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Abstract
We show that in discrete models of Hopfield type some properties of global
stability and chaotic behaviour are coded in the dynamics of a related one-
dimensional equation. Using this fact, we obtain some new results on stability
and chaos for a system of delayed neural networks; some relevant properties of
our results are that we do not require monotonicity properties in the activation
function, we allow any architecture of the network, and the conclusions are
independent of the size of the time delays.
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1. Introduction

Hopfield proposed a neural network model where each neuron is considered as a linear circuit
formed by a resistor and a capacitor [16,17]. This model is governed by a system of ordinary
differential equations where neurons are linked via an activation function and the updating and
communication in the network is instantaneous. Later, Marcus and Westervelt [31] introduced
time delays in Hopfield’s model, accounting for the fact that the propagation velocity of neural
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signals or the switching speed of amplifiers (neurons) is finite. Nowadays, time delays are
omnipresent in most of models in neural networks.

In this paper we consider the discrete model of Hopfield type given by the n equations

xi(N + 1) = αxi(N) +
n∑

j=1

bijg(xj (N − kij )), N = 0, 1, . . . . (1.1)

System (1.1) describes the evolution of n-neurons when the state of the network is updated dis-
cretely, see, e.g., [19,20,22,23,33,37,42,45,46,50]; xi(N) represents the voltage of neuron i

at the time N , α ∈ (0, 1) is the internal decay of the neurons, and the constant bij is the connec-
tion weight between neuron i and neuron j . If the output from neuron j excites (respectively,
inhibits) neuron i, then bij > 0 (respectively, bij < 0). We shall assume that the matrix B =
(bij ) is irreducible [18], which means that the considered network is strongly connected. Con-
stants kij ∈ N represent the time delays. Finally, the map g : R −→ R is the activation function
of the network. In most of the related literature, the activation function is sigmoid, that is

• g is of class C1, g′(x) > 0 for all x ∈ R, and g′(0) = sup{g′(x) : x ∈ R},
• g(0) = 0,
• g is bounded.

For some practical purposes, it is convenient to consider non-monotonic activation functions
in system (1.1), for instance, to increase the performance of the associative memory [34, 35].
However, as indicated in [29], a full mathematical analysis of such networks may still be
remote, especially when time delays are considered. In this paper, we allow the activation
functions to be quite general, including in particular the prototype of non-monotonic output
introduced by Morita [34].

The first part of our analysis, developed in section 2, focuses on the problem of global
stability and multistability for system (1.1). In this regard, our main result can be summarized
as follows: assume that all connections are excitatory (i.e. bij ! 0) and the connection matrix
is normalized as

n∑

j=1

bij = L > 0

for all i = 1, . . . , n (this condition was originally introduced in [31]). In this framework, some
properties of global attraction in system (1.1) are coded in the one-dimensional equation

x(N + 1) = f (x(N)), N = 0, 1, . . . , (1.2)

where f (x) = (L/(1 − α))g(x). Specifically, a global attractor or multistability in (1.1)
produces a global attractor or multistability in (1.2). It is worth noting that our results do
not require the usual hypotheses of monotonicity or contractivity (see, e.g., [12, 28, 33, 41]
and references therein) and are independent of the size of the delay. Moreover, in some
architectures, such as ring networks with an even number of neurons [2], our results are optimal;
see theorem 2.3. In real situations, determining the conditions under which an equilibrium is
globally asymptotically stable regardless the size of the time delays is especially important in
the practical design of artificial neural networks [44]. On the other hand, the co-existence of
several stable equilibria in a neural network has an outstanding effect in pattern recognition
and associative memory, see [7, 13, 15, 17].

In the second part of our paper (section 3), we address the issue of chaos in system
(1.1). Although numerous experiments have demonstrated the presence of irregular patterns
in neuroscience, see, for instance, [39], the question of how these behaviours appear in neural
networks models is not completely understood from a theoretical point of view. Using the
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approach introduced in [26], we prove the existence of chaos in system (1.1) based on some
elementary notions of chaotic dynamics in one-dimension. In our results about chaos, we do
not impose excitation connections, nor the previous normalization, nor small/large parameters.
An important aim of these results is to check analytically some classical properties of complex
dynamics in system (1.1). For instance, we estimate the sensitive dependence on the initial
conditions and explicit regions in the phase space with chaotic behaviour. As explained in [19],
chaotic neural networks have potential applications in practical problems.

We emphasize that, for some activation functions, stable equilibria with large basins of
attraction may exist in some parameter ranges where the system displays chaotic behaviour.
This aspect, together with other implications of our results, is presented in section 4. Finally,
we point out that the idea of relating the dynamics of a one-dimensional map to the dynamics
of a more complicated system has been successfully employed not only in difference equations
[10,11,24], but also in delay-differential equations (see, e.g., [21,25,30] and references therein),
and partial differential equations [47,48]. As far as we know, this is the first time that this idea
is applied to systems of discrete neural networks; for an application to the continuous case,
see the recent paper [27].

2. Global stability in system (1.1)

Following our discussion in section 1, after rescaling either the coefficients or the activation
function, we can write system (1.1) in the form

xi(N + 1) = αxi(N) + (1 − α)

n∑

j=1

aijf (xj (N − kij )), N = 0, 1, . . . , (2.1)

for i = 1, . . . , n, where kij ∈ N, aij ∈ R, for all i, j ∈ {1, 2, . . . , n}.
In this section we assume the following hypotheses:

(A1) α ∈ (0, 1),
(A2) if n ! 2, then the matrix A = (aij ) ∈ Rn×n is irreducible and all its entries are

nonnegative,
(A3) for all i = 1, . . . , n,

n∑

j=1

aij = 1.

For the activation function f : R −→ R, we work with the following conditions:

(B1) f (0) = 0,
(B2) f is bounded,
(B3) f ((0, +∞)) ⊂ (0, +∞) and f ((−∞, 0)) ⊂ (−∞, 0),
(B4) f is of class C1 and f ′(0) > 1.

Our first purpose is to obtain criteria of global attraction and multistability in equation (2.1)
based on some dynamical properties of the one-dimensional equation

y(N + 1) = f (y(N)), N = 0, 1, . . . (2.2)

We recall that an equilibrium p of (2.2) is a global attractor of (2.2) in a real interval J

if limN→∞ y(N) = p, for all solutions y(N) starting at an initial point y(0) ∈ J , that is,
if limN→∞ f N(y(0)) = p, for all y(0) ∈ J , where f N is the N th iteration of f under
composition. A global attractor p for a one-dimensional map is always asymptotically stable
(see, e.g., [10] and its references), and so it is usually referred to as a globally asymptotically
stable equilibrium.
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Without lost of generality, we can choose Rd as the phase space for equation (2.1), where

d = n(1 + h∗) and h∗ = max{kij : i, j = 1, . . . , n}.
The notation employed in this section is described as follows. Given φ =
(x1(−h∗), . . . , x1(0), . . . , xn(−h∗), . . . , xn(0)) ∈ Rd ,

x(φ) = {(x1(N, φ), x2(N, φ), . . . , xn(N, φ))}N!−h∗

refers to the sequence obtained from (2.1) with initial condition at φ. The N -term of the ith
component of x(φ) is denoted by xi(N, φ), however, for simplicity, we omit the dependence
on φ and simply write xi(N) if there is no possible confusion on the initial condition.

An equilibrium p = (p1, p2, . . . , pn) ∈ Rn of (2.1) is a global attractor of (2.1) in a set
D ⊂ Rd if limN→∞ xi(N, φ) = pi , for all i = 1, 2, . . . , n and every initial condition φ ∈ D.
We use the coordinate-wise partial ordering in Rd induced by the cone [0, +∞)d . Thus, we
say that y = (y1, y2, . . . , yd) is nonnegative if yi ! 0 for all i = 1, 2, . . . , d, and y is positive
if yi > 0 for all i = 1, 2, . . . , d. It is important to note that, under conditions (A1)–(A3),
p ∈ R is an equilibrium of (2.2) if and only if (p, . . . , p) ∈ Rn is an equilibrium of (2.1).
Next we present a sharp criterion of global attraction for the null solution.

Theorem 2.1. Assume that conditions (A1)–(A3) and (B1)–(B3) hold. Then 0 ∈ R is a global
attractor of (2.2) in R if and only if (0, . . . , 0) ∈ Rn is a global attractor for (2.1) in Rd

regardless of the values of the delays.

Proof. First, we prove that given an initial condition φ ∈ Rd , the corresponding solution

x = x(φ) = {(x1(N), x2(N), . . . , xn(N))}N!−h∗

satisfies that

lim
N→∞

xi(N) = 0,

for all i = 1, . . . , n provided 0 ∈ R is a global attractor of (2.2) in R. We split this proof into
two steps:

Step 1. The solution x is bounded.

For the sake of contradiction, we suppose that the sequence

{(x1(N), x2(N), . . . , xn(N)}N!−h∗

is unbounded. Assume, for instance, that there is an index j ∈ {1, 2, . . . , n} such that

lim sup
N→∞

xj (N) = ∞.

By an induction argument, we can take a partial sequence {σ(N)}N∈N such that

xj (σ (N) + 1) = max{xj (m) : 0 " m " σ(N) + 1}.
Thus, limN→∞ xj (σ (N) + 1) = ∞ and, using that xj (σ (N) + 1) ! xj (σ (N)) in the j th
equation in (2.1), we get the inequality

xj (σ (N) + 1) " αxj (σ (N) + 1) + (1 − α)

n∑

i=1

ajif (xi(σ (N) − kji)), ∀ N ∈ N.

Therefore,

xj (σ (N) + 1) "
n∑

i=1

ajif (xi(σ (N) − kji)), ∀ N ∈ N.
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Since f is bounded, this is a contradiction and hence step 1 is proved. Note that the analogous
argument works if we assume that

lim inf
N→∞

xj (N) = −∞.

Step 2. lim
N→∞

xj (N) = 0 for all j = 1, 2, . . . , n.

By the previous step, we deduce that there are two constants β, γ such that

β < xj (N) < γ

for all j = 1, . . . , n and N ∈ N.
Consequently, there are two indices j1, j2 (possibly equal) so that

Q1 = lim inf
N→∞

xj1(N) = min{lim inf
N→∞

xj (N) : j = 1, . . . , n} ! β,

Q2 = lim sup
N→∞

xj2(N) = max{lim sup
N→∞

xj (N) : j = 1, . . . , n} " γ.

Now we focus our attention on Q1. We can obtain a partial sequence {σ(N)+1}N∈N satisfying
that

lim
N→∞

xj1(σ (N) + 1) = Q1 ; lim
N→∞

xj1(σ (N)) = L0 ; lim
N→∞

xi(σ (N) − kj1i ) = Li,

with Li ∈ [Q1, Q2] for all i = 0, 1, . . . , n. Taking limits as N → ∞ in the j1th equation in
(2.1), we obtain that

Q1 = αL0 + (1 − α)

n∑

i=1

aj1i f (Li) ! αQ1 + (1 − α)

n∑

i=1

aj1i f (Li),

and therefore, by (A2) and (A3),

Q1 !
n∑

i=1

aj1i f (Li) ! min{f (x) : x ∈ [Q1, Q2]}.

Reasoning in a similar way with Q2, we arrive at the inequality

Q2 " max{f (x) : x ∈ [Q1, Q2]}.
Now it is clear that [Q1, Q2] ⊂ f ([Q1, Q2]), and, by induction,

[Q1, Q2] ⊂ f m([Q1, Q2]) ∀ m = 1, 2, . . .

As 0 ∈ R is an attractor of (2.2) in R, we obtain that

lim
m→∞

f m([Q1, Q2]) = {0},

and therefore x+ = Q1 = Q2 = lim
N→∞

xj (N), for all j = 1, 2, . . . , n.

Finally, we observe that if 0 ∈ R is not a global attractor of (2.2) in R, then we deduce
from (B3) that there is a fixed point of f either in (0, ∞) or in (−∞, 0) and so, an equilibrium
of (2.1) different from (0, . . . , 0). Otherwise, 0 < f (x) < x for all x > 0, and x < f (x) < 0
for all x < 0, which clearly implies that 0 is a global attractor of (2.2). #

Next we give a criterion of multistability for (2.1) based on a similar dynamics in (2.2).

Theorem 2.2. Assume that conditions (A1)–(A3) and (B1)–(B4) hold. If x+ > 0 is a global
attractor of (2.2) in (0, +∞), then (x+, . . . , x+) ∈ Rn is a global attractor for (2.1) in (0, +∞)d

for all values of kij , i, j ∈ {1, 2, . . . , n}. Analogously, if x− < 0 is a global attractor of (2.2)
in (−∞, 0), then (x−, . . . , x−) ∈ Rn is a global attractor for (2.1) in (−∞, 0)d for all values
of kij , i, j ∈ {1, 2, . . . , n}.
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Proof. We only prove the global attraction of (x+, . . . , x+) ∈ (0, ∞)n. The proof for
(x−, . . . , x−) ∈ (−∞, 0)n then follows using the change of variables yi = −xi , which
transforms (2.1) into the same system, but with activation function h(x) = −f (−x). Note
that f and h satisfy conditions (B1)–(B4) simultaneously.

Under conditions (A1), (A2) and (B3), it is clear that the solution x(φ) of (2.1) starting
at a positive initial condition φ ∈ Rd is positive, that is, xi(N, φ) > 0 for all i = 1, 2, . . . , n,
and all N ∈ N. We shall prove that if φ ∈ Rd is positive and

x = x(φ) = {(x1(N), x2(N), . . . , xn(N))}N!−h∗

is the corresponding solution, then

lim
N→∞

xi(N) = x+,

for all i = 1, . . . , n.
First we observe that, by the proof of theorem 2.1, the solution x is bounded. Next, we

prove that there exists δ > 0 such that lim inf
N→∞

xi(N) ! δ for all i = 1, 2, . . . , n. Indeed,

assume by contradiction that there are an index j and a partial sequence {σ(N)}N∈N such that

lim
N→∞

xj (σ (N)) = 0.

Since x is positive, the expression of the j th equation of (2.1) leads to the inequality

xj (σ (N)) ! αxj (σ (N) − 1),

for all N . Thus, using that α > 0, we obtain

lim
N→∞

xj (σ (N) − 1) = 0,

and an induction argument shows that

lim
N→∞

xj (N) = 0. (2.3)

By (A2), we can take an index r *= j so that ajr > 0. Our aim is to prove that

lim
N→∞

xr(N) = 0. (2.4)

By contradiction, assume that there are a real constant ν > 0 and a partial sequence {τ(N)}N∈N
such that

xr(τ (N)) > ν > 0,

for all N ∈ N. Now, we define

R := min{f (x) : x ∈ [ν, M]},

where M > 0 is an upper bound of {xr(N)}, see the previous step. It follows from (B3) that
R > 0. Using the expression of the j th equation of (2.1), we arrive at

xj (τ (N) + 1 + kjr ) ! (1 − α)ajrR > 0

for all N ∈ N. Clearly, this inequality contradicts (2.3), and thus (2.4) is proved.
Finally, repeating the previous arguments and using the irreducibility of A, we arrive at

lim
N→∞

xi(N) = 0, ∀ i = 1, 2, . . . , n. (2.5)

On the other hand, using (B1) and (B4) we can choose ε1, ε2 > 0 satisfying that

f (x) ! (1 + ε1)x,
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for all x ∈ [0, ε2]. Let N0 be an integer such that xi(N) " ε2 for all i = 1, 2, . . . , n and
N = N0 − d, . . . , N0. Let x̃ = min{xi(m) : i = 1, . . . , n, m = N0 − d, . . . , N0}. Then

xi(N0 + 1) ! αx̃ + (1 − α)

n∑

j=1

aij (1 + ε1)x̃ > x̃, ∀ i = 1, 2, . . . , n.

This leads to a contradiction with (2.5), and the proof of this claim is complete.
To finish the proof of the theorem, we note that, using the same argument employed in

step 2 of theorem 2.1, we obtain that lim
N→∞

xj (N) = x+ for all j = 1, 2, . . . , n. #

Some remarks are in order. First, for some architectures, the sufficient condition for global
attraction in (2.1) established in theorem 2.2 is also necessary. Indeed, let us consider the ring
of neurons (see, e.g., [2])

x1(N + 1) = αx1(N) + (1 − α)f (x2n(N − k1(2n)))

x2(N + 1) = αx2(N) + (1 − α)f (x1(N − k21))
...

x2n(N + 1) = αx2n(N) + (1 − α)f (x2n−1(N − k(2n)(2n−1))).

(2.6)

Note that for this system, the matrix A is the cyclic permutation matrix

A =





0 0 · · · 0 1
1 0 · · · 0 0

0
. . .

. . .
...

...
...

. . .
. . . 0 0

0 · · · 0 1 0





.

Assume (A1) and (B1)–(B4) hold. If (x+, . . . , x+) ∈ (0, ∞)2n is a global attractor for (2.6)
in (0, ∞)d then x+ is a global attractor for (2.2) in (0, ∞). To prove this claim we reason by
contradiction. Assume that x+ is not a global attractor for (2.2) in (0, ∞). Then it is well known
that there are two points (possibly equal) p1, p2 strictly positive and different from x+ such that
f (p1) = p2 and f (p2) = p1 (see [9]). Now we observe that (p1, p2, p1, p2, . . . , p1, p2) ∈
(0, ∞)2n is an equilibrium for (2.6) different from (x+, . . . , x+) ∈ (0, ∞)2n, contradicting our
claim. Thus we have proved the following result.

Theorem 2.3. Assume that conditions (A1) and (B1)–(B4) hold, and let d = 2n max{1 +
k1(2n), 1 + k(i+1)i : i = 1, 2, . . . , 2n − 1}. Then (x+, . . . , x+) ∈ R2n is a global attractor for
(2.6) in (0, +∞)d if and only if x+ > 0 is a global attractor of (2.2) in (0, +∞). Analogously,
(x−, . . . , x−) ∈ R2n is a global attractor for (2.6) in (−∞, 0)d if and only if x− < 0 is a global
attractor of (2.2) in (−∞, 0).

We cannot expect the conclusions of theorem 2.3 to remain true for an arbitrary
architecture. Indeed, consider the simplest case of one neuron with a self-connection. Then
equation (2.1) reduces to the so-called Clark model [8] in population dynamics

x(N + 1) = αx(N) + (1 − α)f (x(N − k)), N = 0, 1, . . . , (2.7)

where 0 < α < 1 and k ∈ N. It is known that the positive equilibrium x+ of (2.7) is globally
attracting for values of α close to 1 in a wide family of maps f satisfying (B1)–(B4) even if
x+ is unstable for (2.2). See, for example, [10, 11, 24] and references therein.

A second remark is that some relevant activation functions may change signs in (−∞, 0)

and (0, ∞). In this case we can replace (B3) by
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(B3′) there exists a > 0 such that f (a) = f (−a) = 0, f ((0, a)) ⊂ (0, a), and
f ((−a, 0)) ⊂ (−a, 0).

Assuming this condition, we have the following analogous result to theorem 2.2.
Theorem 2.4. Assume that conditions (A1), (A2), (A3), (B1), (B2), (B3′), and (B4) hold. If
x+ > 0 is a global attractor for (2.2) in (0, a), then (x+, . . . , x+) ∈ Rn is a global attractor
for (2.1) in (0, a)d for all values of kij , i, j ∈ {1, 2, . . . , n}. Analogously, if x− > 0 is a
global attractor for (2.2) in (−a, 0), then (x−, . . . , x−) ∈ Rn is a global attractor for (2.1) in
(−a, 0)d for all values of τij , i, j ∈ {1, 2, . . . , n}.

Proof. Under conditions (A1), (A2) and (B3′), the solution x(φ) of (2.1) starting at φ ∈ (0, a)d

satisfies that 0 < xi(N, φ) < a for all i = 1, 2, . . . , n, and all N ∈ N. Our aim is to prove
that if φ ∈ (0, a)d and

x = x(φ) = {(x1(N), x2(N), . . . , xn(N)}N!−h∗

is the corresponding solution, then
lim

N→∞
xi(N) = x+,

for all i = 1, . . . , n.
The proof follows exactly the same steps as in the proofs of theorems 2.1 and 2.2. The

only difference is that condition (B3′) is used as in the first step of the proof of theorem 2.1 to
show that there exists B ∈ (0, a) such that

lim sup
N→∞

xi(N) " B.

The proof for x− follows from a change of variables, as in theorem 2.2. #

Example 2.1. In many applications, the activation function f increases monotonically, is
bounded and has exactly three fixed points x−, 0, x+, with x− < 0 < x+. If f ′(0) > 1,
an elementary argument shows that, in this situation, x+ attracts all solutions of (2.2) with
positive initial condition, and x− attracts all solutions of (2.2) with negative initial condition.
An application of theorem 2.2 ensures that, under conditions (A1)–(A3), (x+, . . . x+) attracts
all solutions of (2.1) with positive initial data, and (x−, . . . x−) attracts all solutions of (2.1)
with negative initial data. For example, the activation function [34]

f (x) = 1 − e−cx

1 + e−cx

satisfies the above conditions if and only if c > 2.
The non-monotonic case is usually more difficult to treat. Next we will consider the

function introduced by Morita [29, 34]

f (x) = 1 − e−cx

1 + e−cx
· 1 + κ ec′(|x|−h)

1 + ec′(|x|−h)
, (2.8)

where c > 0, c′ > 0, h > 0 and κ < 0. See figure 1.
We shall prove a result of global stability for equation (2.2) with f defined by (2.8). For

simplicity, we consider the case c′ = c. We recall that the Schwarzian derivative of a C3 map
f is defined by the relation

(Sf )(x) = f ′′′(x)

f ′(x)
− 3

2

(
f ′′(x)

f ′(x)

)2

,

whenever f ′(x) *= 0. Based on Singer’s results [38], the Schwarzian derivative is a good tool
for proving that a locally asymptotically stable equilibrium of a unimodal one-dimensional
map f is globally asymptotically stable. We shall use an improvement of this classical result
recently proved by El-Morshedy and Jiménez López (see [10, corollary 2.10]).
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Figure 1. Graph of map f defined in (2.8) for c = c′ = 10, h = 1.2, and κ = −1. The
equilibria are the intersections of the solid curve y = f (x) and the dashed line y = x.

Proposition 2.1. Let I = (α, β) be a real interval and f : I → I a C3 map having a unique
critical point x̄ and a unique fixed point p. Assume that one of the following conditions is
satisfied.

(i) 0 " f ′(p) < 1 and x̄ is a local extremum.
(ii) −1 " f ′(p) < 0, x̄ is a minimum (respectively, maximum), and (Sf )(x) < 0 for all

x ∈ (α, x̄) (respectively x ∈ (x̄, β)).

Then p is a global attractor of f .

Next we list some properties of the map f defined in (2.8) with c′ = c.

Lemma 2.1. Assume that c′ = c > 0, κ < 0, and h > 0 in (2.8). Then:

(a) f is bounded, continuous, and odd in R, f (x) > 0 on (0, a), and f (x) < 0 on (a, ∞),
where a = h − ln(|κ|)/c.

(b) f has three equilibria 0, x+, x−, with x− < 0 < x+.
(c) f ′ is continuous and even in R. f has two critical points x̄+ ∈ (0, a), x̄− = −x̄+ ∈ (−a, 0);

x̄+ is a local maximum, and x̄− is a local minimum.
(d) If f (x̄+) < a then f maps (0, a) into (0, a), and (−a, 0) into (−a, 0).

(e) f ′(0) > 1 if and only if c > 2 and

h >
1
c

ln
(

2 − cκ

c − 2

)
. (2.9)

(f) f is a C3 function in (−∞, 0) ∪ (0, ∞), and

(Sf )(x) < 0 , ∀ x ∈ ((−∞, 0) \ {x̄−}) ∪ ((0, ∞) \ {x̄+}) .

Proof. Properties (a)–(e) follow from simple computations.
To prove (f), assume first that x > 0, x *= x̄+. We write f (x) = f1(f2(x)), where

f1(x) = 1 − x

1 + x
· x + κ e−ch

x + e−ch
; f2(x) = e−cx .

Since (Sf2)(x) = −c2/2 < 0 for all x ∈ R, the rule for the composition of the Schwarzian
derivative (see, e.g., [38]) ensures that (Sf )(x) < 0 if (Sf1)(x) < 0. After some computations,
we can check that (Sf1)(x) < 0 if and only if

(κ e−ch − 1)(κ − 1) > 0, (2.10)

which trivially holds if κ < 0.
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A similar proof shows that (Sf )(x) < 0 for all x ∈ (−∞, 0) \ {x̄−} if and only if (2.10)
holds. #

We have the following consequence of theorem 2.4, proposition 2.1 and lemma 2.1.

Corollary 2.1. Assume that c′ = c > 2, κ < 0, and h > 0 in (2.8). Let x−, x+ be the
negative and the positive fixed points of f , respectively, and a = h − ln(|κ|)/c. If (2.9) holds,
f (x̄+) < a, and f ′(x+) ∈ [−1, 1), then (x+, . . . , x+) ∈ Rn is a global attractor for (2.1) in
(0, a)d , and (x−, . . . , x−) ∈ Rn is a global attractor for (2.1) in (−a, 0)d .

If κ = −1, then a = h, x̄+ = h/2 and condition f (x̄+) < a holds if either h ! 1 or h < 1 and
c < (2/h) ln((1 + h1/2)/(1 − h1/2)).

For a numerical example, choose c′ = c = 10, h = 1.2 and κ = −1 in (2.8). Then
a = h = 1.2, x̄+ = h/2 = 0.6, and the positive fixed point is x+ ≈ 0.902. Since
h > 1, (2.9) holds, and f ′(x+) ≈ −0.922 ∈ [−1, 1), corollary 2.1 applies to conclude
that (x+, . . . , x+) ∈ Rn is a global attractor for (2.1) in (0, 1.2)d , and (−x+, . . . ,−x+) ∈ Rn is
a global attractor for (2.1) in (−1.2, 0)d . The graph of f for this particular case is represented
in figure 1.

3. Chaotic dynamics in system (1.1)

In the previous section we obtained sufficient conditions for global attraction in system (2.1)
from analogous properties in the one-dimensional equation (2.2). Our aim in the present
section is to show that chaotic dynamics in (2.2) induces chaos in (2.1). We follow the
approach developed in [26], based on the techniques from [49].

First we give the precise definition of chaotic dynamics.

Definition 3.1. Consider (X, d) a metric space. We say that a continuous map ψ : X → X

induces chaotic dynamics on two symbols if there exist two disjoint compact sets N0, N1 ⊂ X

such that, for each two-sided sequence (si)i∈Z ∈ {0, 1}Z, there exists a corresponding sequence
(ωi)i∈Z ∈ (N0 ∪ N1)

Z such that

ωi ∈ Nsi
and ωi+1 = ψ(ωi) for all i ∈ Z, (3.1)

and, whenever (si)i∈Z is a k-periodic sequence (that is, si+k = si, ∀ i ∈ Z) for some k ! 1,
there exists a k-periodic sequence (ωi)i∈Z ∈ (N0 ∪ N1)

Z satisfying (3.1).

Note that if a map is chaotic according to our definition, then it is also chaotic in the sense
of Block–Coppel and in the sense of coin tossing (see [1]). On the other hand, our definition
of chaos guarantees natural properties of complex dynamics such as sensitive dependence on
the initial conditions, the presence of an invariant set with infinitely many periodic points, and
topological transitivity (see theorem 2.2 in [32]). Next we give a simple method to estimate
the sensitive dependence on the initial conditions in a chaotic regime. Throughout this section,
‖ · ‖ denotes the usual maximum norm in Rn. The following proposition was proved in [26].

Proposition 3.1. Assume that F : D ⊂ Rn −→ Rn has chaotic dynamics on two symbols
relative to N0, N1, and denote d = dist(N0, N1) > 0. For ε > 0, we define

Sε = max{n ∈ N : N0 contains n disjoint balls of diameter ε},
and

N∗ = 1 +
⌈

ln Sε

ln 2

⌉
,

where, for x ∈ R, .x/ denotes the ceiling of x, that is, the smallest integer not less than x.
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Then, there are two points x0, y0 so that x0, y0 ∈ N0, ‖x0−y0‖ < ε, and max
0"j"N∗

{‖F j (x0)−

Fj (y0)‖} > d.

Next we introduce the following notion of strictly turbulence for one-dimensional
functions.

Definition 3.2. Let I be a real interval, and g : I −→ I a continuous map. We say that g is
δ-strictly turbulent if there exist four constants β0 < β1 < γ0 < γ1 and δ > 0 so that

g(β0) < β0 − δ < γ1 + δ < g(β1),

g(γ1) < β0 − δ < γ1 + δ < g(γ0).

For simplicity in the presentation of our technique we consider the system

x1(N) = αx1(N − 1) + (1 − α)(a11f (x1(N − k11)) + a12f (x2(N − k12)))

x2(N) = αx2(N − 1) + (1 − α)(a21f (x1(N − k21)) + a22f (x2(N − k22))),
(3.2)

and assume that (A1) and the following conditions hold:

(H1) k = k12 = k21,
(H2) 1 " kii " k for i = 1, 2.

The general system (2.1) can be treated in a similar way, but the notations are more cumbersome.
We point out that in this section we do not require assumptions (A2), (A3) on the matrix A.

Consider the map F : R2k → R2k associated with system (3.2):

F





x1
...

xk−1

xk

xk+1
...

x2k−1

x2k





=





x2
...

xk

αxk + (1 − α)(a11f (xk+1−k11) + a12f (xk+1))

xk+2
...

x2k

αx2k + (1 − α)(a21f (x1) + a22f (x2k+1−k22))





For this map we have the following result.

Theorem 3.1. Assume that (H1) and (H2) hold, and f is δ-strictly turbulent with parameters
β0 < β1 < γ0 < γ1. There exists a constant A > 0 such that if

max {α, |a12 − 1|, |a21 − 1|, |a11|, |a22|} < A, (3.3)

then Fk has chaotic dynamics on two symbols relative to N0 = [β0, β1]2k and N1 = [γ0, γ1]2k.

Proof. From the expression of F , it follows that for α = 0, a21 = a12 = 1 and a22 = a11 = 0,

we have

Fk(x1, . . . , xk, xk+1, . . . , x2k) = (f (xk+1), . . . , f (x2k), f (x1), . . . , f (xk)).

It is clear that

G(x1, . . . xk, xk+1, . . . , x2k) = (xk+1, . . . , x2k, x1, . . . xk)

is a homeomorphism, G(N0) = N0, G(N1) = N1, and

(F k ◦ G)(x1, . . . , xk, xk+1, . . . , x2k) = (f (x1), . . . , f (xk), f (xk+1), . . . , f (x2k)).
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Now using the continuity of F with respect to α and aij , we can obtain a positive constant A

such that if (3.3) is satisfied then, for all i = 1, . . . , 2k and

(x1, . . . , xi−1, xi+1, . . . , x2k) ∈ [β0, β1]2k−1,

the following inequalities hold:
∣∣(F k ◦ G)i(x1, . . . , xi−1, β0, x1+i , . . . , x2k) − f (β0)

∣∣ < δ, (3.4)
∣∣(F k ◦ G)i(x1, . . . , xi−1, β1, x1+i , . . . , xk2) − f (β1)

∣∣ < δ. (3.5)

Analogously, for all i = 1, . . . , 2k and (x1, . . . , xi−1, xi+1, . . . , x2k) ∈ [γ0, γ1]2k−1,
∣∣(F k ◦ G)i(x1, . . . , xi−1, γ0, x1+i , . . . , x2k) − f (γ0)

∣∣ < δ, (3.6)
∣∣(F k ◦ G)i(x1, . . . , xi−1, γ1, x1+i , . . . , x2k) − f (γ1)

∣∣ < δ. (3.7)

Once we have this set of estimations, we reason exactly as in the proof of theorem 4.2
in [26] to ensure the presence of chaotic dynamics for Fk relative to N0 and N1. The only
difference is that we have to consider the linear maps

A(x) = (2xk+1, . . . , 2x2k, 2x1, . . . , 2xk)

and

A(x) = (−2xk+1, . . . ,−2x2k, −2x1, . . . ,−2xk)

instead of A(x) = 2x and A(x) = −2x, respectively. #

Remark 3.1. If some iteration f m is δ-strictly turbulent, then the conclusion of theorem 3.1
holds replacing Fk by Fkm.

To guarantee the existence of chaotic dynamics in (3.2) for particular choices of parameters
when f is δ-strictly turbulent we have to check conditions (3.4)–(3.7). We illustrate this fact
with an example.

Example 3.1. Consider the system

x1(N + 1) = αx1(N) + (1 − α)(a11f (x1(N)) + a12f (x2(N)))

x2(N + 1) = αx2(N) + (1 − α)(a21f (x1(N)) + a22f (x2(N))),
(3.8)

where

f (x) = 10
1 − e−3x

1 + e−3x
· 1 − 0.3 e5(|x|−1)

1 + e5(|x|−1)

is a non-monotonic function of the type of (2.8). We can check that f is 2.3-strictly turbulent
with parameters −0.2 < 0.5 < 0.7 < 1.7. Next, it is easy to verify that conditions (3.4)–(3.7)
hold for f provided the following inequalities are satisfied:

1.7α + 6 ((1 − α)|a11| + α|a12| + |a12 − 1|) < 2.3, (3.9)

1.7α + 6 ((1 − α)|a22| + α|a21| + |a21 − 1|) < 2.3. (3.10)

For example, to verify (3.4) for i = 1, take x2 ∈ [−0.2, 0.5]. Then,

|F1(x2, −0.2) − f (−0.2)| = |αx2 + (1 − α)(a11f (x2) + a12f (−0.2)) − f (−0.2)|
" 0.5α + (1 − α)|a11f (x2)| + α|a12f (−0.2)| + |f (−0.2)(1 − a12)|.

Finally we apply (3.9) using that |f (x)| " 6, for all x ∈ [−0.2, 0.5]. The rest of the conditions
are checked in the same way. We note that from conditions (3.9)–(3.10) it is clear that our
method is robust under small perturbations of the parameters, since it works for the set of
values of α, a11, a12, a21, a22 for which those two inequalities hold.
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Now we discuss some implications of our results for system (3.8). Specifically, we find
two disjoint regions, namely

N0 = [−0.2, 0.5]2, N1 = [0.7, 1.7]2,

with the ‘coin-tossing’ property for F . For instance, if we take the bi-infinite sequence

(. . . , 1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, . . .)

(assume that the first 1 corresponds to the index 0 in the sequence), we can choose an initial
point x(0) = (x1(0), x2(0)) so that the solution {x(N)}N∈N of (3.8) starting at x(0) satisfies

x(0) ∈ N1, x(1) ∈ N0, x(2) ∈ N1, x(3) ∈ N0, x(4) ∈ N0, x(5) ∈ N1, . . .

As a direct consequence of proposition 3.1, we can also estimate the sensitive dependence.
Given ε > 0, clearly

Sε "
⌈

(0.5 + 0.2)2

ε2

⌉
:= B.

Hence, there are two points x0, y0 ∈ [−0.2, 0.5]2 such that ‖x0−y0‖ < ε and, for some number
j ∈ {1, . . . , N∗}, we have that F j (x0) ∈ [−0.2, 0.5]2 and F j (y0) ∈ [0.7, 1.7]2. Therefore,

‖Fj (x0) − F j (y0)‖ ! 0.2.

Note that . ln B
ln 2 / + 1 is an upper bound for N∗.

4. Discussion

In this paper we have given a detailed mathematical analysis of the dynamics of system (1.1),
focused on the issues of global stability, multistability and the presence of chaotic dynamics.
In this section we explain the mathematical results and discuss their practical relevance.

The most important feature of the analysis of global stability in section 2 is the fact that
all results depend on the dynamics of the one-dimensional map (2.2), which is constructed
from the activation function and the sum of the synaptic weights. In contrast with the
literature, the problem of delay-independent stability in neural networks has been studied
using the assumption of the monotone activation map, see [6, 12, 20, 28, 33, 37, 41, 42, 45, 50].
We point out that our approach enables us to obtain optimal conditions for non-monotonic
activation functions. From a practical point of view, theorems 2.1–2.4 provide some noteworthy
consequences: under excitatory connections, delays cannot destabilize the null solution for any
activation function. Moreover, the same property arises for nontrivial equilibria in (1.1) when
we restrict our attention to the regions (0, +∞)n and (−∞, 0)n. An analogous phenomenon has
been reported by several authors (see, for instance, [3] and [44, p 89]) in regard to continuous
models of neural networks with sigmoid activation functions.

A crucial problem in artificial neural networks consists of studying synchro-
nized/desynchronized behaviour in networks with identical neurons, see [5, 28, 44]. The sce-
nario of identical neurons is translated mathematically assuming that system (1.1) is invariant
under any permutation of indices. This problem leads to a discussion on when the set

. = {(x1, . . . , xn) : xi = xj }
is a global attractor for system (1.1). In the light of our results, under conditions (A1)–(A3)
and (B1)–(B4), we can ensure that time delays do not produce asynchronous behaviours in
system (2.1) in the regions (0, +∞)n and (−∞, 0)n. Asynchronous patterns may be caused
only by the activation function and the synaptic weights.

In section 3, we deal with complex dynamics in system (1.1). In our theorem 3.1,
we provide easily verifiable sufficient conditions for the existence of chaotic solutions; for
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Figure 2. Graph of a map f for which system (2.1) may have stable equilibria with large
basins of attraction, together with regions with complex dynamics. On the one hand,
the equilibrium x+ attracts all solutions of (2.1) starting in (0, a)n; on the other hand,
f is δ-strictly turbulent with parameters β0 < β1 < γ0 < γ1, which induces chaotic
dynamics in (2.1) for suitable values of α and aij .

example, one of the consequences of this result is that an activation function with strong
variations produces chaos in the network provided the internal decay of the neurons is small.
This conclusion is of a different nature to some recent results in this direction; see, e.g., [4,36],
where the authors consider excitatory–inhibitory networks and find conditions for when this
model exhibits irregular and chaotic-like solutions.

Comparing with other previous work on complex behaviour in neural network models
(see, e.g., [6, 14, 19, 22, 23, 42]), our results have the advantage of allowing us to estimate
explicit parameter ranges where system (1.1) has chaotic dynamics, regions of initial data
where the chaotic behaviour occurs, and sensitive dependence on the initial conditions (see
example 3.1).

To conclude this section, we place emphasis on the possibility of the co-existence of chaos
and stable equilibria in system (1.1). To illustrate this possibility, we combine theorems 2.4
and 3.1 for an activation function with the graph sketched in figure 2. The possibility of this
co-existence phenomenon has been revealed in [19]; we stress that with our approach we can
explicitly determine some regions with complex behaviour and others with simple dynamics.
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