include several arcs internal to the invariant area A. Indeed, the images of the critical arcs which
are mapped inside the area play a particular role, because these curves represent the “foldings” of
the plane under forward iterations of the map, and this is the reason why these inner curves often
denote the portions of the region which are more frequently visited by a generic trajectory inside
it (compare Figure 7a with Figure 8b). Many examples are given in the literature on noninvertible
maps, see [40] for example. This is due to the fact that points close to a critical arc LCi, i ≥ 0,
are more frequently visited, because there are several distinct parts of the invariant area which are
mapped in the same region (close to LCi) in i+ 1 iterations.

Figure 7.
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Figure 8.

2.4 Critical sets and the creation of non connected basins

From (10) it is clear that the properties of the inverses are important in order to understand the
structure of the basins and the main bifurcations which change their qualitative properties. In
the case of noninvertible maps, the multiplicity of preimages may lead to basins with complex
structures, such as multiply connected or non connected sets, sometimes formed by infinitely many
non connected portions. In the context of noninvertible maps it is useful to define the immediate
basinB0(A), of an attracting setA, as the widest connected component of the basin which contains
A. Then the total basin can be expressed as

B (A) =
∞⋃
n=0

T−n(B0(A))

where T−n(x) represents the set of all the rank-n preimages of x, i.e. the set of points which
are mapped in x after n iterations of the map T . The backward iteration of a noninvertible map
repeatedly unfolds the phase space, and this implies that the basins may be non-connected, i.e.
formed by several disjoint portions.

Also in this case, we first illustrate this property by using a one-dimensional map2 In Figure 9
the graph of a Z1−Z3−Z1 noninvertible map is shown, where Z3 is the portion of the codomain
bounded by the relative minimum value cmin and relative maximum value cmax. In the situation
shown in Figure 9a we have three attractors: the fixed point z∗, with B (z∗) = (−∞, q∗), the
attractor A around x∗, with basin B (A) = (q∗, r∗) bounded by two unstable fixed points, and
+∞ (i.e. positively diverging trajectories) with basin B (+∞) = (r∗,+∞). In this case all the
basins are immediate basins, each being given by an open interval. In the situation shown in
Figure 9a, both basin boundaries q∗ and r∗ are in Z1, so they have only themselves as unique
preimages (like for an invertible map). However, the situation drastically changes if, for example,
some parameter changes causes the minimum value cmin to move downwards, until it goes below

2The example is taken from an evolutionary game proposed in [8].
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q∗ (as in Figure 9b). After the global bifurcation, when cmin = q∗, the portion (cmin, q
∗) enters

Z3, so new preimages f−k (cmin, q
∗) appear with k ≥ 1. These preimages constitute an infinite

(countable) set of non-connected portions of B (z∗) nested inside B (A), represented by the thick
portions of the diagonal in Figure 9b, bounded by the infinitely many preimages of any rank,
say q∗−k, k ∈ N, of q∗, that accumulate in a left neighborhood of the fixed point r∗. In fact,
as r∗ is a repelling fixed point for the forward iteration of f , it is an attracting fixed point for
the backward iteration of the same map.. So, the contact between the critical point cmin and the
basin boundary q∗ marks the transition from simple connected to non connected basins. Similar
global bifurcations, due to contacts between critical sets and basin boundaries, also occur in higher
dimensional maps.

Figure 9.

Also in higher dimensional cases, the global bifurcations which give rise to complex topolog-
ical structures of the basins, like those formed by non connected sets, can be explained in terms of
contacts of basins boundaries and critical sets. In fact, if a parameter variation causes a crossing
between a basin boundary and a critical set which separates different regions Zk so that a portion
of a basin enters a region where an higher number of inverses is defined, then new components
of the basin may suddenly appear at the contact. However, for maps of dimension greater than 1,
such kinds of bifurcations can be very rarely studied by analytical methods, since the analytical
equations of such singularities are not known in general. Hence such studies are mainly performed
by geometric and numerical methods.

Several examples of two-dimensional noninvertible maps that have non connected basins can
be found in [38, 39] and [40] (see also [3, 8, 12], and [17], for several applications to the modeling
of economic and social systems). The following example is taken from [17], where the time evolu-
tion of a duopoly game is modeled by the iteration of the following two-dimensional noninvertible
map:

x′ = (1− α1)x+ α1µ1y (1− y)
y′ = (1− α2) y + α2µ2x (1− x)

(12)

Under the assumption µ1 = µ2 = µ , the fixed points can be expressed by simple analytical
expressions: besides the trivial solution O = (0, 0), a positive symmetric equilibrium exists for
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µ > 1, given by S = ((µ− 1)/µ, (µ− 1)/µ). Two further equilibria E1 = (x̄, ȳ) and E2 =
(ȳ, x̄) exist for µ > 3, where x̄ =

(
µ+ 1 +

√
ψ
)
/2µ, ȳ =

(
µ+ 1−

√
ψ
)
/2µ with ψ = (µ +

1)(µ− 3). These equilibria are located in symmetric positions with respect to the diagonal y = x.
As shown in [17], a wide range of parameters µ, α1, α2 exists such that E1 and E2 are both
stable. Accordingly, a problem of equilibrium selection arises, which leads to the question of the
delimitation of the two basins of attraction B (E1) and B (E2).

As argued above, the properties of the inverses of the map become important in order to un-
derstand the structure of the basins and their qualitative changes. Indeed, the map (12) is a non-
invertible map, because a point (x′, y′) ∈ R2 may have up to four rank-1 preimages, that can be
computed by solving the fourth degree algebraic system (12) with respect to x and y. The critical
curves are computed as follows: LC−1 coincides with the set of points in which the Jacobian
determinant vanishes, i.e. detDT = 0, where

DT (x, y) =

[
1− α1 α1µ1 (1− 2y)

α2µ2 (1− 2x) 1− α2

]
(13)

and LC = T (LC−1). So, LC−1 is an equilateral hyperbola, of equation(
x− 1

2

)(
y − 1

2

)
=

(1− α1) (1− α2)

4α1α2µ1µ2
. (14)

Since LC−1 is formed by the union of two disjoint branches, say LC−1 = LC
(a)
−1 ∪ LC

(b)
−1, it

follows that also LC = T (LC−1) is the union of two branches, say LC(a) = T (LC
(a)
−1 ) and

LC(b) = T (LC
(b)
−1), see Figure 10. The branch LC(a) separates the region Z0, whose points have

no preimages, from the region Z2, whose points have two distinct rank-1 preimages. The other
branch LC(b) separates the region Z2 from Z4, whose points have four distinct preimages. Any
point of LC(a) has two coincident rank-1 preimages, located at a point of LC(a)

−1 , and any point of

LC(b) has two coincident rank-1 preimages, located at a point of LC(b)
−1, plus two further distinct

rank-1 preimages, called extra preimages. Following the terminology of [40], we say that the map
(12) is a noninvertible map of Z4 > Z2 − Z0 type, where the symbol “>” denotes the presence
of a cusp point in the branch LC(b) (see Figure 10, where the corresponding Riemann foliation
is shown as well. Different sheets are connected by folds joining two sheets, and the projections
of such folds on the phase plane are arcs of LC. The cusp point of LC is characterized by three
merging preimages at the junction of two folds.

Figure 10.
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In order to study the structure of the basins and explain the global bifurcations that change
their qualitative properties, we first consider the symmetric case of players with homogeneous
expectations, i.e. α1 = α2 = α. In this case, the map (12) has a symmetry property, as it remains
the same if the variables x and y are swapped. Formally, we have T (P (x, y)) = P (T (x, y)),
where P : (x, y) → (y, x) is the reflection through the diagonal ∆ = {(x, x) , x ∈ R}. This
symmetry property implies that the diagonal ∆ is a trapping subspace for the map T , i.e. T (∆) ⊆
∆. The trajectories embedded in ∆ are governed by the restriction of the two-dimensional map T
to ∆, i.e. f = T |∆ : ∆→ ∆. The map f , obtained by setting x = y and x′ = y′ in (12), is given
by x′ = f(x) = (1 + α (µ− 1))x − αµx2. In the symmetric case of homogeneous players we
can give a complete analytical characterization of the global bifurcation that transforms the basins
from simply connected sets to multiply connected. In fact, the following result is given in [17]:

If µ1 = µ2 = µ and α1 = α2 = α and the equilibriaE1 and E2 are both stable, then the common
boundary ∂B (E1) ∩ ∂B (E2) which separates the basin B (E1) from the basin B (E2) is given
by the stable set W s(S) of the saddle point S. If α (µ+ 1) < 1 then W s(S) = OO

(1)
−1, where

O = (0, 0) and O(1)
−1 =

(
1+α(µ−1)

αµ , 1+α(µ−1)
αµ

)
, and the two basins are simply connected sets.

If α (µ+ 1) > 1 then the two basins are non-connected sets, formed by infinitely many simply
connected components.

The bifurcation occurring at α (µ+ 1) = 1 is a global bifurcation. It cannot be revealed
by a study of the linear approximation of the dynamical system and the occurrence of such a
bifurcation can be characterized by a contact between the stable set of the symmetric fixed point S
and a critical curve. In order to explain this, we start from a set of parameters such that both of the
basins are simply connected, like in Figure 11a, where µ1 = µ2 = µ = 3.4 and α1 = α2 = α =
0.2 < 1/(µ+ 1). For this set of parameters, four fixed points exist, indicated by O, S, E1 and E2.
The fixed points O and S are saddle points, whereas the equilibria E1 and E2 are both stable, each
with its own basin of attraction. These basins, B (E1) and B (E2), are represented by white and
light grey respectively (the dark grey region represents the set of initial conditions which generate
unbounded trajectories; we could refer to this set as the basin of infinity).

Now let us turn to an explanation of the global bifurcation which causes the transition between
these rather different structures of the basins. First notice that the boundary separating B (E1) and
B (E2) contains the symmetric equilibrium S as well as its whole stable set W s(S). In fact, just
after the creation of the two stable fixed points E1 and E2 for µ = 3, the symmetric equilibrium
S ∈ ∆ is a saddle point. The two branches of the unstable set W u(S) departing from it reach E1

and E2 respectively. Hence, since a basin boundary is backward invariant (see [38] and [40]), not
only the local stable set W s

loc(S) belongs to the boundary that separates the two basins, but also
its preimages of any rank: W s(S) =

⋃
k≥0 T

−k (W s
loc(S)). Because of the symmetry property

of the system (12) with homogeneous players, the local stable set of S belongs to the invariant
diagonal ∆. As long as α (µ+ 1) < 1, the whole stable set W s(S) belongs to ∆ and is given by
W s(S) = OO

(1)
−1, whereO(1)

−1 is the preimage ofO located along ∆. Observe that if α (µ+ 1) < 1

holds, the cusp point K of the critical curve LC(b) has negative coordinates and, consequently, the
whole segment OO(1)

−1 belongs to the regions Z0 and Z2, see Figure 11a. This implies that the

two preimages of any point of OO(1)
−1 belong to ∆ (they can be computed by the restriction f of

T to the invariant diagonal ∆). This proves that the segment OO(1)
−1 is backward invariant, i.e. it

includes all its preimages. The structure of the basins B (Ei), i = 1, 2, is very simple: B (E1) is
entirely located below the diagonal ∆ and B (E2) is entirely located above it. Both of the basins
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B (E1) and B (E2) are simply connected sets.
Their structure becomes a lot more complex for α (µ+ 1) > 1. In order to understand the

bifurcation occurring at α (µ+ 1) = 1, we consider the critical curves of the map (12). At
α (µ+ 1) = 1 a contact between LC(b) and the fixed point O occurs, due to the merging be-
tween O and the cusp point K.3 For α (µ+ 1) > 1, the portion KO of WS

loc (S) belongs to the
region Z4, where four inverses of T exist. This implies that besides the two rank-1 preimages on
∆, the points of KO have two further preimages, which are located on the segment O(2)

−1O
(3)
−1 of

the line ∆−1. Since OO(1)
−1 = W s

loc(S) ⊂ ∂B (E1) ∩ ∂B (E2), also its preimages of any rank
belong to the boundary which separates B (E1) from B (E2). So the rank-1 preimages of the seg-
ment O(2)

−1O
(3)
−1, which exist because portions of it are included in the regions Z2 and Z4, belong

to W s (S) as well, being preimages of rank-2 of OO(1)
−1. This repeated procedure, based on the

iteration of the multi-valued inverse of T , leads to the construction of the whole stable set W s(S).

Figure 11.

Similar results can be obtained in the case α1 6= α2. The main difference with respect to the
homogeneous case lies in the fact that the diagonal ∆ is no longer invariant. Even if the fixed
points remain the same, the basins are no longer symmetric with respect to ∆. Nevertheless, many
of the arguments given above continue to hold in the case of heterogeneous beliefs. In particular,
the boundary which separates the basin of equilibrium E1 from that of E2 is still formed by the
whole stable set W s(S), but in the case α1 6= α2 the local stable set W s

loc(S) is not along the
diagonal ∆. The contact between W s(S) and LC(b), which causes the transition from simple to
complex basins, does not occur atO (since nowO /∈W s(S)) and no longer involves the cusp point
of LC(b). So, the parameter values at which such contact bifurcations occur cannot be computed
analytically.

3To compute the coordinates of the cusp point of LC(b) notice that in any point of LC−1 at least one eigenvalue of
DT vanishes. In the pointC−1 = LC

(a)
−1∩∆ = (c−1, c−1), with c−1 = (α (µ− 1) + 1) /2αµ, the eigenvalue z‖ with

eigendirection along ∆ vanishes, and its image C = LC(a) ∩∆ = (c, c) with c = f(c−1) = (α (µ− 1) + 1)2 /4αµ
is the point at which LC(a) intersects ∆. This corresponds to the unique critical point of the restriction of T to ∆. At
the other intersection of LC−1 with ∆, given byK−1 = LC

(b)
−1 ∩∆ = (k−1, k−1) with k−1 = (α (µ− 1)− 1) /2αµ

the eigenvalue z⊥ vanishes, and the curve LC(b) = T (LC
(b)
−1) has a cusp point K = LC(b) ∩∆ = (k, k) with k =

f(k−1) = (α (µ+ 1)− 1) (αµ+ 3(1− α)) /4αµ.
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In Figure 12a, obtained with µ = 3.6, α1 = 0.55 and α2 = 0.7, the two equilibria E1 and E2

are stable, and their basins are connected sets. An asymmetry in the expectation formation process
has a negligible effect on the local stability properties of the equilibria, but it results in an evident
asymmetry in the basins of attraction. As shown in Figure 11a, when α2 > α1 the extension of
B (E2) is, in general, greater than the extension of B (E1).

Moreover, the situation is not always as simple as in Figure 12a. The symmetric equilibrium
S is a saddle fixed point and is included in the boundary – the whole stable set W s(S) – which
separates the two basins. It can be noticed that in the simple situation shown in Figure 12a, the
whole stable set W s(S) is entirely included inside the regions Z2 and Z0. However, the fact
that a portion of W s(S) is close to LC suggests that a contact bifurcation may occur if, e.g.,
the adjustment coefficients are slightly changed. In fact, if a portion of B (E1) enters Z4 after
a contact with LC(b), new rank-1 preimages of that portion will appear near LC(b)

−1. This is the
situation illustrated in Figure 12b, obtained after a small change of α1. The portion of B (E1)

inside Z4 is denoted by H0. It has two rank-1 preimages, denoted by H(1)
−1 and H(2)

−1 , which are

located at opposite sides with respect to LC(b)
−1 and merge on it (by definition the rank-1 preimages

of the arc of LC(b) which bound H0 must merge along LC(b)
−1). The set H−1 = H

(1)
−1 ∪ H

(2)
−1

constitute a non-connected portion of B (E1). Moreover, since H−1 belongs to the region Z4, it
has four rank-1 preimages, denoted byH(j)

−2 , j = 1, ..., 4 in Figure 10b, which constitute other four
“islands”4 of B (E1). Points of these “islands” are mapped into H0 after two iterations of the map
T . Indeed, infinitely many higher rank preimages of H0 exist, thus giving infinitely many smaller
and smaller disjoint “islands” of B (E1). Hence, at the contact between W s (S) and LC, the basin
B (E1) is transformed from a simply connected into a non-connected set, constituted by infinitely
many disjoint components. The larger connected component of B (E1) which contains E1 is
the immediate basin B0 (E1), and the whole basin is given by the union of the infinitely many
preimages of B0 (E1): B (E1) =

⋃
k≥0 T

−k (B0 (E1)). Observe that even if small differences
between the adjustment speeds have negligible effects on the properties of the attractors, they may
cause remarkable asymmetries in the structure of the basins, which can only be detected when the
global properties of the economic model are studied.

Figure 12.

4We follow the terminology introduced in [38].
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So, as in the one-dimensional case, the global bifurcation which causes a transformation of a
basin from connected set into the union of infinitely many non-connected portions, is caused by
a contact between a critical set and a basin boundary. However, since the equations of the curves
involved in the contact often cannot be analytically expressed in terms of elementary functions,
the occurrence of contact bifurcations can only be revealed numerically. This happens frequently
in the study of nonlinear dynamical systems of dimension greater than one: results on global
bifurcations are generally obtained through an interplay between theoretical and numerical meth-
ods, and the occurrence of these bifurcations is shown by computer-assisted proofs, based on the
knowledge of the properties of the critical curves and their graphical representation (see [40] for
many examples). This “modus operandi” is typical in the study of global bifurcations of nonlinear
two-dimensional maps.

3 Synchronization, riddling and intermittency phenomena

In this section we consider a two-dimensional dynamical system with an invariant unidimensional
submanifold. For example, a dynamic game whose time evolution is represented by the iteration
of a two-dimensional map in the case of identical players. This means that the dynamical system
must remain the same if the variables x1 and x2 are interchanged, i.e. T ◦ P = P ◦ T , where
P : (x1, x2)→ (x2, x1) is the reflection through the diagonal ∆. This symmetry property implies
that the diagonal is mapped into itself, i.e., T (∆) ⊆ ∆ , which corresponds with the obvious
statement that, in a deterministic framework, identical players, starting from identical initial con-
ditions, behave identically for each time. The trajectories embedded into ∆, i.e. characterized
by x1(t) = x2(t) for every t, are called synchronized trajectories, and they are governed by the
one-dimensional map given by the restriction of T to the invariant submanifold ∆

xt+1 = f(xt) with f = T |∆ : ∆→ ∆. (15)

A trajectory starting out of ∆, i.e. with x0 6= y0, is said to synchronize if |x1(t)− x2(t)| → 0
as t → +∞. A question which naturally arises, in the case of symmetric competition models, is
whether identical competitors starting from different initial conditions will synchronize, so that the
asymptotic behavior is governed by the simpler one-dimensional model (15). This question can
be reformulated as follows. Let As be an attractor of the one-dimensional map (15). Is it also an
attractor for the two-dimensional map T ? Of course, an attractor As of the restriction f is stable
with respect to perturbations along ∆, so an answer to the question raised above can be given
through a study of the stability of As with respect to perturbations transverse to ∆ (transverse
stability). If As is a cycle, then the study of the transverse stability is the usual one, based on
the modulus of the eigenvalues of the cycle in the direction transverse to ∆, whereas the problem
becomes more interesting when the dynamics restricted to the invariant submanifold are chaotic.
Indeed, dynamical systems with chaotic trajectories embedded into an invariant submanifold of
lower dimensionality than the total phase space have raised an increasing interest in the scientific
community (see [5] and [23]), because the phenomenon of chaos synchronization may occur (see
also [42]), i.e., the time evolution of the two competitors synchronize in the long run even if each
of them behaves chaotically. Moreover, in this case, Milnor attractors, from [35], which are not
stable in Lyapunov sense appear quite naturally in this context. To better understand the meaning
of this point, we recall some definitions.



CONTACT BIFURCATIONS, CRITICAL SETS, FOCAL POINTS 33

Definition 3.1. A is an asymptotically stable attractor (or topological attractor) if it is Lyapunov
stable, i.e. for every neighborhood U of A there exists a neighborhood V of A such that T t(V ) ⊂
U for all t ≥ 0, and B (A) contains a neighborhood of A.

In other words, If A is a topological attractor then a neighborhood W ⊃ A exists such that
T t(x) → A as t → +∞ for any x ∈ W . In this case the stable set B (A), also called basin of
attraction, is an open set given by B (A) =

⋃
t≥0 T

−t(W ).

Definition 3.2. A closed invariant set A is said to be a weak attractor in Milnor sense (or simply
Milnor attractor) if its stable set B (A) has positive Lebesgue measure.

Note that a topological attractor is also a Milnor attractor, whereas the converse is not true.
Really the more general notion of Milnor attractor has been introduced to evidence the existence
of invariant sets which “attract” many points even if they are not attractors in the usual topological
sense.

We now recall some definitions and results related to the problem of chaos synchronization, see
[23] for a more complete treatment. Let T be a map of the plane, ∆ a one-dimensional trapping
subspace and As a chaotic attractor (with absolutely continuous invariant measure on it) of the
restriction (15) of T to ∆. The key property for the study of the transverse stability of As is that
it includes infinitely many periodic orbits which are unstable in the direction along ∆. For any of
these cycles it is easy to compute the associated eigenvalues. In fact, due to the symmetry of the
map, the Jacobian matrix of T computed at any point of ∆, say DT (x, x) = {Tij (x)}, is such
that T11 = T22 and T12 = T21. The two orthogonal eigenvectors of such a symmetric matrix are
one parallel to ∆, say v‖ = (1, 1), and one perpendicular to it, say v⊥ = (1,−1), with related
eigenvalues given by

λ‖ (x) = T11 (x) + T12 (x) and λ⊥ (x) = T11 (x)− T12 (x)

respectively. Of course, λ‖ (x) = f ′(x). Since the product of matrices with the structure of
DT (x, x) has the same structure as well, a k-cycle {s1, ..., sk} embedded into ∆ has eigenvalues
λk‖ =

∏k
i=1 λ‖ (si) and λk⊥ =

∏k
i=1 λ⊥ (si), with eigenvectors v‖ and v⊥ respectively.

In the recent literature on chaos synchronization, stability statements are given in terms of
the transverse Lyapunov exponents, by which the “average” local behavior of the trajectories in
a neighborhood of the invariant set As can be understood, and new kinds of bifurcations can be
detected , such as the riddling bifurcation or the blowout bifurcation. For a chaotic set As ⊂ ∆,
infinitely many transverse Lyapunov exponents can be defined as

Λ⊥ = lim
N→∞

1

N

N∑
i=0

ln |λ⊥ (si)| (16)

where
{
si = f i(s0), i ≥ 0

}
is a trajectory embedded in As.

If x0 belongs to a k-cycle then Λ⊥ = ln
∣∣λk⊥∣∣, so that the cycle is transversely stable if Λ⊥ < 0,

whereas if x0 belongs to a generic aperiodic trajectory embedded inside the chaotic set As then
Λ⊥ is the natural transverse Lyapunov exponent Λnat⊥ , where by the term “natural” we mean
the Lyapunov exponent associated to the natural, or SBR (Sinai-Bowen-Ruelle), measure, i.e.,
computed for a typical trajectory taken in the chaotic attractorAs. Since infinitely many cycles, all
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unstable along ∆, are embedded inside a chaotic attractor As, a spectrum of transverse Lyapunov
exponents can be defined, see [23],

Λmin
⊥ ≤ ... ≤ Λnat⊥ ≤ ... ≤ Λmax

⊥ (17)

The meaning of the inequalities in (17) can be intuitively understood on the basis of the property
that Λnat⊥ expresses a sort of “weighted balance” between the transversely repelling and trans-
versely attracting cycles (see [4], [34]). If Λmax

⊥ < 0, i.e. all the cycles embedded in As are
transversely stable, then As is asymptotically stable, in the usual Lyapunov sense, for the two-
dimensional map T . However, it may occur that some cycles embedded in the chaotic set As
become transversely unstable, i.e. Λmax

⊥ > 0, while Λnat⊥ < 0. In this case, As is no longer Lya-
punov stable, but it continues to be a Milnor attractor, i.e. it attracts a positive (Lebesgue) measure
set of points of the two-dimensional phase space. So, if A ⊂ ∆ is a chaotic attractor of T |∆ with
absolutely continuous invariant measure, then a sufficient condition for a A be a Milnor, but not
topological, attractor for the two-dimensional map T , is that

(a) at least one k-cycle embedded in A is transversely repelling, i.e.
∣∣∣λ(k)
⊥

∣∣∣ > 1, and

(b) the Lyapunov exponent Λnat⊥ is negative.
This means that the majority of the trajectories onA are transversely attracting, but some (even

infinitely many) trajectories inside A can exist whose transverse Lyapunov exponent is positive.
In other words, transversely repelling trajectories can be embedded into a chaotic set which is
attracting only “on average”. In this case we have weak stability or stability in Milnor sense, but
not asymptotic stability.

The transition from asymptotic stability to attractivity only in Milnor sense, marked by a
change of sign of Λmax

⊥ from negative to positive, is denoted as the riddling bifurcation in [32]
(or bubbling bifurcation in [44]). Even if the occurrence of such bifurcations is detected through
the study of the transverse Lyapunov exponents, their effects depend on the action of the non
linearities far from ∆, that is, on the global properties of the dynamical system. In fact, after the
riddling bifurcation two possible scenarios can be observed according to the fate of the trajectories
that are locally repelled along (or near) the local unstable manifolds of the transversely repelling
cycles:

(L): they can be reinjected towards ∆, so that the dynamics of such trajectories are character-
ized by some bursts far from ∆ before synchronizing on it (a very long sequence of such bursts,
which can be observed when Λ⊥ is close to zero, has been called on-off intermittency in [41]);

(G): they may belong to the basin of another attractor, in which case the phenomenon of
riddled basins ([4]) is obtained.

Some authors call local riddling the situation (L) and, by contrast, global riddling the situation
(G) (see [5, 34] and [33]). When also Λnat⊥ becomes positive, due to the fact that the transversely
unstable periodic orbits embedded intoAs have a greater weight as compared with the stable ones,
a blowout bifurcation occurs, after whichAs is no longer a Milnor attractor, because it attracts a set
of points of zero measure, and becomes a chaotic saddle, see [23]. In particular, for λmin

⊥ > 0 all
the cycles embedded into ∆ are transversely repelling, and As is called normally repelling chaotic
saddle. Also the macroscopic effect of a blowout bifurcation is strongly influenced by the behavior
of the dynamical system far from the invariant submanifold ∆: The trajectories starting close to
the chaotic saddle may be attracted by some attracting set far from ∆ or remain inside a two-
dimensional compact set located around the chaotic saddle As, thus giving on-off intermittency.

As noticed by many authors, (see [5, 23] and [34]), even if the occurrence of riddling and
blowout bifurcations is detected through the transverse Lyapunov exponents, i.e. from a local
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analysis of the linear approximation of the map near ∆, their effects are determined by the global
properties of the map. In fact, the effect of these bifurcations is related to the fate of the trajectories
which are locally repelled away from a neighborhood of the Milnor attractor As, since they may
reach another attractor or they may be folded back toward As by the action of the nonlinearities
acting far from ∆. When T is a noninvertible map, as generally occurs in problems of chaos
synchronization5, the global dynamical properties can be usefully described by the method of
critical curves and the reinjection of the locally repelled trajectories can be described in terms of
their folding action.

This idea has been recently proposed in [21], for the study of symmetric maps arising in game
theory, where the critical curves have been used to obtain the boundary of a compact absorbing
area inside which intermittency and blowout phenomena are confined. In other words, the critical
curves are used to bound a compact region of the phase plane that acts as a trapping bounded vessel
inside which the trajectories starting near S are confined. In particular, in [10], the concept of
minimal invariant absorbing area is used in order to give a global characterization of the different
dynamical scenarios related to riddling and blowout bifurcations. In order to give an example, let
us consider the map

Ts :

{
x′ = µy(1− y) + ε(y − x)
y′ = µx(1− x) + ε(x− y)

(18)

The restriction Ts|∆ to the invariant diagonal ∆ can be identified with the one-dimensional logistic
map

x′ = fµ(x) = µx(1− x). (19)

The eigenvalues of the symmetric Jacobian matrix DT (x, x) are

ρ‖(x) = µ− 2µx , ρ⊥(x) = 2µx− µ− 2ε.

with eigenvectors which are parallel to ∆ (v‖ = (1, 1)) and orthogonal to ∆ (v⊥ = (1,−1))
respectively. It is important to note that the coupling parameter ε only appears in the transverse
eigenvalue λ⊥, i.e. ε is a normal parameter: it has no influence on the dynamics along the invariant
submanifold ∆, and only influences the transverse stability. This allows us to consider fixed
values of the parameter µ, such that a chaotic attractor As ⊂ ∆ of the map (19) exists, with
an absolutely continuous invariant measure on it. So, we can study the transverse stability of
As as the coupling between the two components, measured by the parameter ε, varies. Suitable
values of the parameter µ, at which chaotic intervals for the restriction (19) exist, are obtained
from the well known properties of the logistic map (see [36]). For example, at the parameter
value µ2 = 3.5748049387592... the period-4 cycle of the logistic map undergoes the homoclinic
bifurcation, at which four cyclic chaotic intervals are obtained by the merging of 8 cyclic chaotic
intervals. By using µ2 we get a four-band chaotic set As along the diagonal ∆, as shown in Figure
13a. In this case, for ε = 0.24 we have Λmax

⊥ > 0 and Λnat⊥ = −4.7 × 10−3 < 0. Hence, As is
a Milnor attractor and local riddling occurs. The generic trajectory starting from initial conditions
taken in the white region of Figure 13a leads to asymptotic synchronization. In Figure 13a the
asymptotic part of a trajectory is shown, after a transient of 15, 000 iterations has been discarded.

5In fact the one-dimensional restriction f must be a noninvertible map in order to have chaotic motion along the
invariant subspace ∆.
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Indeed, if also the transient is represented, Figure 13b is obtained. During the transient, the time
evolution of the system is characterized by several bursts away from ∆ before synchronization
occurs, as shown in Figure 14, where the difference xt − yt, computed along the trajectory of
Figure 13, is represented versus time. It it worth to note the intermittent behavior of the trajectory:
sometimes it seems to synchronize for a quite long number of iterations, then a sudden burst
occurs. This phenomenon is also called on-off intermittency.

Figure 13.

Figure 14.

The Milnor attractorAs is included inside a minimal invariant absorbing area whose boundary
can be easily obtained by five iterations of an arc of LC−1, as shown in Figure 21a. This absorbing
area, obtained by the procedure outlined in section 3, constitutes a trapping region inside which
the bursts observed during the transient are contained. This means that, even if it is difficult to
predict the sequence of times at which asynchronous bursts occur, an estimate of their maximum
amplitude can be obtained by the construction of the minimal invariant absorbing area which
includes the Milnor attractor on which synchronized dynamics take place. In such a situation,
a method to obtain a trajectories which never synchronize, so that the bursts never stop and the
iterated points fill up the whole minimal absorbing area, consists in the introduction of a small
parameters’ mismatch, such as ε1 slightly different from ε2 or µ1 slightly different from µ2, so
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that the symmetry is broken (see [10] and [11] for example). This implies that the invariance of ∆
is lost, and consequently the one-dimensional Milnor attractor embedded in no longer exists.

A similar effect is obtained even in the symmetric case, if the value of the coupling parameter
ε is increased so that Λnat⊥ increases until it becomes positive, i.e. a blowout bifurcation occurs.
After this bifurcation the bursts which characterize the first part of the trajectory of Figures 13
and 14, never stop, i.e. the firms never synchronize. As is now a chaotic saddle, and on-off
intermittency is observed. This is what happens in the situation shown in Figure 15b, obtained for
ε = 0.245, at which Λnat⊥ = 2.2× 10−2 > 0. Now the point of a generic trajectory starting from
the white region fill the whole absorbing area, still bounded by segments of critical arcs.

We end this short survey by stressing that if the absorbing area bounded by segments of critical
curves, inside which riddling phenomena and on-off intermittency occurs, has a contact with the
boundary of the basin around it, then the phenomenon of riddles basins suddenly appears, see [11]
for an example.

Figure 15.

4 Maps with Vanishing Denominators

Let us consider a two-dimensional discrete dynamical system defined by

(xt+1, yt+1) = T (xt, yt) = (F (xt, yt), G(xt, yt)) ,

where at least one of the components F or G has a denominator which can vanish in a one-
dimensional subset of the phase plane. This implies that the iterated map T is not defined in
the whole plane, and this causes the occurrence of some particular dynamic behaviors and global
bifurcations that cause qualitative changes in the topological structure of the attractors and the
basins of attraction. In [13, 15] and [16] these dynamic phenomena have been associated with
the existence of points where one of the components of the map T or some of its inverse(s) T−1

assumes the form 0/0. In these papers the concepts of focal point and prefocal curve have been
introduced, and several kinds of global bifurcations have been described that lead to the creation
of particular structures of the basins of attraction called lobes and crescents, characterized by fan-
shaped boundaries issuing from the focal points, where one component of T becomes 0/0 (see
points denoted by Q in Figure 16, taken from [13, 20] and [25] respectively). Roughly speaking,
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a prefocal curve is a set of points for which at least one inverse exists which maps (or “focalizes”)
the whole set into a single point, called focal point.

The global bifurcations that cause the creation of structures of the basins which are peculiar
of maps with a vanishing denominator have been explained in [13] and [15] in terms of contacts
between basin boundaries and prefocal curves. These definitions and properties have been studied
by considering the image of an arc crossing through a simple focal point (i.e. located at a transverse
intersection of the curve of vanishing denominator and that of vanishing numerator) and a one-to-
one correspondence is obtained between the slopes of the arcs through a focal point and the points
in which their images cross the corresponding prefocal set. This implies that the preimages of any
curve crossing the prefocal set in two points includes a loop with a knot in the focal point, and this
is the basic mechanism leading to the formation of lobes and crescents

These singularities may also be important in the study of maps defined in the whole plane,
but such that some of the inverses have a vanishing denominator and possess focal points. These
dynamic phenomena have been observed in several dynamic models used ti describe real world
systems, for example in dynamic economic models (such as the basins shown in Figure 16a, from
[20]), or in iterative numeric methods coming from the application of Newton’s or Bairstow’s
method for finding the zeroes of functions (see the basins shown in Figure 16c, from [25]). The
structure of the basins in Figure 16 clearly shows the presence of focal points, from which fans of
different colors spread.

These concepts, proposed in the framework of the theory of iteration of two-dimensional real
maps, using the style and terminology of the theory of dynamical systems, can be compared with
the concepts of exceptional locus and blow-up in the framework of the study of rational maps in
the literature on algebraic geometry.

Figure 16.

4.1 Definitions and basic properties

In order to simplify the exposition, we assume that only one of the two functions defining the map
T has a denominator which can vanish, say

T :

{
x′ = F (x, y)
y′ = G(x, y) = N(x, y)/D(x, y)

where x and y are real variables, F (x, y), N(x, y) and D(x, y) are continuously differentiable
functions (N and D without common factors) and defined in the whole plane R2. The set of
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nondefinition of the map T (given by the set of points where at least one denominator vanishes)
reduces to

δs = {(x, y) ∈ R2|D(x, y) = 0}.

Let us assume that δs is given by the union of smooth curves of the plane. The two-dimensional
recurrence obtained by the iteration of T is well defined provided that the initial condition belongs
to the set E given by E = R2 \

⋃∞
k=0 T

−k (δs), where T−k(δs) denotes the set of the rank-
k preimages of δs, i.e. the set of points which are mapped into δs after k applications of T
(T 0(δs) ≡ δs). Indeed, in order to generate non interrupted sequences by the iteration of the map
T , the points of δs, as well as all their preimages of any rank, constitute a set of zero Lebesgue
measure which must be excluded from the set of initial conditions so that T : E → E.

Let us consider a bounded and smooth simple arc γ, parametrized as γ(τ), transverse to δs,
such that γ ∩ δs = {(x0, y0)} and γ(0) = (x0, y0). We are interested in its image T (γ). As
(x0, y0) ∈ δs we have, according to the definition of δs, D(x0, y0) = 0. If N(x0, y0) 6= 0,
then limτ→0± T (γ (τ)) = (F (x0, y0),∞) where ∞ means either +∞ or −∞. This means that
the image T (γ) is made up of two disjoint unbounded arcs asymptotic to the line of equation
x = F (x0, y0). A different situation may occur if the point (x0,y0) ∈ δs is such that not only
the denominator but also the numerator vanishes in it, i.e. D(x0, y0) = N(x0, y0) = 0. In this
case the second component of T assumes the form 0/0. This implies that the limit above may give
rise to a finite value, so that the image T (γ) is a bounded arc (see Figure 2a) crossing the line
x = F (x0, y0) in the point (F (x0, y0), y), where

y = lim
τ→0

G(x (τ) , y (τ)).

It is clear that the limiting value y must depend on the arc γ. Furthermore it may have a finite
value along some arcs and be infinite along other ones. This leads to the following definition of
focal point and prefocal curve [13]:

Definition 4.1. Consider the map T (x,y)→ (F (x, y), N(x, y)/D(x, y)). A point Q=(x0,y0) is
a focal point of T if D(x0, y0) = N(x0, y0) = 0 and there exist smooth simple arcs γ(τ), with
γ(0)=Q, such that limτ→0 T (γ(τ)) is finite. The set of all such finite values, obtained by taking
different arcs γ(τ) through Q, is the prefocal set δQ, the equation of which is x = F (Q).

Here we shall only consider simple focal points, i.e. points which are simple roots of the
algebraic system N(x, y) = 0, D(x, y) = 0. Thus a focal point Q = (x0, y0) is simple if
NxDy − NyDx 6= 0, where Nx = ∂N

∂x (x0, y0) and analogously for the other partial derivatives.
In this case (of a simple focal point) there exists a one-to-one correspondence between the point
(F (Q), y), in which T (γ) crosses δQ, and the slope m of γ in Q (as shown in [13]):

m→ (F (Q), y(m)), with y(m) = (Nx +mNy) / (Dx +mDy),

and

(F (Q), y)→ m(y), with m(y) = (Dxy −Nx) / (Ny −Dyy).

From the definition of the prefocal curve, it follows that the Jacobian det
(
DT−1

)
must nec-

essarily vanish in the points of δQ. Indeed, if the map T−1 is defined in δQ, then all the points
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of the line δQ are mapped by T−1 into the focal point Q. This means that T−1 is not locally
invertible in the points of δQ, being it a many-to-one map, and this implies that its Jacobian cannot
be different from zero in the points of δQ. From the relations given above it results that different
arcs γj , passing through a focal point Q with different slopes mj , are mapped by T into bounded
arcs T (γj) crossing δQ in different points (F (Q), y(mj)) (figs. 17b,c). Interesting properties are
obtained if the inverse of T (or the inverses, if T is a noninvertible map) is (are) applied to a curve
that crosses a prefocal curve.

Nonsimple focal points are considered in [16], where it is shown that they are generally asso-
ciated with particular bifurcations.

Figure 17.

4.2 Case of an invertible map

Let T be invertible, and δQ a prefocal curve whose corresponding focal point is Q (and several
prefocal curves may exist, each having a corresponding focal point). Then each point sufficiently
close to δQ has its rank-1 preimage in a neighborhood of the focal point Q. If the inverse T−1 is
continuous along δQ then all the points of δQ are mapped by T−1 in the focal point Q. Roughly
speaking we can say that the prefocal curve δQ is “focalized” by T−1 in the focal point Q, i.e.
T−1(δQ) = Q. We note that the map T is not defined in Q, thus T−1 cannot to be strictly
considered as an inverse of T in the points of δQ, even if T−1 is defined in δQ.

The relation given above implies that the preimages of different arcs crossing the prefocal
curve δQ in the same point (F (Q), y) are given by arcs all crossing the singular set through Q,
and all with the same slopem(y) inQ. Indeed, consider different arcs ωn, crossing δQ in the same
point (F (Q), y) with different slopes, then these arcs are mapped by the inverse T−1 into different
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arcs T−1 (ωn) throughQ, all with the same tangent, of slopem(y), according to the formula given
above. They must differ by the curvature at the point Q.

4.3 Case of a non invertible map

4.3.1 General considerations

In the case of a continuous noninvertible map T , several focal points may be associated with a
given prefocal curve δQ, each with its own one-to-one correspondence between slopes and points.
The phase space of a noninvertible map is subdivided into open regions (or zones) Zk, whose
points have k distinct rank-1 preimages, obtained by the application of k distinct inverse maps
T−1
j (i.e. such that T−1

j (x, y) = (xj , yj), j = 1, ..., k).
From the properties of maps with a vanishing denominator it results that generally a focal

point Q belongs to the set LC−1 ∩ δS , where LC−1 denotes the closure of LC−1, but in particular
bifurcation cases, in which δS belongs to JC , it happens that a focal point Q may not belong to
LC−1. The geometric behavior and the plane’s foliation are different in the two cases. This leads
to two different situations, according to the fact that the focal points belong or not to the set LC−1.

4.3.2 The focal points do not belong to LC−1.

The following properties have been shown in [13]. (a) For each prefocal curve δQ we have LC ∩
δQ = ∅. (b) If all the inverses are continuous along a prefocal curve δQ, then the whole prefocal
set δQ belongs to a unique region Zk in which k inverse maps T−1

j , j=1,...,k, are defined.
It is plain that for a prefocal δQ at least one inverse is defined that “focalizes” it into a fo-

cal point Q. However, other inverses may exist that “focalize” it into distinct focal points, all
associated with the same prefocal curve δQ. These focal points are denoted as Qj = T−1

j (δQ),
j = 1, ..., n, with n ≤ k. For each focal point Qj the same results given above can be obtained
with T−1 replaced by T−1

j , so that for each Qj a one-to-one correspondence mj(y) in the form
given above is defined. With similar arguments it is easy to see that an arc ω crossing δQ in a point
(F (Q), y), where F (Q) = F (Qj) for any j, is mapped by each T−1

j into an arc T−1
j (ω), through

the corresponding Qj with the slope mj(y). If different arcs are considered, crossing δQ in the
same point, then these are mapped by each inverse T−1

j into different arcs through Qj , all with the
same tangent. We note that property (a) given above implies that the critical curve LC is generally
asymptotic to the prefocal curves (several examples are shown in [13]).

4.3.3 The focal points belong to LC−1.

When the focal points belong to LC−1 (closure of LC−1) the “geometrical” situations of the phase
plane, and the bifurcation types, are more complex (see [15]) with respect to the previous case.
This is due to the fact that now LC has contact points at finite distance with the prefocal curves.
The property Qj = T−1

j (δQ), j = 1, . . . , n, with n ≤ k, does not occur. Now in the generic case
a given prefocal curve δQ is not associated with several focal points Qj . Only one of the inverses
T−1
j maps a non critical point of a given prefocal curve into its related focal point, so that we can

write Q = T−1
j (F (Q), y) (or Q = T−1

j (δQ) for short), but the index j depends on the non critical
point (F (Q), y) considered on δQ. For this reason the previous situation of δQ (focal points do not
belong to LC−1) appears as non generic (indeed it may result from the merging of two prefocal
curves δrQ and δsQ without merging of the corresponding focal points, as shown in [15]).
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A qualitative illustration is given in Figure 18, where a situation with two prefocal curves is
represented for a noninvertible map T , (x, y) → (x′, y′) , of type (Z0-Z2). The inverse relation
T−1(x′, y′) has two components in the region Z2, denoted by T−1

1 and T−1
2 , and no real com-

ponents in the region Z0. The set of nondefinition δs is a simple straight line, and there are two
prefocal lines, δQi , of equation x = F (Qi), associated with the focal points Qi, i = 1, 2, respec-
tively, and Vi = LC ∩ δQi are the points of tangency between LC and the two prefocal curves.
Let δ′Qi

be the segment of δQi such that y < y(Vi) (continuous line in Figure 18), and δ′′Qi
the

segment of δQi such that y > y(Vi) (segmented line in Figure 18). The “focalization” occurs in
the following way:

T−1
1 (δ′Qi

) = Qi, T−1
2 (δ′′Qi

) = Qi

with T−1
2 (δ′Qi

) ∪ T−1
1 (δ

′′
Qi

) = πi, i = 1, 2, being the two lines passing through the focal points
Qi and tangent to LC−1at these points. When δQ1 → δQ2 , due to a parameter variation, without
merging of the focal points, the points Vi on the prefocal curves tend to infinity, i.e. δQ1 = δQ2

becomes an asymptote for LC.

Figure 18.

These situations can be easily observed, for example, by using the following map Te (see [13])

Te :

{
x′ = y + εx

y′ = αx2+γx
y−β+σx

not defined in the points of the line δs of equation y − β + σx = 0, on which two focal points
exist given by Q1 = (0, β) , Q2 = (− γ

α , β + γδ
α ) and the corresponding prefocal curves δQi , of

equation x = F (Qi), i = 1, 2, are x = β and x = β − (ε− σ) γ/α respectively.
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The map Te is a noninvertible map of (Z0-Z2) type with inverses defined by

T−1
e1,e2 :

{
x = 1

2α ((σ − ε) y′ − γ)∓
√

∆ (x′, y′)
y = x′ − εx

where ∆(x′, y′) = (γ − σy′ + εy′)2 − 4α (βy′ − x′y′) > 0 in the region Z2 and LC = {(x, y) |
∆(x′, y′) = 0}. In Figure 19a, obtained with parameters α = 0.5, γ = 0.5, β =

√
2, σ = 0.2, ε =

−0.2, a situation similar to the one shown in Figure 1 is obtained (the colored region represents
the basin of the stable fixed point O = (0, 0) and the complementary region the basin of infinity).
In Figure 19b, obtained with ε = σ = 0.1 and the other parameters unchanged, the two focal
points are still distinct, but the two prefocal lines merge and become an asymptote for LC. Note
that we have LC−1 = JC = J0 before the bifurcation, while at the bifurcation the hyperbola
LC−1 degenerates into two lines, the vertical branch gives the new critical set LC−1 and the other
collapses into the singular set δs. At this bifurcation LC−1 = J0 ⊂ JC (because JC also includes
the set of nondefinition δs), the resulting “double” prefocal curve is an asymptote of LC, the arcs
π1 and π2 degenerate into the focal points, which now are not located on LC−1.

Figure 19.

4.4 Some dynamic properties of focal points

Important effects on the geometric and dynamical properties of the map T can be observed, due
to the existence of a vanishing denominator. Indeed, a contact between a curve segment γ and the
singular set δs causes noticeable qualitative changes in the shape of the image T (γ). Moreover,
a contact of an arc ω with a prefocal curve δQ, gives rise to important qualitative changes in the
shape of the preimages T−1

j (ω). When the arcs ω are portions of phase curves of the map T ,
such as invariant closed curves, stable or unstable sets of saddles, basin boundaries, we have that
contacts between singularities of different nature generally induce important qualitative changes,
which constitute new types of global bifurcations that change the structure of the attracting sets,
or of their basins.

In order to simplify the description of geometric and dynamic properties of maps with a van-
ishing denominator, and their particular global bifurcations, we assume that δs and δQ are made up
of branches of simple curves of the plane. Let us describe what happens to the images of a small
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curve segment γ when it has a tangential contact with δs and then crosses it in two points, and
what happens to the preimages of a small curve segment ω when it has a contact with a prefocal
curve δQ and then crosses it in two points.

4.4.1 Action of the map

Consider first a bounded curve segment γ that lies entirely in a region in which no denominator
of the map T vanishes, so that the map is continuous in all the points of γ. As the arc γ is a
compact subset of R2, also its image T (γ) is compact (see the upper qualitative sketch in Figure
20). Suppose now to move γ towards δs, until it becomes tangent to it in a point A0 = (x0, y0)
which is not a focal point. This implies that the image T (γ) is given by the union of two disjoint
and unbounded branches, both asymptotic to the line σ of equation x = F (x0, y0). Indeed,
T (γ) = T (γa)∪T (γb), where γa and γb are the two arcs of γ separated by the point A0 = γ ∩ δs.
The map T is not defined in A0 and the limit of T (x, y) assumes the form (F (x0, y0),∞) as
(x, y) → A0 along γa, as well as along γb. In such a situation any image of γ of rank k > 1,
given by T k(γ), includes two disjoint unbounded branches, asymptotic to the rank-k image of the
line σ, T k(σ). When γ crosses through δs in two points, say A1 = (x1, y1) and A2 = (x2, y2),
both different from focal points, then the asymptote σ splits into two disjoint asymptotes σ1 and
σ2 of equations x = F (x1, y1) and x = F (x2, y2) respectively, and the image T (γ) is given by
the union of three disjoint unbounded branches (see the lower sketch in Figure 20).

Figure 20.

When γ is, for example, the local unstable manifold W u of a saddle point or saddle cycle, the
qualitative change of T (γ), due to a contact between γ and δs, as described above, may represent
an important contact bifurcation of the map T . Indeed the creation of a new unbounded branch of
W u, due to a contact with δs, may cause the creation of homoclinic points, from new transverse
intersections between the stable and unstable sets,W s andW u, of the same saddle point (or cycle).
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In such a case it is worth noting that the corresponding homoclinic bifurcation does not come from
a tangential contact between W u and W s. For maps with a vanishing denominator, this implies
that homoclinic points can be created without a homoclinic tangency between W u and W s, from
the sudden creation of unbounded branches of W u when it crosses through δs (see [13]). If before
the bifurcationW u is associated with a chaotic attractor, the homoclinic bifurcation resulting from
the contact between W u and δs may gives rise to an unbounded chaotic attractive set made up of
unbounded, but not diverging, chaotic trajectories (see [14]). If before the bifurcation W u is not
associated with a chaotic attractor, the homoclinic bifurcation resulting from the contact between
W u and δs may gives rise to a basin explosion as described in [13]

If the map is noninvertible, a direct consequence of the above arguments concerns the action
of the curve of nondefinition δs on LC−1. If LC−1 has n transverse intersections with the set
δs in non focal points Pi = (xi, yi), i = 1, .., n, then the critical set LC = T (LC−1) includes
(n+1) disjoint unbounded branches, separated by the n asymptotes σi of equation x = F (xi, yi),
i = 1, .., n.

4.4.2 Action of the inverses

(a) Let T be an invertible map, T (x, y) = (F (x, y), N(x, y)/D(x, y). Consider a smooth curve
segment ω that moves towards a prefocal curve δQ until it crosses through δQ (see Figure 21) so
that only a focal point Q = T−1(δQ) is associated with δQ. The prefocal set δQ belongs to the
line of equation x = F (Q), and the one-to-one correspondences between slopes and points hold.
When ω moves toward δQ, its preimage ω−1 = T−1 (ω) moves towards Q. If ω becomes tangent
to δQ in a point C = (F (Q), yc), then ω−1 has a cusp point at Q. The slope of the common
tangent to the two arcs, that join at Q, is given by m(yc). If the curve segment ω moves further, so
that it crosses δQ at two points (F (Q), y1) and (F (Q), y2), then ω−1 forms a loop with a double
point at the focal point Q. Indeed, the two portions of ω that intersect δQ are both mapped by T−1

into arcs through Q, and the tangents to these two arcs of ω−1, issuing from the focal point, have
different slopes, m(y1) and m(y2) respectively, according to the formulas given above.

Figure 21.
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(b) Now let T be a noninvertible map with focal points not located on LC−1. In this case
k ≥ 1 distinct focal points Qj , j = 1, ..., k, may be associated with a prefocal curve δQ. Then
each inverse T−1

j , j = 1, ..., k, gives a distinct preimage ωj−1 = T−1
j (ω) which has a cusp point

in Qj , j = 1, ..., k, when the arc ω is tangent to δQ. Each preimage ωj−1 gives rise to a loop in Qj
when the arc ω intersects δQ in two points (see Figure 22, concerning the case k = 2).

Figure 22.

When ω is an arc belonging to a basin boundary F , the qualitative modifications of the preim-
ages T−1

j (ω) of ω, due to a tangential contact of ω with the prefocal curve, can be particularly
important for the global dynamical properties of the map T . As a frontier F generally is backward
invariant, i.e. T−1(F) = F , if ω is an arc belonging to F , then all its preimages of any rank
must belong to F . This implies that if a portion ω of F has a tangential contact with a prefocal
curve δQ, then necessarily at least k cusp points, located in the focal points Qj , are included in the
boundary F . Moreover, if the focal points Qj have preimages, then also they belong to F , so that
further cusps exist on F , with tips at each of such preimages. It results that if the basin boundary
F was smooth before the contact with the prefocal curve δQ, such a contact gives rise to points
of non smoothness, which may be infinitely many if some focal point Qj has preimages of any
rank, with possibility of fractalization of F when it is nowhere smooth. When F crosses through
δQ in two points, after the contact F must contain at least k loops with double points in Qj . Also
in this case, if some focal point Qj has preimages, other loops appear (even infinitely many, with
possibility of fractalization) with double points in the preimages of any rank of Qj , j = 1, ..., n.

(c) Whatever be the map T (invertible, or not, with focal points on LC−1 or not) a contact of
a basin boundary with a prefocal curve gives rise to a new type of basin bifurcation that causes
the creation of cusp points and, after the crossing, of loops (called ”lobes”), along the basin
boundary. This may give rise to a very particular fractalization of the basin boundary ([9, 13]).

(d) Let T be a noninvertible map with focal points not located onLC−1. In this case the contact
of two lobes on LC−1 (related to a contact of LC with the basin boundary) gives rise to a crescent
bounded by the two focal points, from which lobes appeared. The creation of “crescents” [13],
resulting from the contact of lobes, is specific to noninvertible maps with denominator,when the
focal points are not located on LC−1. It requires the intersection of the boundary with a prefocal
curve (located in a region with more than one inverse), at which the lobes are created, followed
by a contact with a critical curve, causing the contact and merging of the lobes. At the contact the
lobes are not tangent to LC−1. After the contact, they merge creating the crescent.

(e) If T is a noninvertible map with focal points located on LC−1, then in the generic case we
have a behavior similar to that of the invertible case, in which only one focal point is associated
with δQ, but in a more complex situation with respect to the role of the components of the inverse
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map on δQ, and the presence of the arcs denoted δ′Qi
and δ′′Qi

in Figure 18. Details on this situation
are given in [15]. Now a crescent does not results from the contact of two lobes, but from the
contact of a lobe (issuing from a focal point) with another focal point. This situation is specific
to noninvertible maps with denominator, when the focal points are located on LC−1. It requires
the intersection of a basin boundary with a prefocal curve, followed by the contact of the resulting
lobe with a focal point.

4.5 Further remarks

The theory of focal points and prefocal curves is also useful to understand some properties of maps
defined in the whole plane R2, having at least one inverse map with vanishing denominator. Such
maps may have the property that, among the points at which the Jacobian vanishes, there exists a
curve which is mapped into a single point (see [13]). Another noticeable property of these maps is
that a curve, at which the denominator of some inverse vanishes may separate regions of the phase
plane characterized by a different number of preimages, even if it is not a critical curve of rank-1 (a
critical curve of rank-1 is defined as a set of points having at least two merging rank-1 preimages).
At least one inverse is not defined on these non-critical boundary curves, due to the vanishing
of some denominator. In a two-dimensional map, the role of such a curve is the analogue of an
horizontal asymptote in a one-dimensional map, separating the range into intervals with different
numbers of rank-1 preimages [13]. The existence of focal points of an inverse map can also cause
the creation of particular attracting sets. Indeed a focal point, generated by the inverse map, may
behave like a “knot”, where infinitely many invariant curves of an attracting set shrink into a set
of isolated points, an example is shown in Figure 23, taken from [13]

Figure 23.

As already remarked, maps with focal points and prefocal sets naturally arise in discrete dy-
namical systems of the plane found in several applications, such as economic modeling (see [20]
and [18]) or numerical iterative methods (see [6, 25], and [45]). In such dynamic models, peculiar
structures of the basins, characterized by the presence of lobes and crescents, have been observed,
which can be explained in terms of contacts of two sets of different nature, such as prefocal sets
with stable and unstable sets of saddles.

As it was previously mentioned, there are relations between the concepts of focal points and
prefocal curve proposed here in the framework of the theory of iteration of two-dimensional real
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maps (using the style and terminology of the theory of dynamical systems), and the concepts of
exceptional locus and blow-up in the framework of the study of rational maps in the literature on
algebraic geometry6. It would be very interesting to create a link between these two literature
streams.
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