Publ. Mat. (2014), 309-331
Proceedings of New Trends in Dynamical Systems. Salou, 2012.
DOI: 10.5565/PUBLMAT_Extrald_17

DELAYED LOGISTIC POPULATION MODELS
REVISITED

EpuarDO Liz

Dedicated to Professor Jaume Llibre on the occasion of his 60th birthday

Abstract: We discuss the global dynamics of some logistic models governed by delay-
differential equations. We focus on models of exploited populations, and study the
changes in the dynamics as the harvesting effort is increased. We get new results and
highlight the link among different logistic equations usually employed in population
models.

2010 Mathematics Subject Classification: 34K18, 34K20, 92D25.

Key words: Logistic models, delay-differential equations, population dynamics, one-
dimensional maps, stability, bifurcation, periodic solutions.

1. Introduction

Perhaps the best known ordinary differential equation is the Verhulst
(logistic) equation

(1.1) 2 (t) = ra(t) (1 - x;?) ,

where r and K are positive constants. Although this equation has been
employed in many disciplines, it was originally designed to study the
growth of populations with an intrinsic growth rate r and a saturation
level K (for historical notes on this equation, see [24, 35]). It is this
framework of population dynamics the one we are interested in.

Throughout this paper we shall assume that K = 1. This simplifica-
tion can be done by a simple change of variables, and it does not affect
the dynamics of (1.1).

We will assume that part of the population is removed at a rate pro-
portional to the population size, so we get a different form of the Verhulst
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equation
(1.2) 2/ (t) = =dx(t) + rz(t)(1 — z(t)),

with 6 > 0.

In a recent paper, Geritz and Kisdi [14] argued that (1.2) is a form
of the logistic equation in which the parameters are more meaningful:
if (1.2) is used to model the growth of a population with competition
for the available sites, then 6 and r are the per capita death and birth
rates, respectively.

We shall refer to the destruction rate ¢ as the harvesting effort. Actu-
ally, equation (1.2) can be used to model a strategy of harvesting based
on constant effort, that is, the catch is proportional to the population
size [4, 8] (see also [6, 42]). A similar strategy is sometimes used to
control plagues or nuisance species using pesticides.

As it has been emphasized in [14], “the effect of changing model pa-
rameters is of prime interest to gain insight into the dynamical properties
of the system (bifurcation analysis), or to plan interventions concern-
ing natural or exploited populations (management)”. In this paper, we
analyze the response of the system to an increasing harvesting effort,
choosing the culling rate ¢ as the bifurcation parameter. We notice that
d can be regarded as an external control parameter, because managers
can make decisions on the harvesting effort.

It is easy to check that if 6 < r then the only equilibria of (1.2)
are z = 0 and x = 1 — §/r. The latest one is asymptotically stable, and
all solutions x(t) of (1.2) with initial condition zy > 0 converge to it
as t — oco. We will denote this positive equilibrium by K, to emphasize
that ¢ is the bifurcation parameter. If § > r, then z = 0 is the only
equilibrium of (1.1) and attracts all solutions. This means that the
population is driven to extinction if the harvesting effort is greater than
the growth rate r. In summary, the main consequences of harvesting
are a reduction on the population size as ¢ is increased, and extinction
if 6 > r (what is called overharvesting).

Equation (1.2) cannot explain some observations in laboratory popu-
lations; for example, the size of the population cannot oscillate. For this
reason, many modifications of Verhulst equation have been proposed.
One of the usual ingredients to make the logistic equation more realistic
is the consideration of time lags (fecundity rates, necessary time for the
resources to recover, etc). In this paper, we revisit the best known de-
layed logistic models in the context of exploited populations; since they
exhibit a rich dynamics, the effects of harvesting are more than merely
a reduction of the equilibrium size.
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2. The discrete logistic model

A first attempt to explain oscillations in population size was the use
of a discrete analogue of the logistic equation:

(2.1) Tpg1 =T 2n(1 — ).

Although discussed in previous work, the discrete logistic (or quadratic)
equation (2.1) was popularized by Robert M. May in the 70’s (see,
e.g., [36]). This equation is well-known because it is a paradigm of
complex behaviour in simple deterministic mathematical models. De-
pending on the value of 7, the dynamics ranges between a globally stable
equilibrium and chaos (see, e.g., [11, 42]).

If we introduce a proportional harvesting with constant rate v € (0,1)
in (2.1), we get

(2.2) Tpp1 = 1 =Y)rz,(1 —z,) = (r/8) 2, (1 — 24),

where we write § = 1/(1 — ) € (1,00) for the sake of comparison with
other models. Notice that the positive equilibrium of (2.2) is K5 =
1 —§/r, the same as in (1.2).

A new feature of this harvesting model is that the unharvested popu-
lation (6 = 1) can be unstable, and in this case increasing harvesting is
stabilizing. See Figure 1.
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FIGURE 1. Bifurcation diagram of (2.2) for r=4 and § € (1,4].

Since the quadratic map is very well studied, we just mention with-
out further details the following effects of harvesting in the discrete
model (2.2):
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e As in the Verhulst equation, increasing harvesting reduces popu-
lation size, and overharvesting leads to extinction (in a tangent
bifurcation at § = r).

e Increasing harvesting stabilizes an unstable population (after a
period-halving bifurcation at 6 = r/3).

e Increasing harvesting reduces fluctuations in population size (the
difference between the maximum and the minimum values of the
attractor is a monotone nonincreasing function of ).

3. The Hutchinson—Wright equation

In 1948, George Evelyn Hutchinson [22] considered a delay 7 in the
self-regulatory mechanisms of a population governed by the Verhulst
equation. He observed that the time lag induces oscillations, explaining
in this way some natural phenomena in animal populations, as Daphnia
(water flea).

Assuming that the saturation level is K = 1, Hutchinson equation
writes

(3.1) ' (t) =rz(t)(1 —x(t — 7)),

where 7 > 0 is the delay.

Equation (3.1) has been extensively studied, starting with a famous
paper of Edward Maitland Wright [54]. An equivalent form of (3.1) is
known as the Wright equation, so, like other authors, we will adopt the
term Hutchinson—Wright equation for (3.1); see, e.g., [25].

Since our motivation comes from populations dynamics, we only con-
sider nonnegative solutions of (3.1). To be more precise, we introduce
the notion of admissible solutions.

Definition 1. We say that a continuous function ¢: [-7,0] — R is
an admissible initial condition of (3.1) if ¢(¢) > 0 for all ¢t € [—7,0]
and ¢(0) > 0. Solutions of (3.1) corresponding to admissible initial
conditions are called admissible solutions.

It is easy to prove that to an admissible initial condition ¢ corresponds
a unique admissible solution z(t) = z(t, ¢) of (3.1), which is bounded,
positive, and defined on [—7, 00) (see, e.g., [48, Section 5.5]).

The local stability analysis of the equilibrium K = 1 of (3.1) goes
back to a paper of N. D. Hayes [20]. He rigorously proves that K is
asymptotically stable if r7 < 7/2, and it is unstable if r7 > 7/2. This
result is stated without proof in the original Hutchinson’s paper [22,
p. 237).
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Many features are known on the global dynamics of (3.1); see, for
example, Chapters XV and XVI in [12], and the recent surveys [26, 46].
We recall that when r7 = /2, a supercritical Hopf bifurcation occurs
at © = 1, in such a way that the positive equilibrium loses its stability,
and stable periodic orbits appear for r7 > m/2; for a proof, see [48].

Another important property establishes that a Poincaré—Bendixson
Theorem holds [34, 53], and therefore complex dynamics is not possible:
every orbit is bounded and its w-limit set is either an equilibrium or a
periodic orbit.

We do not know any study about the influence of constant effort
harvesting in a population governed by (3.1), that is, for equation

(3.2) ' (t) =rz(t)(1 —z(t — 7)) — dx(t),

where 6 > 0.

A simple change of variables y(t) = r(r — §)~1a(t) transforms (3.2)

into equation

y'(t) = (r=0)y(t)(1 —y(t — 7))

Thus, we get from our previous discussion that the only positive equi-
librium K5 =1 —§/r of (3.2) is asymptotically stable if (r — )7 < 7/2,
and it is unstable if (r — §)7 > w/2. This fact means that if the pos-
itive equilibrium of the unharvested model (3.1) is unstable, that is, if
r7 > /2, it becomes stable as the effort harvesting reaches the critical
value 6* = r —m/(27). At this value, a Hopf bifurcation occurs. We em-
phasize that extensive analytic and numerical results suggest that K is
actually a global attractor of all positive solutions of (3.2) if § < §* (this
statement is popularly known as the Wright conjecture), and there is a
nontrivial periodic solution attracting almost all solutions if § > ¢* (this
postulation is known as the Jones conjecture); for a further discussion,
see [30] and references therein. Numerical simulations suggest that the
amplitude of the attracting periodic solution is a nonincreasing function
of 4.

In summary, as harvesting increases the positive equilibrium is stabi-
lized and there is a reduction in the average and fluctuations in popula-
tion size. Again, overharvesting drives the population to extinction after
a saddle-node bifurcation occurs at 6 = r. We can conclude that the ef-
fects of harvesting in the Hutchinson-Wright equation and the discrete
logistic map are similar; the main difference is that complex behaviour
is not possible in the former one. Figure 2 shows a numerical bifurca-
tion diagram for equation (3.2), taking  as the bifurcation parameter.
We plot the minimum and the maximum values reached by the periodic
solutions. For each value of §, the minimum and the maximum values
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attained by the attracting periodic solution are plotted in blue. The
solid red line represents the average value of the periodic solution, which
matches the positive equilibrium when it is asymptotically stable, and
remains very close to it when it is unstable.
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FIGURE 2. Bifurcation diagram of (3.2) for r=2, 7=2,
and 0 € [1,2.2].

4. The blowfly logistic equation

In this section, we consider an equation that is not as well understood
as the Hutchinson—Wright equation. To help the reader, we split the
section into several subsections, starting with some historical notes.

4.1. History. In 1968, Maynard Smith [40] derived equation
(4.1) 2'(t) = —0x(t) +ra(t —7)(1 —2(t — 7))

to model an age-structured population with two stages: larva and adult.
This model assumes that the adult mortality rate ¢ is constant and the
number of eggs laid by each adult follows the logistic relation. The time
lag T represents the time taken from egg to adult. In 1976, Charles
E. Taylor and Robert R. Sokal [49] investigated the appropriateness of
equation (4.1) to describe oscillations of adult numbers in laboratory
populations of Musca domestica.

Equation (4.1) is in its own right a Verhulst-type delay differential
equation, since for 7 = 0 it becomes equation (1.2). Notice that (1.2) is
also obtained from equation (3.2) with 7 = 0. From a biological point of
view, a drawback of equation (4.1) is that admissible initial conditions
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can produce solutions with unrealistic negative values of the population
size for some model parameters.

In 1978, J. F. Perez, C. P. Malta, and F. A. B. Coutinho [44] gener-
alized equation (4.1) to study oscillations of isolated populations of the
fly Drosophila stutervantis. They performed the stability analysis of the
positive equilibrium in equation

(4.2) z'(t) = =8(x(t)x(t) + blz(t — 7))zt — 7).

Here, the nondecreasing function §(z) is the per capita death rate, and
the decreasing function b(z) is the per capita birth rate. Hadeler [19]
calls (4.2) the blowfly equation. A famous particular case is the Nicholson
blowflies equation studied by Gurney et al. [17]; for more examples,
see [6, 46].

Perez et al. gave some numerical results for (4.2) with constant §, and
b(x) = by — byx if © < bo/by1, and b(z) = 0 if & > by/by. This form of
equation (4.2) can be reduced to

(4.3) 2/ (t) = —6x(t) + ro(t — ) max {1 — z(t — 7),0}.

A generalized form of (4.3) was also used by the International Whaling
Commission, namely

(4.4) 7' (t) = —0x(t) + rz(t — 7) max {1 — z*(t — 1), 0},

where the positive parameter z measures the severity with which the
changes in the population density are registered [7, 37, 42]. This model
was considered by May [37, 38] as a continuous version of a difference
equation investigated in [7], which is referred to as the Clark equation.

The relationship between equations (4.1) and (4.3) is that they co-
incide for initial conditions ¢: [—7,0] — [0,1] if § > r/4. This state-
ment can be easily proved using the invariance principle of Ivanov and
Sharkovsky [23, Theorem 2.1].

We concentrate our analysis on equation (4.3), having in mind that
its dynamics is valid for (4.1) under certain restrictions on the initial
data and the involved parameters. In the following, we refer to (4.3) as
the blowfly logistic equation.

As in the previous section, we only consider admissible solutions
of (4.3). Since any admissible solution satisfies 2’ (t) > —dxz(t), (0) > 0,
it follows that x(¢) > 0 for all ¢ > 0. Moreover, a simple application of
the variation of constants formula shows that admissible solutions are
defined on [—7,00) (see, e.g., [26]).
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4.2. Stability. The mathematical part of the aforementioned pa-
pers [38, 44, 49] is essentially focused on the asymptotic stability of
the positive equilibrium. This study involves the linear equation

(4.5) 7' (t) = —ax(t) + Bx(t — 1),

with a, 8 € R. A thorough stability analysis of (4.5) can be found in the
paper of Hayes [20]; see also [5]. In his famous book [41], John May-
nard Smith obtained the stability boundaries for (4.5) in an independent
way. This is an important point, because he popularized the linear equa-
tion (4.5) among ecologists. Actually, the papers of Taylor—Sokal and
Perez—Malta—Coutinho use Smith’s approach. May [38] performed his
own analysis.

We summarize the stability results for (4.3). If r < §, then the only
equilibrium is = 0, and it attracts all positive solutions; if r > §, then
there is a positive equilibrium K5 = 1—4§/r. Kj is locally asymptotically
stable whenever p < 2, or p > 2 and 0 < 7 < 7%, where

arccos (1/(1 —p)) T

(4.6) /e e S A

As a limit form of (4.6), we get that the positive equilibrium is asymp-
totically stable whenever r7 > /2, regardless the value of §. See Fig-
ure 4.

As far as we know, global stability conditions are not available in the
literature for equation (4.3). We include here a result in this direction.

First, we recall two definitions. If Ah: I — [ is a continuous map
defined on a real interval I and z* is a fixed point of h, then we say that
x* is a global attractor of h on I if lim, . h™(z) = z* for all z € I,
where h™ denotes the nth iteration of h.

We say that the positive equilibrium Kj of (4.3) is globally asymp-
totically stable if it is asymptotically stable and lim; o, x(t) = K for
all admissible solutions z(t) of (4.3).

Theorem 1. Assume that 1 < r/§ < 4, and denote p = (r/0) — 1 €
(0,3). Then, the positive equilibrium K5 = 1 — §/r of (4.3) is globally
asymptotically stable if either p < 2 or p > 2 and

1 p—1
4. —In|——.
(4.7) 0<T<5n(p_2)

Proof: Consider the map

glx) = %max{rw(l —z),0}.
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It is clear that K is the unique positive fixed point of g, and

max{g(z) : x > 0} = g(1/2) = 4%; <1

Thus, g maps (0,1) in (0,1).

We claim that if x is an admissible solution of (4.3), then there exists
T > 0 such that x(t) < 1 for all ¢ > T. Assume first that z(¢t) > 1 for
all ¢ > 0. Then, 2/(t) = —dx(t), V t > 0, implying that lim; . z(¢) = 0,
a contradiction. Therefore, there exists t; > 0 such that z(t;) < 1.
We prove by contradiction that x(t) < 1 on [t1,00). Assume this claim
is false; then there is a point ¢ > t; such that x(t2) = 1, z(t) < 1
on (t1,t2). In consequence,

0 <a'(tz) = =0 (t) + 0g(a(tz — 7)) = 6(=1 + g(x(t2 — 7))) <0,

a contradiction.

Hence, we can restrict our attention to solutions of (4.3) taking values
on (0,1), and therefore Theorem 2.2 in [23] and Corollary 17 in [18] ap-
ply to ensure that the equilibrium K5 of (4.3) is globally asymptotically
stable if at least one of the following conditions holds:

(a) Kj; is a global attractor of g on (0, 1), or
(b) Kj is a global attractor on (0, 1) of the map

F(z)=e K5+ (1- e_‘ST) g(z).

Since both g and F' are quadratic maps, condition (a) holds if ¢’(K5) >
—1 (which is equivalent to p < 2), and (b) holds if F’(Ks) > —1, which
is equivalent to (4.7). O

In Figure 3, we plot the boundaries of the regions of local and global
stability for equation (4.3) in the plane of parameters (47,p), where
p=(r/§)—1 € (0,3). The horizontal line p = 2 is an asymptote of both
curves. The upper dashed line represents the border of the asymptotic
stability region; the solid line corresponds to the global stability condi-
tion (4.7); finally, the horizontal dotted line p = 2 denotes the border of
the absolute (delay-independent) stability.

A consequence of Theorem 1 is that, for sufficiently large values of
the harvesting effort 6 (p <2 < § > r/3), all positive solutions of (4.3)
converge to the positive equilibrium Ky, regardless the value of the time
lag parameter 7. Thus, increasing § is stabilizing; this effect becomes
clear in Figure 4, where we plot the border of the local stability region
given by (4.6) in the plane of parameters (47, r7).
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FIGURE 3. Stability diagram for equation (4.3) in the
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FIGURE 4. Stability diagram for equation (4.3) in the

plane of parameters (07, r7), showing that increasing &

is stabilizing.

4.3. Global dynamics. To discuss the global behaviour of the solu-
tions as the parameter § is increased, we perform some numerical sim-
ulations for (4.3) with r = 2, and two different values of the time lag:
7=2and 7 = 10.

For the smaller value of 7, no complex behaviour is observed: the posi-
tive equilibrium seems to be globally attracting when it is asymptotically
stable, and there is a simple attracting nontrivial periodic solution when
the equilibrium is unstable.
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The bifurcation diagram in Figure 5 is similar to a bubble, but we
underline that a stable positive equilibrium cannot be destabilized in-
creasing 0. The phenomenon of bubbling is explained in [27]; for a bubble
to exist, the positive equilibrium is first destabilized and then stabilized
again in two consecutive Hopf bifurcations as ¢ is augmented. Bubbles
have been observed for some delay differential equations, including the
Nicholson blowflies equation introduced in [17].

In Figure 5 the red solid line represents the mean population size. For
small values of d, there are sustained oscillations, but complex behaviour
is not observed. In contrast with the Hutchinson-Wright equation, the
amplitude of the periodic solutions is not a monotone decreasing function
of §, and the average value of the solutions can be larger than the positive
equilibrium Kj.

Figure 5 points out two phenomena that are not observed in the
Hutchinson-Wright equation:

1. Greater harvesting can magnify oscillations in population abun-
dance.

2. Mean population abundance can increase with increasing harvest-
ing.

Both phenomena are of paramount importance in population manage-
ment. Especially, if the target of increasing mortality is control of
plagues, both effects are undesirable, and it is important to determine
the range of values of ¢ for which they can happen. The first phenomenon
has been observed in fishing populations [21, 47], and the second one is
commonly known as the hydra effect, after the nice review of Abrams [1].
For related results in delay-differential equations, see [2, 50, 51].

To further illustrate that both the amplitude ant the average of the
attracting periodic solution can increase for small values of §, we plot the
attracting periodic solution of (4.3) for two values of § in Figure 6. The
blue horizontal line represents the positive equilibrium Ks. The abscissa
corresponds to the time ¢, once the transients have died out, and the
ordinate is the population size x at time ¢t. These figures illustrate the
fact that both the amplitude ant the average of the attracting periodic
solution can increase for small values of §.

For larger values of 7, complex behaviour is observed, and the counter-
intuitive effects on the amplitude and the average value of the solutions
are more notable. We plot the bifurcation diagram of (4.3) for r = 2,
7 =10, and ¢ € [0,1] in Figure 7. The red line represents the average of
the solutions, that can increase with ¢ for small values of the harvesting
effort.
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A usual way to show the complexity of the dynamics consists of
printing the phase-space portrait of the delay differential equation with
x(t — 7) plotted against z(t). A closed Jordan curve corresponds to
a simple limit cycle, with only one maximum in each period interval,
and closed curves with self-intersections correspond to more complicated
limit cycles (see, e.g., [42, pp. 22-23]). These phase-space portraits are
referred to as time delay embeddings in [15]. We show some of them for
equation (4.3) with » = 2, 7 = 10, and different values of § in Figure 8.
We observe a period-doubling route to chaos followed by period-halving
sequences leading again to simple limit cycles. Similar plots were ob-
tained for the celebrated Mackey—Glass equation [15], but using a dif-
ferent bifurcation parameter. See also the figures obtained by May for
equation (4.4) for § = 1, r = 1, and 7 = 2 as the parameter z ranges
from z = 3 to z = 4.

We draw the reader’s attention to the fact that complex behaviour
can appear for the range of parameter values for which equations (4.3)
and (4.1) do coincide (i.e., for § > r/4 and initial data on [0, 1]). This
remark shows that equation (4.1) can exhibit complex dynamics. This
fact has not been noticed in previous work; for example Ruan [46, Sec-
tion 3.2] writes:

“However, unlike the Nicholson model, aperiodic oscillations
have not been observed (in the model of Taylor and Sokal).”

On the other hand, seemingly aperiodic solutions are showed in the pa-
pers of Perez et al. [44] and May [38]. Actually, Glass and Mackey
acknowledge in their review article in Scholarpedia [15] that

“The bifurcations and chaotic dynamics that have been inten-
sively studied and characterized in the Mackey—Glass equa-
tion, might have been pursued in the Lasota equation or the
Perez—Malta—Coutinho equation but for some small chances
of fate.”

We end this section with a survey of the effects of harvesting in equa-
tion (4.3):

Overharvesting leads to extinction.

Increasing harvesting stabilizes an unstable population.
Increasing harvesting can increase the mean population size (hydra
effect).

e Increasing harvesting can magnify fluctuations in population size.
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FIGURE 8. Time delay embedding for equation (4.3)
with r = 2, 7 = 10, and different values of §. The
abscissa is x(t) and the ordinate is (¢t — 10). The corre-
sponding solutions x(t) versus ¢ are plotted in Figure 9
for the three last values of §.
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FIGURE 9. Solutions of equation (4.3) with r =2, 7 =
10, and different values of d: a simple periodic solution
for § = 0.6, a more complicated periodic solution for § =
0.55, and an apparently aperiodic solution for § = 0.5.
The abscissa is t and the ordinate is x(¢).

4.4. A mathematical bridge. The rich behaviour exhibited by the
solutions of equation (4.3) makes it more close to the discrete logistic
equation (2.1). Quoting May [38, p. 272]:
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“Equation (3.1) has the disadvantage that it exhibits either a
stable point or simple stable cycles. Neither period doubling
effects nor apparent chaos can arise, and its use has unfor-
tunately obscured the similarity that in fact exists between
biological extremes of discrete (difference equations) and con-
tinuous (differential-delay equations) population growth.”

May already considered (2.2) as a “very crude approxzimation” of (4.3),
and he noticed the relationship between the local stability of the positive
equilibrium for both models. Here we establish more precisely the link
between these two equations.

Equation (4.3) can be transformed via the change of variables y(s) =
x(s7) into the singularly perturbed equation

ey'(s) = —y(s) + g(y(s — 1)),

where ¢ = 1/(d7), and g(y) = (r/d) max{x(1 — x),0}. Thus, the limit
form of (4.3) as ¢ — 0 is a difference equation with continuous argument,
whose dynamics is determined by the dynamics of the one-dimensional
map g. Notice that, if 4 remains bounded, ¢ tends to 0 as 7 tends to
infinity. Thus, if /0 < 4 and we restrict the set of initial conditions
for (4.3) to

F ={¢: [-7,0] = [0,1] : ¢ is continuous and ¢(0) > 0},

we can look at (4.3) as a “bridge” between the ordinary differential
equation (1.2) and the discrete logistic model (2.2). The former one is
obtained from (1.2) for 7 = 0, and the latest as a formal limit as 7 — oco.

In particular, the delay-independent global stability condition ob-
tained in Theorem 1 is § > r/3, which is the criterion for the global
stability of the positive equilibrium in the discrete logistic equation (2.2).

The proof of Theorem 1 reveals that considering initial values only in
the set F is not a real constraint if r/é < 4 and we are only interested
in the long-time behaviour of the solutions of (4.3).

Finally, let us mention that the link between delay-differential equa-
tions and one-dimensional maps has been successfully exploited to
gain information about the dynamics of the former ones. Pioneering
work is due to Mallet-Paret and Nussbaum [32, 33], and Ivanov and
Sharkovsky [23]. For recent results, see [29, 30, 31, 45, 55].

5. Discussion

Delayed logistic population models have been criticized many times,
but, at the same time, they have been generalized very often, and helped
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to develop the mathematical theory of differential equations and dynami-
cal systems. We refer to the monographs [16, 28, 48] for further reading
on delay-differential equations in the framework of population dynamics.

The recent papers [3, 46] contain interesting discussions on delayed
logistic models. Our approach in this paper is different: we focus on the
responses of different logistic models to a variation in a model parameter
which can be important for management.

As claimed by Arino, Wang and Wolkowicz [3], and Geritz and
Kisdi [14], the main drawback of the Hutchinson—Wright equation seems
to be that the involved parameters have not a clear interpretation in
terms of the behaviour of individuals, that is, (3.1) is not a mechanistic
model.

Arino et al. derived an alternative formulation of delayed logistic
growth. Their model is a particular case of (4.2), and its main feature is
that no solution oscillates. Moreover, its dynamics is very simple: either
the only equilibrium is 0 (and it attracts all nonnegative solutions), or
there is a positive equilibrium, which attracts all positive solutions.

Geritz and Kisdi also suggest two alternative formulations, and both
of them predict a dynamics similar to that found in the model of
Arino et al. The form of one of the mechanistic delay equations pro-
posed in [14] is similar to the model introduced in [3]; the other one is
different and involves a cross term z(t) z(t — 7), as in Hutchinson equa-
tion. This latter model is quite similar to the delay-differential equation
proposed and studied by Cooke [9] (see also [46, Section 7]) to model the
spread of a disease transmitted to the host by an insect vector, assumed
to have a large and constant population, and by the host to that vector.
Within the vector there is an incubation period 7 > 0 before the disease
agent can infect a host. The model writes

2/ (t) = —cx(t) + bx(t — 7)(1 — x(t)),

where b and ¢ are positive constants.

The interest of considering models as the blowfly equation studied
in Section 4 is that they are able to display a rich behaviour, which
explains some phenomena reported in empirical studies. In particular,
oscillations and aperiodic behaviour have been often observed in labo-
ratory populations; famous examples are Nicholson’s experiments [43]
and, more recently, the studies with flour beetles of Cushing et al. [10].
See also [17, 21, 22, 39, 44, 47, 49].

From the mathematical point of view, the role of (4.3) as a formal
bridge between the continuous and discrete logistic models is a note-
worthy feature. On the one hand, conditions for global attraction in
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the discrete model provide sufficient conditions for the global stability of
the positive equilibrium in (4.3) for all values of the delay; on the other
hand, the increasing dynamical complexity in (4.3) as the time lag is in-
creased somehow explains the transition between the simple dynamics of
the Verhulst equation (1.1) and the chaotic behaviour displayed by the
solutions of (2.1) for some parameter ranges. In Figure 10, we sketch
the links between the models discussed in the paper.

Hutchinson-Wright Blowfly
(3.2) (4.3)
T*}(& / XHOO
Verhulst Discrete logistic
(1.2) (2.2)

FicURE 10. Relations among the main equations con-
sidered in the paper, emphasizing the role of equa-
tion (4.3) as a mathematical bridge between the clas-
sical continuous and discrete logistic models.

6. A more critical discussion

This last section is devoted to comment some drawbacks of the models
considered in this paper that have been raised by one reviewer, and are
indeed in order.

First, in regard to the discrete model (2.1) many authors have ar-
gued against the name discrete logistic equation because its dynamics
is far from the simple behaviour of the solutions of the logistic differ-
ential equation (1.1). This point is very well explained in the book of
H. R. Thieme [52, Section 9.4]. We refer to the work of Geritz and
Kisdi [13] for an interesting discussion on the topic; the authors argue
that “the dynamical properties of the discrete and the continuous logis-
tic models are entirely different, and hence the naive discretization of
the continuous logistic model is not acceptable as the derivation of the
discrete logistic model.” However, they used a consumer-resource system
with time scale separation to derive the discrete quadratic equation (2.1)
for the between-year dynamics of the consumer population when the
within-year resource dynamics is given by the continuous logistic equa-
tion (1.1).
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Second, it does not seem realistic that a population can survive if the
maturation time is too long. This is the reason why we call the link be-
tween the ordinary and discrete logistic equations a mathematical bridge.
Actually, a more realistic model should take into account a juvenile mor-
tality during the maturation period. This fact has been incorporated to
other population models of logistic type; for example in the models of
Arino, Wang and Wolkowicz [3], and Geritz and Kisdi [14] mentioned
in Section 5, and in Section 3 of [19], where the blowfly equation (4.2)
is written in the form

(6.1) ' (t) = —0(x(t)z(t) + e by (z(t — 7))z (t — 7).

The biological interpretation of (6.1) is that adults produce offspring
with a birth rate b; but this offspring enters the adult population only
after time 7 and with a discount factor e™#7 that accounts for juvenile
mortality. Clearly, the limit case of equation (6.1) as 7 — oo does not
result in the difference equation (2.1). In fact, an important feature of
equation (6.1) is that it predicts extinction of the species for long values
of the delay. For example, if § is constant and by(z) = 1 — x, then we
get the following variant of (4.1):

(6.2) 2'(t) = —0x(t) + e "zt —7)(1 — z(t — 7)).

Tt is easily seen that equation (6.2) has a positive equilibrium only if r > ¢§
and 7 < 7. = (1/p)In(r/d). It follows from well-known results (see,
e.g., [18]) that all admissible solutions of (6.2) converge to zero if 7 > 7.
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