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Abstract

Let f : X → X be a rational mapping in higher dimension. The complexity of (f,X) as
a dynamical system is measured by the dynamical degrees δp(f), 1 ≤ p ≤ dim(X). We give
the definition of the dynamical degrees and show how they are computed in certain cases. For
instance, we show that if the dynamical degree of an automorphism of a Kähler manifold is
greater than one, then it must be irrational.

1 Dynamical degree

Let us start by discussing automorphisms of C2. We say that

f(x, y) = (f1(x, y), f2(x, y)) : C2 → C2

is a polynomial mapping if the coordinate functions f1 and f2 are polynomials, and we define the
degree of f as deg(f) := max(deg(f1),deg(f2)). The degree is not invariant under conjugation.
That is, if L is linear, then the deg(L) = 1, but if f is a polynomial automorphism, then in general
deg(f ◦ L ◦ f−1) ≥ 1, and with suitable choice of f , this degree can be arbitrarily large. The
behavior of deg under composition is deg(f ◦ g) ≤ deg(f)deg(g). Thus we may define the
dynamical degree as

δ(f) := lim
n→∞

deg(fn)1/n.

It follows that δ(f) = δ(h−1 ◦ f ◦ h), so the dynamical degree is invariant under conjugation.
The condition δ > 1 corresponds to exponential growth of degree under iteration, and this may be
viewed as “degree complexity.” Let us consider two examples:

h(x, y) = (y, ϕ(y)− αx), k(x, y) = (x, y + ϕ(x)), (1)

where ϕ is a monic polynomial. We see that the iterative behavior of the two maps in (1) is
rather different: δ(h) = deg(ϕ), and δ(k) = 1. The following result from [8] gives a satisfying
characterization of the situation for polynomial automorphisms of C2:

Theorem 1.1. If f is a polynomial automorphism of C2 with δ(f) > 1, then f is conjugate
to a map of the form h1 ◦ · · · ◦ hj , where hi = (y, ϕi(y) − αix). In particular, δ(f) =
deg(ϕ1) · · · deg(ϕj) is an integer.
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The maps hi that appear in the Theorem are called generalized Hénon maps. The Hénon represen-
tation achieves minimal degree, and this representation is an essentially unique representative of
the conjugacy class. Thus if we have a Hénon representative, we know the dynamical degree. As
will be seen in Theorem 6.1 below, the fact that δ(f) is an integer prevents f from being conjugate
to a compact surface automorphism.

Now let us consider maps of projective space. Let (f0, . . . , fk) be a k+1-tuple of polynomials
which are homogeneous of degree d. We may assume that the fi have no common factor. The set
I(f) := {x ∈ Pk : f0(x) = · · · = fk(x) = 0} (which is possibly empty) has codimension at least
2. Then f = [f0 : · · · : fk] : Pk − I(f)→ Pk is holomorphic. At each point p ∈ I(f), however,
f is discontinuous and in fact “blows up” p to a set of positive dimension. A topological fact is
that the cohomology groupsH2(Pk;Z) andH1,1(Pk;Z) are both isomorphic to the Picard group
Pic(X). The Picard group is the set Div(X)/ ∼ of integral divisors modulo linear equivalence.
That is, a divisor D is linearly equivalent to zero if D = div(h), where h denotes a rational (or
meromorphic) function h on X , and div(h) = Zeros(h) − Poles(h) is the associated divisor.
Pic(Pk) is generated by the class of a hyperplane H = {

∑
cjxj = 0}. To see this, suppose that

V = {P = 0} is the zero set of a polynomial of degree m, then for 0 ≤ j ≤ k, h := P/xmj is a
well defined rational function, which shows that [V ] = m[H] in Pic. The action of f∗ on Pic is
composition: f∗{P = 0} = {P ◦ f = 0}, so f∗[H] = d · [H].

More generally, if π : X → Pk is a blowup space, then we have the induced map fX :=
π−1 ◦ f ◦ π on X . We have well-defined pullback maps f∗ on H1,1(P2) and f∗X on H1,1(X). We
can use f∗ to define the degree of f . We can use either f∗ or f∗X to define the dynamical degree:

δ(f) = lim
n→∞

||(fn)∗||1/n, (2)

where || · || denotes any norm on H1,1(X), H2(X), or in nice cases, Pic(X).
In particular if X is a compact manifold, the formula (2) can be used to define δ(f) for any

meromorphic map f : X → X . The following is evident:

Proposition 1.2. If (fn)∗ = (f∗)n on H1,1 for n > 0, then δ(f) is the spectral radius of f∗, i.e.,
the modulus of the largest eigenvalue of f∗. In this case, δ(f) is an algebraic integer.

2 Finding automorphisms by blowing up space

Let us illustrate this with maps of the form

fa,b(x, y) =

(
y,
y + a

x+ b

)
for fixed constants a and b. This family is conjugate (via affine transformations) to the family
Fα,β(x, y) = (y, y/x) + (α, β), and we are free to work with the maps in either form. fa,b is a
birational map of the plane, and we may extend fa,b to a compactification of the plane. We start
by extending it to the projective space P2 = {[x0 : x1 : x2]} with (x, y) ↔ [1 : x : y]. Thus
P2 = C2 ∪ L∞, where L∞ = {x0 = 0} is the line at infinity. In homogeneous coordinates we
have

fa,b[x0 : x1 : x2] = [x0(x1 + bx0) : x2(x1 + bx0) : x0(x2 + ax0)].
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In order to understand the map fa,b, we will try to see whether there is a “better” compactifi-
cation. We start by observing that there is a triangle of lines which are mapped to points:

L∞ = {x0 = 0} → e1 := [0 : 1 : 0], {x+ b = 0} = {bx0 + x1 = 0} → e2 := [0 : 0 : 1],

{y + a = 0} = {ax0 + x2 = 0} → q := (−a, 0) = [1 : −a : 0].

We have given the lines of the triangle both in coordinates (x, y) on C2 and [x0 : x1 : x2] on P2.
The points e1, e2 and p := (−b,−a) are indeterminate. The point e2, for instance, is contained in
both {x + b = 0} and L∞, so it must blow up to a connected set containing the images of both
of these lines. In this case we have the simplest possibility: e2 blows up to {x0 = 0}, the line
through e2 and e1.

We describe the operation of blowing up the origin (0, 0) ∈ C2. We define

Ĉ2 = {(x, ξ) = ((x1, x2), [ξ1 : ξ2]) ∈ C2 ×P1 : x1ξ2 = x2ξ1}

and π(x, ξ) = x. We say that π : Ĉ2 → C2 is the blowup map, and the blowup space Ĉ2

is a (smooth) complex manifold with the properties: E := π−1(0, 0) is equivalent to P1, and
π : Ĉ2 − E → C2 − (0, 0) is biholomorphic. Ĉ2 is covered by the open sets {ξj 6= 0}, j = 1, 2.
If ξ1 6= 0, then we may suppose that ξ1 = 1 and represent this open set by the coordinate chart
C2 3 (t, η) → (x, ξ), where x = (t, tη) and ξ = [1 : η]. In this coordinate chart, we have
E ∩ {ξ1 6= 0} = {t = 0}.

The blowup is a local operation, and we may construct a manifold π : X → P2 by blowing
up P2 at the points e1 and e2. Here we use the notation Ej = π−1ej . The blowup space X is
defined by the properties: π : X − (E1 ∪ E2)→ P2 − {e1, e2} is biholomorphic, and Ej ∼= P1,
for j = 1, 2. To work in a coordinate chart at E2 we let π̃ : X → P2 be given by π̃((x0, x1), [ξ0 :
ξ1]) = [x0 : x1 : 1] be the blowup map over (x0, x1) = (0, 0) = [0 : 0 : 1]. The coordinate chart
for ξ0 6= 0 is given by C2 3 (t, η) → (x, ξ) with x = [t : tη : 1]. Thus the inverse is given by
π̃−1[x0 : x1 : 1] = (t = x0, η = x1/x0).

Since π is a birational map, we have an induced map fX := π−1 ◦ f ◦ π : X → X . Now we
show that the map fX sends {x+ b = 0} to E2. For this we write

f : C2 → P2, f(x, y) =

[
1 : y :

y + a

x+ b

]
=

[
x+ b

y + a
:
y(x+ b)

y + a
: 1

]
.

so π̃−1f(x, y) = (t = (x+ b)/(y + a), η = y). This means that {x+ b = 0} is taken to {t = 0},
i.e., to E2.

A similar computation shows that fX is a smooth mapping from E2 to L∞ = {x0 = 0}. This
time we write π̃(t, η) = [t : tη : 1] = [1 : η : t−1]. Thus we have

fX : (t, η) 7→ f(π̃(t, η)) = f(η, t−1) =

[
1 : t−1 :

t−1 + a

η + b

]
=

[
t : 1 :

1 + at

η + b

]
.

Thus fX takes E2 = {t = 0} to {x0 = 0}, and fX is smooth for η 6= −b.
If p ∈ P2 − {e1, e2}, we write p for its image π−1p in X and we let {y + a = 0} denote the

closure in X of the image π−1{y+ a = 0}. Arguing as above, we find that {x+ b = 0} → E2 →
L∞ → E1, and:
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Proposition 2.1. The only indeterminate point for fX is p, and the only exceptional curve (i.e.,
the only curve which maps to a point) is {y + a = 0}.

Now we define a subset of parameter space

Vn := {(a, b) ∈ C2 : fnX(q) = p} = {(a, b) ∈ C2 : fna,b(−a, 0) = (−b,−a)}.

The following is from [3]:

Theorem 2.2. Fix n ≥ 0. Then (a, b) ∈ Vn if and only if there is a space π : Y → X such that
fY is an automorphism of Y .

Suppose that (a, b) ∈ Vn. Define Qj := f jX(q) for 0 ≤ j ≤ n. Now let π : Y → X denote
the manifold obtained by blowing up the points q0, q1, . . . , qn. We write Qj := π−1qj . If we write
local charts as we did for the case {x+ b = 0}, we see that the set {y+ a = 0} is not exceptional
for fY . Similarly, working as we did at E2 above, we see that fY is not indeterminate at P = Qn.
We saw already that fX is a local diffeomorphism at all the intermediate points qj , so fY is a local
diffeomorphism at Qj .

3 Finding the degree

If X is a space obtained by blowing up P2, then the cohomology groups H2(X;Z) and

H1,1(X;Z) := H1,1(X;C) ∩H2(X;Z)

are both isomorphic to the Picard group Pic(X). The Picard group is the set Div(X)/ ∼ of
integral divisors modulo linear equivalence. It is a standard fact that if π : X → P2 is the blow
up of P2 at distinct points p1, . . . , pN , then a Z-basis for Pic(X) is given by HX , P1, . . . , PN ,
where HX = π−1L is the class of any line L which is disjoint from all the pj , and Pj is the class
of the divisor π−1pj . If C ⊂ P2 is any curve, then we let [C]X denote its class in Pic(X). Thus
π∗[C]X = m ·HX +

∑
µjPj , where m denotes the degree of C, and µj is the multiplicity of C

at pj . (If pj /∈ C, then µj = 0.)
If f : X → X is a rational map, then the pullback map f∗X is a well-defined linear map of

Pic(X). We will consider f∗X = (mi,j) as a matrix with integer entries with respect to the ordered
basis HX , P1, . . . , PN . Thus

f∗[L] = m1,1[L] + linear combination of P1, . . . , PN .

Proposition 3.1. The entry m1,1 in f∗X is the degree of f .

In particular, we conclude that if (fnX)∗ = (f∗X)n, then the degree of fn is the (1,1)-entry of
the matrix (mi,j)

n and thus satisfies a linear recurrence.
Now we consider the space X obtained in the previous paragraph by blowing up e1 and e2.

The induced map f∗ on Pic(X) acts according to

E1 → L∞ → E2 → [x+ b = 0].

Thus, f∗ : E1 → HX − E1 − E2 and E2 → HX − E2.
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Next we need to determine what f∗X does to HX . We start by looking at P2; since f has
degree 2, f−1H is a quadric. Both centers of blowup are indeterminate and blow up to lines. Thus
a general line H ⊂ P2 intersects each of these blowup images with multiplicity one, so f−1H is
a quadric which goes through both e1 and e2. In terms of divisors, this means that

f∗XHX = 2HX − E1 − E2.

With respect to this basis we have

f∗X =

 2 1 1
−1 −1 0
−1 −1 −1

 .

Let us suppose that (a, b) ∈ Vn and let π : Y → X to be the blowup of the points q0, . . . , qn
as in the previous paragraph. Thus Pic(Y ) = 〈HY , E1, E2, Qn, Qn−1, . . . , Q1〉. As above, the
exceptional fibers are mapped as

fY : P = Qn → Qn−1 → · · · → Q1 → {y + a = 0}.

In terms of divisors we have [y+a = 0]Y = HY −P−E1 and [x+b = 0]Y = HY −E1−E2−P ,
and f∗YHY = HY −E1−E2−P . The difference between [·]X and [·]Y arises because the curves
may contain different centers of blowup. Thus with respect to this ordered basis of Pic(Y ), we
have

f∗Y =



2 1 1 1
−1 −1 0 −1
−1 0 −1 0

0 −1
1 0

1 0
1 0


.

Proposition 3.2. The characteristic polynomial of the matrix above is

χn(t) = tn+1(t3 − t− 1) + t3 + t2 − 1.

If λn denotes the largest root of χn, then λ7 > 1, and λn is increasing in n.

We conclude that if (a, b) ∈ Vn, then δ(f) = λn, and thus δ(f) > 1 if n ≥ 7.

4 Matrix inversion and variations

LetMq denote the space of q× q matrices, and let P(Mq) =M∗q/C∗ denote its projectivization.
We consider the mapping J defined on q × q matrices by component-wise inversion: J(xi,j) =
(1/xi,j). J is clearly smooth at the matrices x for which the entries are all nonzero. We may
also write J as a matrix of polynomials by setting J(x) = (x−1i,j

∏
x), where

∏
x :=

∏
(µ,ν) xµ,ν

is the product of all of the entries of x. Thus we see that J has degree q2 − 1 on P(Mq). We
let I(xi,j) = (xi,j)

−1 be the usual matrix inversion. Recall the familiar formula for I(x) as
the quotient of the classical adjoint, formed from the (q − 1) × (q − 1) minors, divided by the
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determinant. From this we see that I has degree q − 1 as a self-map of P(Mq). Both of the
maps I and J are rational involutions, defined and regular on dense subsets of P(Mq). We will
be concerned with the map K = I ◦ J which is a birational map, and I−1 ◦ K ◦ I = K−1, so
K is reversible, in the sense of being conjugate to its inverse. To suggest that there is subtlety in
composing these maps, we note that:

Proposition 4.1. The degree of K = I ◦ J is q2 − q + 1 < max(deg(I),deg(J)).

The map K was studied by Anglès d’Auriac, Maillard, and Viallet [1], as well as the restric-
tions of K to the subspaces Sq of symmetric matrices, and to Cq of cyclic matrices, which have
the form 

a0 a1 . . . aq−1
a0 a1
. . . . . .

a1 a2 . . . a0

 .

Based on their analysis (largely numerical) of these maps, they conjectured the following:

Theorem 4.2. The dynamical degrees of all three maps coincide:

δ(K) = δ(K|Sq) = δ(K|Cq),

and this number is the largest root of t2 − (q2 − 4q + 2)t+ 1.

This Theorem was proved as a combination of results in [5] and [12]. We note that passing to
a linear subspace does not increase the degree, so the inequalities δ(K) ≥ δ(K|Sq) and δ(K) ≥
δ(K|Cq) follow easily. The restriction K|Cq introduces symmetries that make the map much easier
to deal with. On the other hand, the additional symmetries make the restriction K|Sq harder to
deal with than the unrestricted K. The set of symmetric, cyclic matrices SCq = Sq ∩ Cq is also
invariant under K. This introduces all of the symmetries of Cq as well as Sq, so there are different
sorts of symmetries. The map q 7→ δ(K|SCq) depends on q in a more complicated way (see [4]).

5 The maps I , J and K

The maps I and J are involutions, so δ(I) = δ(J) = 1. We discuss the process of regularizing
them by blowing up. We define the set Σi,j to be the set of matrices for which the (i, j)-entry
vanishes. Similarly, we let ei,j denote the matrix for which all entries are zero except in the
location (i, j). Now we consider J as a map of P(Mq). J is regular at each x = (xi,j) for which
all the entries xi,j 6= 0. We see that J(Σi,j − I(J)) = ei,j . Conversely, since J = J−1, we see
that J blows ei,j up to Σi,j . Given a point x = (xi,j), we let T (x) be the set of all (i, j) such
that x ∈ Σi,j . Then J blows up x to the linear subspace generated by {ei,j : (i, j) ∈ T (x)},
which is

⋂
(µ,ν)/∈T (x) Σµ,ν . For instance, if xi1,j1 = xi2,j2 = 0, and if all other entries of (xi,j) are

nonzero, then J blows up x to the line passing through ei1,j1 and ei2,j2 . J is indeterminate at the
sets Σi1,j1 ∩ Σi2,j2 for which (i1, j1) 6= (i2, j2). In fact,

I(J) =
⋃

(i1,j1)6=(i2,j2)

Σi1,j1 ∩ Σi2,j2 . (3)
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Now we define the space π : X → P(Mq) in which all points ei,j ∈ P(Mq), 1 ≤ i, j ≤ q,
are blown up. The fiber π−1ei,j ∼= Pq2−2 is the projectivization of the normal bundle to P(Mq) at
ei,j . (The space of tangent vectors normal to a point is the space of all tangent vectors at that point.)
That is, if ν is a vector normal to ei,j , then the curve t 7→ π−1(ei,j + tν) lands at a unique point
ν̂ ∈ Ei,j as t→ 0. The space Pic(X) is spanned by the class of a general hypersurface HX ⊂ X
and the classes of exceptional divisors Ei,j . To define the map J∗X : Pic(X)→ Pic(X), we start
with the observation that J−1Ei,j = Σi,j , so the class Ei,j is taken to the class of Σi,j in Pic(X).
Since the class of Σi,j is the same as a general hypersurface HX , except that it is missing the Eµ,ν
for all (µ, ν) 6= (i, j), we have

Ei,j 7→ HX −
∑

(µ,ν)6=(i,j)

Eµ,ν . (4)

It remains to determine J∗(HX). On P(Mq) we have J∗H = (q2 − 1)H . This is because if
we represent H =

∑
ci,jxi,j as a linear function, then J∗H =

∑
ci,jJi,j =

∑
i,j ci,jx

−1
i,j

∏
x is

represented by the linear combination of the coordinates of J . At the point e1,1, for instance, the
(1,1) component of J vanishes to order to q2−2, and the other components vanish to order q2−1.
Thus if all the ci,j are non-vanishing, we see that the multiplicity (order of vanishing) of J at the
point eµ,ν is q2 − 2. Thus we have

J∗(HX) = (q2 − 1)HX − (q2 − 2)
∑
µ,ν

Eµ,ν . (5)

Proposition 5.1. The equations (4) and (5) together determine the linear map J∗X on Pic(X).

More details of proof can be found in [2].
Now we discuss the map I briefly. The matrix x = diag(0, λ2, . . . , λq) ∈ P(Mq) is mapped

to I(x) = diag(1, 0, . . . , 0). More generally, if x has rank q − 1, then we let v ∈ Cq gen-
erate the kernel, and we let w be an element of the dual space Cq∗ such that its kernel is the
range of x. It may be shown that for matrices of rank q − 1, the inverse I (projectively), inter-
changes kernel and range, so I(x) = v ⊗ w = (viwj) is a matrix of rank 1. In particular, the
set Rq−1 := {x ∈ P(Mq) : det(x) = 0} is the exceptional hypersurface for I , and the im-
age I(Rq−1) = R1 is the set of matrices of rank 1. To regularize I , we construct the manifold
π : Z → P(Mq), which blows up the set R1 of rank 1 matrices. Let R1 := π−1(R1) denote
the exceptional divisor. Near the point x0 := diag(1, 0, . . . , 0), the set of rank 1 matrices are
parametrized by (x2, . . . , xq, y2, . . . , yq) 7→ x̂t⊗ ŷ := (1, x2, . . . , xq)

t⊗ (1, y2, . . . , yq). The fiber
π−1x0 can be interpreted as the (projectivized) (q − 1)× (q − 1) matrices

ξ̂ :=


0 0 . . . 0
0 ξ2,2 . . . ξ2,q

0
...

...
0 ξq,2 . . . ξq,q

 ,

and a point near the fiber over x0 is given by x̂t ⊗ ŷ + sξ̂ for some scalar s ∈ C.

Proposition 5.2. The map IZ := π−1 ◦ I : P(Mq) → Z is a local diffeomorphism at generic
points of Rq−1. Further, IZ is regular at all points of Rq−1 with rank q− 1, and IZ is a birational
map from Rq−1 toR1.
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Finally we turn to the map K = I ◦ J . Let us define Ai,j to be the set of all matrices (x`,m)
whose entries are zero everywhere on the i-th row and the j-th column. This is a linear subspace of
P(Mq). We find thatK(Σi,j) = Ai,j . Thus we will need to work with the space π : X → P(Mq)
in which all the subspaces Ai,j are blown up, and R1 = J(R1) is blown up, in addition. We let
KX := π−1 ◦ K ◦ π be the induced map of X . In the new space X , Σi,j is not exceptional for
KX . Let us define the subsetsAi,j := π−1Ai,j . We find that KX mapsAi,j to Bj,i := Aj,i∩Σj,i.
So each Ai,j is exceptional. We now construct the space π : Y → X in which all the subsets
Bi,j ⊂ X are blown up. Working with the induced map KY we can determine the dynamical
degree δ(K). Further details are in [5].

6 Intermediate degrees

In the case of projective space X = Pk, we let ω denote a positive, closed (1,1)-form. Thus ω
defines a Kähler metric on Pk. We write the exterior powers as ωp = ω ∧ · · · ∧ ω and set βp :=
ωp/p! . Let M ⊂ Pk be a compact complex submanifold of codimension p. Let us normalize ω
so that

∫
Pk ω

k/k! =
∫
Pk βk = 1. With this normalization, the volume of a (linear) hyperplane H

with respect to the metric ω is Vol(H) =
∫
H βk−1 = 1. It is a classical result that the codimension

2p volume of M (with respect to the metric defined by ω) is given by Vol(M) =
∫
M βp. Thus

we have the identity between volume and cohomology class, and we use this to define degree in
codimension p. Specifically, if Lp is a linear subspace of codimension p, then the class {Lp}
generates Hp,p(Pk;Z), and the classes {Lp} = {βp} are equal. So the class {M} is a multiple of
this class, and we use this to define the degree:

{M} = degp(M) {Lp} where degp(M) =

∫
M
βp.

This remarkable identity between degree, volume and topology serves to extend the previous def-
inition of degree to intermediate dimensions.

For a rational map f : X → Y , there is a well-defined map on all cohomology groups
f∗ : Hp,q(Y ) → Hp,q(X). When X = Pk, we may use this to define the degree degp by the
equation degp(f) {βp} = f∗{βp}. This is given as an integral:

degp(f) =

∫
Pk

βk−p ∧ f∗βp.

The quantity degp is not invariant under conjugacy. However, we see that

degp(f ◦ g) ≤ degp(f)degp(g),

so we can define the dynamical degree as δp(f) := limn→∞
(
degp(f

n)
)1/n. If ϕ is a birational

map of Pk, then we have δp(f) = δp(ϕ
−1 ◦ f ◦ ϕ).

For general X is it natural to define the intermediate dynamical degrees by setting

δp(f) := lim
n→∞

||fn∗|Hp,p ||1/n.

In fact, if f is holomorphic, then (fn)∗|Hp,p = (f∗|Hp,p)n. Thus δp(f) is the spectral radius
of f∗|Hp,p . In this case δp is an algebraic integer for all p. It is natural to ask whether δp is an
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algebraic integer when f is merely rational. The material above was taken from Russakovskii and
Shiffman [11], and the reader is invited to consult the original paper.

It is clear that the same definition applies to meromorphic maps of complex manifolds. In the
case of a compact, Kähler manifold, it is classical that p 7→ log δp(f) is concave in p. We have
δ0(f) = 1 and δk(f) ≥ 1 for all maps. Thus if δ`(f) > 1 for some 0 < ` ≤ k, the concavity
implies we have δp(f) > 1 for all 0 < p < k.

The following was obtained jointly with Jan-Li Lin:

Theorem 6.1. If f is an automorphism of a compact, Kähler manifold, and if δ`(f) > 1 for some
0 < ` < k, then δp(f) is irrational for all 0 < p < k.

Proof. By the remark above, we have δp(f) > 1 for all 0 < p < k. Let us suppose that
δp(f) is rational. If f is an automorphism of X , then δp(f) is the spectral radius (modulus of the
largest eigenvalue) of f∗|Hp,p . Since Hp,p is an invariant subspace of H2p(X;C), an eigenvalue
of this restriction will also be an eigenvalue of f∗ acting on H2p(X;C). Since f∗ also preserves
H2p(X;Z) we may consider f∗ as a matrix with integer coefficients. The characteristic polyno-
mial χ(x) of f∗ is monic. Thus all eigenvalues of f∗ are algebraic integers. Let µ be an eigenvalue
with maximum modulus.

If µ is real, then µ = ±δp(f) is rational. It is elementary that every rational, algebraic integer
actually belongs to Z. Now, since f∗ is an invertible, integer matrix, its determinant is ±1. Thus
the characteristic polynomial has the form χ = xm + · · · ± 1. On the other hand, since µ is
an integer zero of χ, (x − µ) is a factor of χ(x). This means that χ(x) = (x − µ)p(x) =
(x− µ)(xm−1 + · · ·+ c0) = xm + · · · − µc0 = xm + · · · ± 1. This is not possible since c0 is an
integer, and |µ| > 1.

If µ is not real, then we have |µ| = |µµ̄|1/2 = δp(f), which is assumed to be rational. Now
let α3, . . . , αm denote the other roots of χ. Since these are algebraic integers, it is elementary
(see [10]) that their product α3 · · ·αm is also an algebraic integer. Since µµ̄α3 · · ·αm = ±1,
we conclude that both µµ̄ and α3 · · ·αm are rational. Since, in addition, these are both algebraic
integers, they both are integers. But this contradicts the assumption that |µ| > 1.

7 Monomial maps

The intermediate dynamical degrees are important for understanding the dynamical behavior.
They are invariant under birational conjugacies in the following strong sense: If ϕ : X → Y
is birational, and if g := ϕ−1 ◦ f ◦ϕ, then δp(f,X) = δp(g, Y ) (see [6]). In the same paper, Dinh
and Sibony give an estimate on the topological entropy of f :

htop(f) ≤ log max(δ1(f), . . . , δk(f)).

In case f is holomorphic, this is known to be an equality. And if f is holomorphic, then f∗ on
Hp,p, is represented by an integer matrix. The degree δp will be the spectral radius of this matrix
and thus an algebraic integer. On the other hand, it is a different matter to try to find δp for maps
which do not satisfy (f∗)n = (fn)∗ on Hp,p.

So far, the only nontrivial class on which δp has been computed is the monomial maps. Let
A = (ai,j) be a k × k matrix with integer entries. We let

fA(x) =

∏
j

x
a1,j
j , . . . ,

∏
j

x
an,j

j


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be the monomial map defined by A. It is easily seen that fnA = fAn , so the iterates are easily
given. Further, fA is a well defined rational map of Pk, and f∗A[Lp] = degp(fA)[Lp]. In fact, this
number is given by an integral: degp(f) =

∫
βk−p∧f∗βp. The number δp would then be the limit

of (degp(f
n))1/n as n → ∞. Although this approach is simple to describe, it seems not to be so

simple to carry out.
A useful approach to finding the number δp in the case of monomial maps is to change the

space X = Pk to the space Y = (P1)k = P1 × · · · ×P1, which is birationally equivalent to X .
We may let [xj : yj ] be homogeneous coordinates on the j-th factor of P1. Then a basis for Hp,p

is given by the classes LI = {xi1 = · · · = xip = 0}, where I = (i1, . . . , ip) is a p-tuple of indices
1 ≤ ij < · · · < ip ≤ k. (Of course, these are the same as the classes {ζi1 = · · · = ζip = 0},
where each ζj is either xj or yj .) We consider {LI} as an ordered basis for Hp,p(Y ). Given a
matrixM = (mi,j) let us use the notation |M | := (|mi,j |) for the matrix consisting of the absolute
values of the entries of M . The action of f∗A on Hp,p(Y ) now has a simple description (see [9]):

Proposition 7.1. Let M :=
∧pA denote the p-th exterior power of the matrix A. Then when we

write the basis 〈LI〉 suitably, the action f∗A|Hp,p is given by |M |.

While we are working with (P1)k, it is useful to consider the degree as the matrix Degp(f)

which represents f∗Hp,p . For instance,A =

(
1 −1
−2 −3

)
, so we have fA(x1, x2) = (x1/x2, x

−2
1 x−32 ).

In homogeneous coordinates, this becomes

fA : [x0 : x1 : x2] 7→ [x21x
3
2 : x31x

2
2 : x50],

so deg1(fA) = 5, and Deg1(fA) =

(
1 1
2 3

)
.

Now let us write the eigenvalues of A as µ1, . . . , µk, where |µ1| ≥ |µ2| ≥ · · · ≥ |µk|. The
following result, obtained independently by C. Favre and E. Wulcan [7], and J-L Lin [9], gives the
dynamical degrees:

Theorem 7.2. The dynamical degrees are δp(fA) = |µ1 · · ·µp|, 1 ≤ p ≤ k.

The idea of why the Theorem follows from the Proposition is as follows. The exterior product
is (
∧pA)(v1 ∧ · · · ∧ vp) := (Av1) ∧ · · · ∧ (Avp). If vi is an eigenvector satisfying Avi = µivi,

then (
∧pA)(v1 ∧ · · · ∧ vp) = (µ1 · · ·µp)v1 ∧ · · · ∧ vp. The size of

∧p(An), and thus |
∧p(An)|,

can be estimated above and below by |µ1 · · ·µp|n, which gives the claimed exponential growth.
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