Cálculo integral de funciones de una variable

1 La integral de Riemann

Sea $f:[a,b]\subset\mathbb{R}\to\mathbb{R}$ una función acotada en [a,b].

Definición 1 .- Una partición $P = \{t_0, t_1, \dots, t_n\}$ del intervalo [a, b] es una sucesión finita creciente de puntos del intervalo tal que:

$$a = t_0 < t_1 < \dots < t_{n-1} < t_n = b$$

Se define $\Delta t_i = t_i - t_{i-1}$ para i = 1, ..., n. El conjunto de todas las particiones de [a, b] se denota $\mathcal{P}[a, b]$.

Definición 2 .- Si se denotan, para i = 1, ..., n:

$$M_i = \sup\{f(x) : x \in [t_{i-1}, t_i]\}$$

$$m_i = \inf\{f(x) : x \in [t_{i-1}, t_i]\}$$

se define la suma superior de f relativa a la partición P:

$$U(f, P) = \sum_{i=1}^{n} M_i \, \Delta t_i$$

y la suma inferior de f relativa a la partición P:

$$L(f, P) = \sum_{i=1}^{n} m_i \, \Delta t_i$$

Definición 3 .- Se define la integral superior de Riemann de f en [a,b]:

$$\overline{\int_a^b} f = \inf\{U(f, P) : P \in \mathcal{P}[a, b]\}$$

y la integral inferior de Riemann de f en [a,b]:

$$\int_{a_{-}}^{b} f = \sup\{L(f, P) : P \in \mathcal{P}[a, b]\}\$$

Teorema 1 .-

$$\int_{a}^{b} f \le \overline{\int_{a}^{b}} f$$

Definición 4 .- Se dice que f es Riemann integrable en [a,b] (g se denota $f \in \mathcal{R}([a,b])$) si g solo si se da la igualdad:

$$\underline{\int_{a}^{b} f} = \overline{\int_{a}^{b} f}.$$

A este valor se le denomina la integral de Riemann de f en [a,b], y se denota:

$$\int_{a}^{b} f \equiv \int_{a}^{b} f(x) \, dx$$

Teorema 2 .- $f \in \mathcal{R}([a,b])$ si y solo si se satisface la condición de Cauchy-Riemann en [a,b], esto es,

$$\forall \varepsilon > 0, \ \exists P \in \mathcal{P}[a,b] \ tal \ que \ U(f,P) - L(f,P) < \varepsilon$$

2 Propiedades

Principales propiedades de la integral de Riemann:

1. $f \in \mathcal{R}([a,b]), c \in (a,b) \Leftrightarrow f \in \mathcal{R}([a,c]) \text{ y } f \in \mathcal{R}([c,b]).$ Además,

$$\int_{a}^{b} f = \int_{a}^{c} f + \int_{c}^{b} f$$

2. $f,g \in \mathcal{R}([a,b]) \implies f+g \in \mathcal{R}([a,b])$. Además,

$$\int_a^b (f+g) = \int_a^b f + \int_a^b g$$

3. $f \in \mathcal{R}([a,b]), \ \lambda \in R \ \Rightarrow \ \lambda f \in \mathcal{R}([a,b]).$ Además,

$$\int_{a}^{b} (\lambda f) = \lambda \int_{a}^{b} f$$

- 4. $f, g \in \mathcal{R}([a, b]), f(x) \leq g(x), \forall x \in [a, b] \implies \int_a^b f \leq \int_a^b g$
- 5. $f \in \mathcal{R}([a,b]) \Rightarrow |f| \in \mathcal{R}([a,b])$. Además,

$$\left| \int_{a}^{b} f \right| \leq \int_{a}^{b} |f|$$

- 6. $f, g \in \mathcal{R}([a, b]) \Rightarrow fg \in \mathcal{R}([a, b]).$
- 7. $f, g \in \mathcal{R}([a, b]), |g(x)| \ge c > 0, \forall x \in [a, b] \Rightarrow \frac{f}{g} \in \mathcal{R}([a, b]).$

3 Funciones Riemann integrables

Teorema 3 .- Toda función $f:[a,b] \subset \mathbb{R} \to \mathbb{R}$ monótona y acotada en [a,b] es Riemann integrable en [a,b].

Teorema 4 .- Toda función $f : [a,b] \subset \mathbb{R} \to \mathbb{R}$ continua en [a,b] (salvo, a lo sumo, en un conjunto de contenido cero, por ejemplo, un conjunto finito de puntos o una sucesión convergente) y acotada es Riemann integrable en [a,b].

Corolario 1 .- Sean dos funciones $f, g : [a, b] \subset \mathbb{R} \to \mathbb{R}$ tales que el conjunto de puntos donde ambas son distintas

$$A = \{x \in [a, b] : f(x) \neq g(x)\}$$

tiene contenido cero. Entonces, f es Riemann integrable en [a, b] si y sólo si g también lo es. Además, en este caso,

$$\int_a^b f = \int_a^b g \ .$$

4 Teoremas fundamentales del Cálculo Integral

Teorema 5 (Primer Teorema Fundamental del Cálculo Integral) .- Sea f acotada y Riemann integrable en [a,b]. Entonces: (a) La función $F:[a,b] \subset \mathbb{R} \to \mathbb{R}$ definida por:

$$F(x) = \int_{a}^{x} f(t) dt$$

es continua en [a, b].

(b) Si además f es continua en $x_0 \in [a, b]$, se tiene que F es derivable en x_0 , y verifica:

$$F'(x_0) = f(x_0)$$

Definición 5 .- Dada $f:[a,b] \subset \mathbb{R} \to \mathbb{R}$, se dice que una función $F:[a,b] \subset \mathbb{R} \to \mathbb{R}$ derivable en [a,b] es una primitiva de f en [a,b] si g solo si

$$F'(x) = f(x), \quad \forall x \in [a, b]$$

Si F es una primitiva de f en [a,b], y le sumamos una constante $c \in \mathbb{R}$, la función resultante F+c también es una primitiva de f en [a,b]. Se denomina integral indefinida de f al conjunto de todas sus primitivas, y se suele denotar $\int f(x) \, dx$.

Corolario 2 .- Sean $f \in \mathcal{R}([a,b]), g,h:[a,b] \to [a,b]$ derivables en [a,b]. Entonces:

(a) La función $F:[a,b] \subset \mathbb{R} \to \mathbb{R}$ definida por:

$$F(x) = \int_{q(x)}^{h(x)} f(t) dt$$

es continua en [a,b].

(b) Si además f es continua en $x_0 \in [a, b]$, se tiene que F es derivable en x_0 , y verifica:

$$F'(x_0) = f(h(x_0)) h'(x_0) - f(g(x_0)) g'(x_0)$$

Teorema 6 (Teorema del Valor Medio del Cálculo Integral) .-Sea $f \in \mathcal{R}([a,b])$ y acotada, donde:

$$m = \inf\{f(x) : x \in [a, b]\}$$

$$M = \sup\{f(x) : x \in [a, b]\}$$

Entonces $\exists c \in [m, M] \ tal \ que \int_{a}^{b} f = c(b - a).$

Si además f es continua en [a,b], se tiene que $\exists x_0 \in [a,b]$ tal que $\int_a^b f = f(x_0)(b-a)$.

Teorema 7 (Segundo Teorema Fundamental del Cálculo Integral. Regla de Barrow) .- Sea $f \in \mathcal{R}([a,b])$ y sea F una primitiva de f en [a,b]. Entonces:

$$\int_{a}^{b} f(x) dx = F(b) - F(a)$$

Teorema 8 (Integración por partes) .- Sean $f, g \in C^1([a,b])$. Entonces:

$$\int_{a}^{b} f(x) g'(x) dx = [f(x) g(x)]_{a}^{b} - \int_{a}^{b} f'(x) g(x) dx$$

Observación 1 .- Para en caso de integrales indefinidas se tiene:

$$\int f(x) g'(x) dx = f(x) g(x) - \int f'(x) g(x) dx$$

o, en una escritura equivalente más habitual,

$$\int u \, dv = u \, v - \int v \, du$$

Teorema 9 (Integración por cambio de variable) .- Sean $f \in \mathcal{R}([a,b])$, $g:[c,d] \subset \mathbb{R} \to \mathbb{R}$ tal que $g \in \mathcal{C}^1([c,d])$ y $g([c,d]) \subset [a,b]$. Entonces, si $f \in \mathcal{C}(g([c,d]))$ o bien $g'(x) \neq 0$, $\forall x \in [c,d]$, se tiene que:

$$\int_{c}^{d} f(g(x)) g'(x) dx = \int_{g(c)}^{g(d)} f(t) dt$$

(Se dice que se ha realizado el cambio de variable t = g(x).)

5 Integrales impropias

Definición 6 .- Se denomina integral impropia de primera especie a la integral de una función f acotada en un intervalo $I \subset \mathbb{R}$ no acotado, esto es, $\int_a^{\infty} f$, $\int_{-\infty}^b f$, $\int_{-\infty}^{\infty} f$.

Definición 7 .- Sea $f:[a,\infty)\subset\mathbb{R}\to\mathbb{R}$, f acotada, $f\in\mathcal{R}([a,t])$, $\forall t>a$. Se define la integral impropia de primera especie de f en $[a,\infty)$ como:

$$\int_{a}^{\infty} f(x) dx = \lim_{t \to \infty} \int_{a}^{t} f(x) dx$$

- (a) Si este límite existe y es finito, la integral impropia se dice convergente.
 - (b) Si existe, pero no es finito, se dice divergente.
 - (c) Si el límite no existe, se dice oscilante.

Definición 8 .- Se denomina integral impropia de segunda especie a la integral de una función f no acotada en un intervalo acotado I = [a, b].

Definición 9 .- Sea $f:[a,b) \subset \mathbb{R} \to \mathbb{R}$ tal que $\lim_{x\to b^-} f(x) = \pm \infty$, $f \in \mathcal{R}([a,t])$, $\forall t \in (a,b)$. Se define la integral impropia de segunda especie de f en [a,b] como:

$$\int_a^b f(x) dx = \lim_{t \to b^-} \int_a^t f(x) dx$$

- (a) Si este límite existe y es finito, la integral impropia se dice convergente.
 - (b) Si existe, pero no es finito, se dice divergente.
 - (c) Si el límite no existe, se dice oscilante.