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‘We address the problem of global periodicity in discrete dynamical systems generated by rational maps in
R¥ or C*. Our main results show that for a wide family of such maps, this problem may be reduced to the
analysis of a related matrix equation. We use this fact to estimate the number of possible minimal periods
in globally periodic maps of this class when all the involved coefficients are rational.
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1. Introduction

A classical problem in functional equations consists in finding primitive iterative K-roots of
the identity map, that is, functions ¢ such that of = 1Id and ¢" #1d for all
m=1,...,K— 1. From the dynamical point of view, a map F :U — U generates a
discrete dynamical system on U/ defined by the recurrence

X1 = F(x,), m=0,1,... (1.1)

Thus, saying that FX = Id is equivalent to saying that for all initial condition x,, the
corresponding orbit {x,,} of equation (1.1) is K-periodic, that is, x,,+x = x,, for all m = 0.
This is a very interesting feature in the dynamics which has recently attracted more and more
attention (see, e.g. the monographs [8,11]). In this case, we say that the recurrence (1.1) is
globally K-periodic.

An important example in which global periodicity may appear is provided by real or
complex Mobius transformations

ax+b
ex+d’

F(x) = (1.2)

where a,b,c,d € K (K = R or C). Different aspects of the problem for this class of maps
were considered in Refs. [4,6,10].
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Other recent papers are focused in a generalization of the first order recurrence generated
by equation (1.2) to higher order rational difference equations in the form

ap + arxy + -+ ApXiptn—1
= = f(Xmy - vy Xman—1), m=0,1,..., 1.3
by + brty & -+ bty At +n—1) (1.3)

Xm+n

where n =1 is a fixed integer, and the coefficients a;,b;,i = 0,1, ... n, are either real
or complex. For n = 2, we refer to [11], and, for general n, some results were obtained in
Refs. [1,2,5,14]. With equation (1.3), one can associate a dynamical system given by the
following map F : D C K" — D:

F(-x1>x2a an) = (x2u "'a-xrhf(-xb ...,.Xn)), (14)

in such a way that equation (1.3) is globally K-periodic if and only if FX = Id in D.
However, there are other interesting rational dynamical systems which exhibit the property
of global periodicity and do not come from difference equations. For example, the flow at
time 77/2 of the 27-isochronous planar system (see Ref. [7] and references therein)

@0 = =y +x*0; Y0 = x4 y(1)

is given by the map

—y X
F = .
) <l—x+y’1—x+y)

It is clear by its construction that F' 4 = Id, that is, F is 4-periodic. See more discussions in
Ref. [3].
In this paper, we deal with rational equations of this type. More precisely, we will consider
amap F(x) = (F1(x), ..., F,(x)) defined on some open subset & C K", of the form
ajpXxi +apxy + - 4 AipXn + ¢

Fi(x1, %0, . X)) = . i=1,2,...,n, 15
(1, %2 ) bixi + baxs + -t by +d 0 " (15

where ajj,b;,c;,d € K and [bi| +--- 4 |b,| + |d| # 0. Our main results show that the
problem of global periodicity for equation (1.5) may be reduced to the analysis of a related
matrix equation. We use this fact to estimate the number of possible minimal periods of
globally periodic maps in the form (1.5) when all the involved coefficients are rational,
extending the results in Ref. [6] for the scalar Mobius map (1.2). As far as we know, our
results in this direction are new even for linear maps.

The paper is structured as follows: in Section 2, we show that any map of the form (1.5) may
be defined as a projection of a linear map acting on an open subset of [K". This fact is used in
Section 3 to characterize the periodic points of F, and to give a criterion for the global
periodicity of this family of maps. Special attention is paid to the case in which all coefficients
in equation (1.5) are rational numbers. Finally, in Section 4 we address the problem of eventual
global periodicity for equation (1.5): namely, we find necessary and sufficient conditions to
ensure that F is not K-periodic but there exists m € N such that F™ is K-periodic.

2. Preliminaries and first results

From now on, [ will stand for either R or C, and M,x,,(IK) denotes the set of square matrices
of size n X n with entries in [. Let I/ be an open subset of [{" and consider a map F : U — U.
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As usual, for each m € N, F™ means the corresponding power under composition, this is to
m times

—
say, F"™ = Fo...oF.

DEFINITION 2.1.  We will say that point x € U is K-periodic if FX(x) = x. As mentioned in
the introduction, the map F is said to be globally periodic if there exists K € N such that
FX = 1dy, where 1d stands for the identity map. If. in addition, F™ # Idy for all
m=1,2,...,K — 1, then we say that K is the minimal period of F.

DEFINITION 2.2.  Let F(x) = (F1(x), ..., F,(x)) be defined by equation (1.5) and let us
consider the open set

P = {(xl, X)) EKTT i x ) A~ 0}.
We define the mappings q : P" — K" and € : K" — P" respectively by

X1 Xn

q(xla-~'axn,xn+1): < >; e(xla~~'axn):(x1a~~'axn71)~

s ey
Xn+1 Xn+1

Functions g and € will play an important role in our exposition. Next, we state some basic
properties of them for convenience of the reader. The proof is straightforward, so we omit it.

LeEMMA 2.1.  Using the notations of Definition 2.2, we have:
(a) g(£(x)) = x forall x € K".

(b) £(q(x)) = (1/xp41)x for all x = (x1, ..., Xp41) € P".

(¢) If x,y € P", then q(x) = q(y) & x = Ay for some A # (.

From items (b) and (c) in Lemma 2.1 we easily get the following corollary:

COROLLARY 2.2. If A is an (n+ 1) X (n+ 1) matrix, then q(A€(q(x))) = q(Ax) for all
x € P

Our next result characterizes the powers of F in terms of the corresponding powers of a
related square matrix A.

PROPOSITION 2.3. Let F be the rational map given by equation (1.5), and define A €

Mn+1><n+l(K) by
(M Cl)
o (M)
Bl d

where M = (a;)) € Mxu(KK), and B = (by, ...,b,),C = (c1, ...,c,) € K"
Then FX(x) = q(AX€(x)) holds for every integer K = 1 and every x € K" for which
FX(x) is defined.
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Proof. We will prove the result by induction on K. It is straightforward to verify the result for
K = 1, therefore let us suppose that FX~! = gAX~1¢. Using Corollary 2.2, we have, for all
x € K" such that FX(x) exists, that

FX(x) = F(F*'(x)) = g(Ae(g(A% e(x))) = q(AAX Le(x)) = g(AXe(x)),

which finishes the proof. g

3. Global periodicity of F

In this section, we present our main results on the periodic points and the global periodicity
problem for rational maps defined by equation (1.5).

A natural question is how large is the set of points x € K" for which the orbit {F™(x) :
m = 0} cannot be defined completely. Sometimes this set is called forbidden set (see, e.g.
[11]), and we will denote it as FS(F). Notice that

FS(F)={xe K":A"e(x) & P", for some m = 1}, 3.1
and thus it is a sequence of hyperplanes in K",

Furthermore, if F is K-periodic, then the forbidden set consists only of at most (K — 1)
hyperplanes in K" given by

K—1
FS(F) = U (x EK": A™e(x) & P"}.
m=1

3.1 Periodic points and global periodicity

Our main result is a criterion for the global periodicity of F. Here, I denotes the identity
matrix.

THEOREM 3.1. Let F(x) = (Fi(x), ..., F,(x)) be defined by equation (1.5) and let A be a
matrix such that F = gA«L.

(@) A point x € K" is K-periodic if and only if £(x) is an eigenvector of AX (necessarily
associated to a non-zero eigenvalue).
(b) F is globally K-periodic if and only if AX = A for some A # 0.

Proof. According to Lemma 2.1 (a) and Proposition 2.3, FX(x) = x is equivalent to
q(AXe(x)) = x = g(£(x)). The statement of part (a) follows at once from Lemma 2.1 (c).

In order to prove (b), for each N € N\ {0}, let us consider the domain of definition of F'V,
given by the open set

Uy={xEK"':Al(x)EP", forall j=1,...,N}.

If AX = A for some A # 0, then it follows easily from Proposition 2.3 that F is globally K-
periodic. Conversely, if F is a K-periodic map then gA%X€ = ¢€ on Uy and hence for each



Periodicity on discrete dynamical systems 1205

X € Uk there exists A, # 0 such that AX€(x) = A£(x). Now let us fix an element x € Uy
and r > 0 such that the open ball B of center x and radius r lies completely in Ug. Consider
y € B and z= (x+y)/2. Clearly also z € B. A direct calculation shows that £(z) =
(€(x) +£(y))/2 and then

0 =2)£(z) — 2A%8(2) = A (L(x) +£(y)) — (AKe(x) + AKe(y))
= (A = ML) + (A, = A)L).

Therefore, either A, = A, = A, or £(x) and £(y) are linearly dependent eigenvectors of AK
and, hence, are associated to the same eigenvalue A = A, = A,. This shows that AKe =\
on B. Now, let {e; : | =i = n} be an arbitrary basis of [K" not containing x and s > 0 such
that x + se; € B for all i = n. The set {€(x + se;): 1 =i =n} U {£(x)} turns to be a basis
of the whole IK"*! composed of eigenvectors of AX with eigenvalue A, which implies that
AK = I as claimed. O

Remark 3.1. Some interesting consequences of the theorem above are:

1. From Theorem 3.1, it follows that a point x € K" is periodic with minimal period K if
and only if £(x) is an eigenvector of AX associated to a nonzero eigenvalue, but is
not an eigenvector of A” for any m < K. Thus equation (1.5) has minimal K-periodic
points if and only if AX has eigenvectors which are not eigenvectors of A™ for
m=1,2, ..., K — 1. This is only possible if A has a pair of eigenvalues A, u such that
A= pXand A™ # w™ for m < K. In addition, the corresponding eigenspace associated
to AX must have nonempty intersection with the hyperplane x,4; = 1 in K"™'. Some
consequences can be derived from this fact. For example, if all the eigenvalues of A have
different modulii, then equation (1.5) does not have any periodic orbit different from the
fixed points of F. IfA is real and symmetric, then equation (1.5) has only periodic orbits of
minimal periods 1 and 2. The latest is only possible if (A, —A) is a pair of eigenvalues of A
for some A # 0.

2. If n =1, then F is the Mobius transformation (1.2), and the matrix A has size 2 X 2. A
direct consequence of our results gives Theorem 10.6.1 in Ref. [6]: namely, if there exists
a point x such that FX(x) = x, then either F(x) = x or F is globally K-periodic.

3. If Fislinear, thatisc; = b; =0fori = 1,2, ...,n,d = 1, then Theorem 3.1 (b) reduces
to the well-known result that a linear n-dimensional map F(x) = Mx is K-periodic if and
only if MK = 1.

3.2 The case of rational coefficients

Theorem 3.1 gives us the possibility to construct globally periodic rational maps in R" of the
form (1.5) with any prescribed minimal period K = 1. However, in realistic uses, one works
with rational coefficients. In the spirit of Ref. [6], we investigate how many minimal periods
are possible with this restriction. First, we recall that, for a positive integer K, Euler’s phi-
function ¢(K) is defined as the number of positive integers m = K that are coprime with K
(i.e. ged{m,K} = 1). It is well known that ¢(K) is the degree of the cyclotomic polynomial
Dk (x) whose roots are exactly the primitive Kth roots of the unity. Moreover, ®g(x) has
integer coefficients and it is irreducible over the rationals; that is, no proper factor of ®g(x)
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has rational coefficients. The following formulas are useful for the computation of ¢(K) (see,
e.g. [12,13]):

(1) ¢(mn) = P(m)p(n) for all relatively prime integers m, n.
(i) ¢(p") =p" — p™ !, for any prime number p > 1, and all integer n = 1.

As a consequence, if K = p}'py?...p" with py, ..., p, different primes, then
GK) = dpIPE) ... dpy) =pi oy pr T e = Do = D,
PROPOSITION 3.2. Let K and n be positive integers. Then, the following conditions are
equivalent:
(a) There exists a matrix A € M,x,(Q) such that AX=7 and A™ #1 for

m=1,...,K—1.
(b) n = g(K), where

g(K) = min{z &(d) : K =lem.(dy, ... ,dr)}, (3.2)
i=1
and l.c.m.(dy, ...,d,) means the least common multiple of dy, ...,d,.

Proof. First we show that (a) implies (b). We will make use of the irreducible factorization of
xK — 1 in Q[x], given by the formula [12,13]

K =1 =T]]®a), (3.3)
dlk
where d|K means that d is a positive integer divisor of K (including 1 and K).

Let A € M,x,(Q) satisfying (a). Denote by my4(x) the minimal polynomial of A, and by
ga(x) its characteristic polynomial. Since g4(x) and m4(x) have the same irreducible factors
and my4(x) divides xX — 1, it follows that the irreducible factors of g4(x) are powers of the
cyclotomic polynomials ®,4(x), d|K. Let m be the least common multiple of
{d : ®s(x)|ga(x)}. Then, all roots of g4(x) are mth roots of the unity, and, therefore,
A™ = [I. Hence, m = K, and thus the degree of g4(x) is at least g(K).

The proof that (b) implies (a) is constructive. First, notice that if A,, € M,x,(Q) satisfies
Af =land A] # I form=1,...,K — 1, then, for any N > n, we can construct an N X N
block matrix Ay with the same property: namely,

A, O
A =
N 0 I ’

where [ is the identity matrix of size N — n. Thus, it is enough to find the matrix A for

n=g(K).Ifdy, ...,d, satisfy K = l.c.m.(dy, ...,d,) and g(K) = Z::lcﬁ(d,-), then we can
choose A = C [H;Zl @dl] , where C[p] stands for the companion matrix to the polynomial p(x)
(see, e.g. [9, p. 146]). O

The following result provides an explicit formula to compute g(K).
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PROPOSITION 3.3.  If K = p|'py*...p" is the factorization of K into distinct prime powers,
then

S e =1 if K>2is even and 4 does not divide K,

(&)= i e otherwise.

Proof. In the latest case, the least common multiple in equation (3.2) is attached for d; =

Pl dy =py, ....dy=p" (r=ys). In the first one, we can assume p}' = 2. Taking into
account that ¢(2p") = ¢(p") if p > 2 is prime, we get the minimum in equation (3.2) for
r=s— 1l,and d| = 2p5,dr, = p5’, ..., ds—1 = pl. O

Remark 3.2. 'We point out some useful comments on g(K). First, if K > 2 is even and K /2
is odd (the first case in the definition of g), then g(K) = g(K/2). Notice also that, by the
definition, g(K) = ¢(K) < K holds for all positive integer K. Moreover, g(K) = ¢(K) if and
only if K is a prime power, K = 2p” with p > 2 prime, or K = 12.

Another interesting property is that g(K) = K/2 if K is even. Moreover, g(K) = K/2 if
and only if K is a power of 2.

Finally, another consequence of the definition (3.2) is that if K;, K, are two positive
integers, then g(l.c.m.(K1, K»)) = g(Ky) + g(K>).

Proposition 3.2 says that there exists a globally periodic linear map L : R" — R" with
rational coefficients and minimal period K if and only if n = g(K). On the other hand, for any
fixed positive integer n, the set of values K for which g(K) = n is finite. Thus, the set of
possible minimal periods for globally periodic linear maps with rational coefficients in R" is
finite. Moreover, Proposition 3.2 gives not only the way to find such a set, but also the way to
construct examples of globally periodic maps with any possible minimal period using the
corresponding companion matrices.

Example 3.1 A globally periodic linear map in R? or R? with rational coefficients may only
have minimal period K € {1,2,3,4,6}.

It is easy to verify that g(K) =3 & H(K) =3, and g(K) =2 & H(K) = 2. Since
&(K) = VK, for all K # 2,6 ([13]), we get H(K) >3 for all K = 10. For K < 10 we
compute directly ¢(1) = p(2) =1, ¢3) = p(4) = H(6) =2, $(5)= H(8) =4, and
&(7) = ¢p(9) = 6. Hence, p(K) =3 < $(K) =2 <= K € {1,2,3,4,6}.

Using the companion matrices associated to different cyclotomic polynomials, we can
easily construct globally periodic linear maps in R? and R*® with integer coefficients and
minimal periods 1,2, 3,4, 6. For example, in R? we have Li(x,y) = (x,y), Lo(x,y) = (—x,y),
L3(x,y) = (v, =x = y), La(x, y) = (y, —x), and Lg(x, y) = (y, —x + y).

Next we try to extend the result of Proposition 3.2 in order to get similar consequences for
rational maps of the form (1.5). Our main result states that the admissible periods for such a
rational map form a finite set; explicitly:

PROPOSITION 3.4.  For each n € N, let us consider M,, = max{m € N : g(m) < n}.
If A € Mx,(Q) satisfies AX = gl for some q # 0 and A™ # M for every A # 0 and
m=1,2,....,K — 1, then K = nM,.



1208 I. Bajo and E. Liz

As a consequence, if a rational map given by equation (1.5) on U C R" with rational
coefficients is globally periodic with minimal period K, then K = (n + 1)M 4.

Proof. Let A € C be any of the characteristic roots of A and let s € N be the smallest integer
such that |A]° € Q. Now, let us consider » € N such that |A]” € Q; then s =< r and, thus,
there exists j € N such that js = r < (j+ l)r. If js % r then [A]"” € Q and hence
r — js = s, a contradiction, which shows that js = . One then obviously gets that s divides
both n and K since |A|" = |det(A)] € Q and [A|¥ = lgl € Q. Let us denote p = K/s. We
have that (|]1/A|°A®) is a root of the identity with minimal period p and, according to
Proposition 3.2, it follows that n = g(p). This clearly means that p = M,, and, consequently,
K = sp = sM,, = nM,, as claimed.

The second part of the statement is now straightforward bearing in mind Theorem 3.1. [J

Proposition 3.4 gives an upper bound for the possible minimal periods of a globally
periodic rational map with rational coefficients defined by equation (1.5). However, this
bound is far from being sharp, as in the case of linear maps. Our next results in this section
are devoted to strengthen this result.

First, we show that the aforementioned upper bound cannot be less than g(K).

PROPOSITION 3.5. Let K and n be positive integers. If n = g(K), then there exists a matrix
A € M,xn(Q) such that AX = ql for some q # 0 and A™ # A for every A # 0 and
m=1,2,...,K— 1.

Proof. Forn = 1, itis trivial, so we set n = 2. As in the proof of Proposition 3.2, it is enough
to consider the case n = g(K). Moreover, in general, we can choose the same matrices A such
that AX = 1. The unique exception are those cases such that K is even, AX = and
AK/2 = —I. To solve this, notice that AX/2 = —J implies that my(x)|(x*/?> 4+ 1), and hence
ma(x) = xX/2 + 1) (since (x¥/2 + 1) is irreducible). Thus, g(K) =n = K/2. In view of
Remark 3.2, this is only possible if K = 2" for some positive integer m. In this case,
n=gK)=¢K)=K/2 and C[®x]X =1, C[®k]"= —1I. Since n= g(K)=g2™) =
d2™) = $p(3.2" 1) = (3K /2), we can choose A = C[P3k/2]. Then A € Mux,(Q),
AKX =1 A" # +Iform=1,...,K — 1. We are done. O

Our next result is a partial converse of Proposition 3.5. In the sequel, we will denote by
Ker(A) and Im(A) respectively the null space and the range of a matrix A.

PROPOSITION 3.6. Let K and n be positive integers. Suppose that there exists a matrix
A E M,pn(Q) such that AX = gl for some q # 0 and A™ # M for every A # 0 and
m=1,2,...,K — 1. Then n = g(K) holds in either of the following cases:

(i) K and n are coprime.
(i) K is prime.
(iii) n is prime.
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Proof.

(i) If s € N is the smallest integer such that |A|* € Q for a characteristic root A € C of A,
one sees as in the proof of Proposition 3.4 that s must divide both K and n but, since K
and n are coprime, this is only possible if s = 1 and therefore |A| € Q. Now if ¢ > 0,
then the matrix B = (1/|A])A satisfies BX =1 with minimal period K which by
Proposition 3.2 leads to n = g(K). If, instead, ¢ < 0, then B?X = 1 and it can be easily
seen that 2K is the smallest integer for which this occurs; again, by Proposition 3.2, we
have n = g(2K) = g(K).

(i1) In view of (), we can assume that K and n are not coprime. Since K is prime, this
means that n = K > g(K).

(iii) For n = 2, this result was obtained in [6, Theorem 10.6.2]. Hence, we may suppose
that n is odd. Further, if K = n then the result follows from g(K) = $(K) < K. Let us
then consider K > n. Since n is odd, A admits a real eigenvalue A;. Clearly,
A} = *det(A) € Q. The non-null, A-invariant subspace V = Ker(A" — AI) admits a
basis B C Q". Let us consider the associated matrix M of the restriction A}y with
respect to such basis. Obviously, M € M, (Q) where r = dim(V) < n since K > n
and M" = Al. Therefore, the minimal polynomial of M must (strictly) divide x" — A}.
This means that x” — A is reducible in Q[x]. Since n is prime, in view of Theorem 9.1
in Ref. [12], this is only possible if A7 = o for some o € (0. Now, the injectivity of
the mapping f(x) = x" on R for odd n shows that A\; = a € Q. Since o = /\If =gq,
we have that (o 'A)X =T and (o 'A)" # I for 0 < m < K, which according to
Proposition 3.2, implies n = g(K). (]

Remark 3.3.  One might think that the condition |A| € @ is always satisfied, but this is not
the case even for K > n. For instance, the companion matrix C[p] of the polynomial
p(x) = x® + 3x + 9 has all its characteristic roots of modulus ~/3 and C[p]° = 271. Actually
this is also a possibility in the case that n is prime and K < n; for example, if g(x) = x> — 3
then C[q]® = 3.

In the light of Propositions 3.5 and 3.6, we guess that the following statement is true,
although we are not able to prove it at this moment.

CONJECTURE 3.1. Let K and n be positive integers. Then, the following conditions are
equivalent:

(a) There exists a matrix A € M ,x,,(Q) such that AX = gI for some g % 0 and A™ # A for
every A#0Qandm=1,2, ..., K — 1.
(b) n = gK).

For rational maps of the form (1.5), the following result follows easily from Theorem 3.1
and Propositions 3.5 and 3.6.

COROLLARY 3.7. Let F:U CR"—U be a globally periodic map defined by equation
(1.5) with a,-j,bi,ci,d e Q.
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(@) Ifn+1is prime, then F may have minimal period K if and only if g(K) = n + 1.
(b) If K is prime, then F may have minimal period K if and only if n = K — 2.

Remark 3.4.  In view of Example 3.1, Corollary 3.7 indicates that, although one can find
globally periodic maps in R* with rational coefficients of the form (1.5) which are not linear,
no new minimal period appears. The situation in R? is different, since we can easily construct
globally periodic rational functions in R® of the form (1.5) with rational coefficients and
minimal period K € {1,2,3,4,6} U {5,8, 10, 12}. This latest set is obtained as the set of
numbers K for which g(K) = 4.

Example 3.2.  'The map

1
F = 1
(x,¥,2) e— 0z D
is well defined inUf = {(x,y,2) € R® : xyz(x + y+ z+ 1) # 0}, and it is globally 5-periodic
in Y. Moreover, all points in &/ have minimal period 5.

Open Problem. 'We notice that there exist rational maps in R* with integer coefficients and
minimal period different from 1,2, 3,4, 6. For example, the Lyness recurrence (see, e.g. Ref.
[5] and references therein) provides the map F(x,y) = (y, (1 + y)/x), which has minimal
period 5. It would be interesting to find the set of all possible minimal periods of globally
periodic rational maps in R* with rational coefficients. According the results in Ref. [14], if F
comes from a difference equation

_ Qo + a1 X, + arXny

Xm+2 = s 77’!2071,...7
2 bo 4 b1 + bax

where ag,ay,as,by, b1, b, € Q, then the unique possible minimal periods are
1,2,3,4,5,6,8,12. In fact, periods 1,2,3,4,6 and their respective double values
2,4,6,8,12 appear, respectively, in the Mobius generated transformations of first-order
(a; = by = 0) and second-order (a; = b, = 0). Finally, period 5 recurrences are only those
equivalent to the Lyness one (ap = a, = b; = 1, a; = by = b, = 0).

4. Eventual global periodicity of F

In this section, we address the problem of eventual global periodicity in maps F defined by
equation (1.5).

Let U be an open subset of " and consider a map F : U — U. We will say that point x € U
is eventually K-periodic if it is not K-periodic but there exists m € N such that F"(x) is K-
periodic.

The map F is said to be globally eventually periodic whenever F is not globally K-periodic
but FX+" = F™ for some m € N\{0}.

THEOREM 4.1. Let F(x) = (Fi(x), ..., F,(x)) be defined by equation (1.5) and let A €
M1xn+1(K) be a matrix such that F = gA£.



(a)

(b)
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A point x € K" is eventually K-periodic if and only if £(x) = v + u where v is an
eigenvector of AX associated to a non-zero eigenvalue and 0 # u € Ker(A™) for some
m= 1.

F is globally eventually K-periodic if and only if A is singular and the restriction A of A
to Im(A"*Y) satisfies AKX = Ad for some A # 0, where 1d stands for the identity map of
Im(A"+).

Proof.

(a)

(b)

Let us consider the well-known decomposition K" = Im(A"*+!)@Ker(A""). Recall
that both Im(A”*!) and Ker(A"*') are invariant under A and that the restrictions of A to
Im(A"*") and Ker(A ") are respectively invertible and nilpotent. Suppose that x € K" is
eventually K-periodic with FX(F™(x)) = F™(x) for some m € N\{0}. By Proposition 2.3
and Lemma 2.1, we have that AXA™2(x) = AMA™&(x) for some A # 0. According to the
decomposition above, there exist v € Im(A"*!) and u € Ker(A"*') such that £(x) =
v+ u and we get AX "y + AKTy = A\A"y + AA™y. Since Im(A" ') and Ker(A"+!) are
invariant under A, this last equation implies A X"y = AA™(v) and AXA"u = MA™u. Now,
A # 0 and the fact that the restriction of A to Ker(A"*!) is nilpotent clearly imply that
A™u = 0. Further, if we denote by T the inverse of the restriction of A to Im(A"*!) then we
have that AKXy = T"AK+"y = T™(AA™v) = Av, which shows that v is an eigenvector of
AX. Finally, u # 0 for otherwise, according to Theorem 3.1, x would be K-periodic.

Conversely, if £(x) = v+ u where AXv = Ay with A # 0 and u € Ker(A™) for
m = 1, then FKt"(x) = g(AX+"y + AXTMy) = g(AA"0) = g(A"v) = g(A" (v + u)) =
F"(x), which shows that x is eventually K-periodic.
Suppose that AKX = AId where A # 0 and let » € N\{0} be the index of A (this is to
say, v is the smallest positive integer such that Ker(A"*!) = Ker(A")). It is clear
that Im(A""") = Im(A ") and hence A is the restriction of A to Im(A”). Take x € U K+v
and let v € Im(A%), u € Ker(A”) be such that £(x) = v+ u. We then have that
FET(x) = g(AX "0 + AKT0) = g(M "v) = g(AVv) = q(A"(v + u)) = F"(x), show-
ing that F is eventually K-periodic.

For the converse, suppose that there exists m € N, m = 1 such that F K+m — pm gn
Uk - By the first part, for all x € Uk, one has £(x) = v, 4+ u, where AKXy, = Mo,
and u, € Ker(A™). Let us fix a point x € Uk, and consider again » > 0 such that the
open ball B of center x and radius r lies completely on Uk, If y € B, z = (x +y)/2
and £(y) = v, +u,, €(z) =v,+u, are the corresponding decompositions with
AKv, = Aoy, AXv, = Ao, and uy, u, € Ker(A™), then from 2€(z) = £(x) + £(y) one
immediately gets that 2v, = v, + v, and 2u, = u, + u,. As in the proof of Theorem 3.1,
one verifies that A, = A,. Letus denote A = A,. Again, for a basis {e; : 1 =i = n} of K"
not containing x and s > 0 such that x 4 se; € B for all i =< n, one gets that {£(x + re;) :
1 =i=n}U {£€(x)} linearly spans IK"*!. Thus, if we denote vy = vy, ug = u, and for
each i =n we set £(x+re;) = v; +u;, where v; is a A-eigenvector of AX and
u; € Ker(A™), then every w € K" may be written w = Yo oai(v; + u;). This clearly
implies that A"ty = ZZ:'O' a;A" 1y, since Ker(A™) C Ker(A™!) and hence

n+1 n+1
AKAI’H-IW: § aiAVH-lAKv[:AE a[An+1'Z)[=)LAn+lW,
i=0 i=0
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which proves that AX is a multiple of the identity on Im(A"*!). Finally, if A was
invertible, then F would be K-periodic according to Theorem 3.1; therefore A must be
singular in order to exclude this case. ]

Remark 4.1. The results of section 3.2 together with the theorem above show that if a map F'
defined by equation (1.5) on an open set &/ C K" has all its coefficients rational, then global
eventual K-periodicity of F implies that K < nM,,, where M,, is defined as in Proposition 3.4.
Further, for a prime integer K it is easy to see that such a globally eventually periodic map F
may have minimal period K if and only if » = K — 1. Both results follow immediately
bearing in mind that a corresponding matrix must be singular.
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