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1. Introduction

A classical problem in functional equations consists in finding primitive iterative K-roots of

the identity map, that is, functions w such that wK ¼ Id and wm – Id for all

m ¼ 1; . . . ;K 2 1. From the dynamical point of view, a map F : U ! U generates a

discrete dynamical system on U defined by the recurrence

xmþ1 ¼ FðxmÞ; m ¼ 0; 1; . . . ð1:1Þ

Thus, saying that FK ¼ Id is equivalent to saying that for all initial condition x0, the

corresponding orbit {xm} of equation (1.1) is K-periodic, that is, xmþK ¼ xm for all m $ 0.

This is a very interesting feature in the dynamics which has recently attracted more and more

attention (see, e.g. the monographs [8,11]). In this case, we say that the recurrence (1.1) is

globally K-periodic.

An important example in which global periodicity may appear is provided by real or

complex Möbius transformations

FðxÞ ¼
axþ b

cxþ d
; ð1:2Þ

where a; b; c; d [ K (K ¼ R or C). Different aspects of the problem for this class of maps

were considered in Refs. [4,6,10].
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Other recent papers are focused in a generalization of the first order recurrence generated

by equation (1.2) to higher order rational difference equations in the form

xmþn ¼
a0 þ a1xm þ · · ·þ anxmþn21

b0 þ b1xm þ · · ·þ bnxmþn21

¼ f ðxm; . . . ; xmþn21Þ; m ¼ 0; 1; . . . ; ð1:3Þ

where n $ 1 is a fixed integer, and the coefficients ai; bi; i ¼ 0; 1; . . . ; n; are either real

or complex. For n ¼ 2, we refer to [11], and, for general n, some results were obtained in

Refs. [1,2,5,14]. With equation (1.3), one can associate a dynamical system given by the

following map F : D , Kn ! D:

Fðx1; x2; . . . ; xnÞ ¼ ðx2; . . . ; xn; f ðx1; . . . ; xnÞÞ; ð1:4Þ

in such a way that equation (1.3) is globally K-periodic if and only if FK ¼ Id in D.

However, there are other interesting rational dynamical systems which exhibit the property

of global periodicity and do not come from difference equations. For example, the flow at

time p=2 of the 2p-isochronous planar system (see Ref. [7] and references therein)

x 0ðtÞ ¼ 2yðtÞ þ x2ðtÞ; y 0ðtÞ ¼ xðtÞð1þ yðtÞÞ

is given by the map

Fðx; yÞ ¼
2y

12 xþ y
;

x

12 xþ y

� �
:

It is clear by its construction that F 4 ¼ Id, that is, F is 4-periodic. See more discussions in

Ref. [3].

In this paper, we deal with rational equations of this type. More precisely, we will consider

a map FðxÞ ¼ ðF1ðxÞ; . . . ;FnðxÞÞ defined on some open subset U , Kn, of the form

Fiðx1; x2; . . . ; xnÞ ¼
ai1x1 þ ai2x2 þ · · ·þ ainxn þ ci

b1x1 þ b2x2 þ · · ·þ bnxn þ d
; i ¼ 1; 2; . . . ; n; ð1:5Þ

where aij; bi; ci; d [ K and jb1j þ · · ·þ jbnj þ jdj – 0. Our main results show that the

problem of global periodicity for equation (1.5) may be reduced to the analysis of a related

matrix equation. We use this fact to estimate the number of possible minimal periods of

globally periodic maps in the form (1.5) when all the involved coefficients are rational,

extending the results in Ref. [6] for the scalar Möbius map (1.2). As far as we know, our

results in this direction are new even for linear maps.

The paper is structured as follows: in Section 2, we show that any map of the form (1.5) may

be defined as a projection of a linear map acting on an open subset of Kn. This fact is used in

Section 3 to characterize the periodic points of F, and to give a criterion for the global

periodicity of this family of maps. Special attention is paid to the case in which all coefficients

in equation (1.5) are rational numbers. Finally, in Section 4we address the problemof eventual

global periodicity for equation (1.5): namely, we find necessary and sufficient conditions to

ensure that F is not K-periodic but there exists m [ N such that Fm is K-periodic.

2. Preliminaries and first results

From now on, K will stand for either R or C, and Mn£nðKÞ denotes the set of square matrices

of size n £ n with entries in K. Let U be an open subset of Kn and consider a map F : U ! U.
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As usual, for each m [ N; Fm means the corresponding power under composition, this is to

say, Fm ¼ F+· · ·+F
zfflfflfflffl}|fflfflfflffl{m times

.

Definition 2.1. We will say that point x [ U is K-periodic if FKðxÞ ¼ x: As mentioned in

the introduction, the map F is said to be globally periodic if there exists K [ N such that

FK ¼ IdU , where Id stands for the identity map. If, in addition, Fm – IdU for all

m ¼ 1; 2; . . . ;K 2 1, then we say that K is the minimal period of F.

Definition 2.2. Let FðxÞ ¼ ðF1ðxÞ; . . . ;FnðxÞÞ be defined by equation (1.5) and let us

consider the open set

Pn ¼ ðx1; . . . ; xnþ1Þ [ Knþ1 : xnþ1 – 0
� �

:

We define the mappings q : Pn !Kn and ‘ : Kn ! Pn respectively by

qðx1; . . . ; xn; xnþ1Þ ¼
x1

xnþ1

; . . . ;
xn

xnþ1

� �
; ‘ðx1; . . . ; xnÞ ¼ ðx1; . . . ; xn; 1Þ:

Functions q and ‘ will play an important role in our exposition. Next, we state some basic

properties of them for convenience of the reader. The proof is straightforward, so we omit it.

Lemma 2.1. Using the notations of Definition 2.2, we have:

(a) qð‘ðxÞÞ ¼ x for all x [ Kn:

(b) ‘ðqðxÞÞ ¼ ð1=xnþ1Þx for all x ¼ ðx1; . . . ; xnþ1Þ [ Pn:

(c) If x; y [ Pn, then qðxÞ ¼ qðyÞ , x ¼ ly for some l – 0.

From items (b) and (c) in Lemma 2.1 we easily get the following corollary:

Corollary 2.2. If A is an ðnþ 1Þ £ ðnþ 1Þ matrix, then qðA‘ðqðxÞÞÞ ¼ qðAxÞ for all

x [ Pn:

Our next result characterizes the powers of F in terms of the corresponding powers of a

related square matrix A.

Proposition 2.3. Let F be the rational map given by equation (1.5), and define A [

Mnþ1£nþ1ðKÞ by

A ¼
M Ct

B d

 !
;

where M ¼ ðaijÞ [ Mn£nðKÞ, and B ¼ ðb1; . . . ; bnÞ;C ¼ ðc1; . . . ; cnÞ [ Kn:

Then FKðxÞ ¼ qðAK‘ðxÞÞ holds for every integer K $ 1 and every x [ Kn for which

FKðxÞ is defined.
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Proof. We will prove the result by induction on K. It is straightforward to verify the result for

K ¼ 1, therefore let us suppose that FK21 ¼ qAK21‘. Using Corollary 2.2, we have, for all

x [ Kn such that FKðxÞ exists, that

FKðxÞ ¼ FðFK21ðxÞÞ ¼ qðA‘ðqðAK21‘ðxÞÞÞÞ ¼ qðAAK21‘ðxÞÞ ¼ qðAK‘ðxÞÞ;

which finishes the proof. A

3. Global periodicity of F

In this section, we present our main results on the periodic points and the global periodicity

problem for rational maps defined by equation (1.5).

A natural question is how large is the set of points x [ Kn for which the orbit {FmðxÞ :

m $ 0} cannot be defined completely. Sometimes this set is called forbidden set (see, e.g.

[11]), and we will denote it as FSðFÞ. Notice that

FSðFÞ ¼ {x [ Kn : Am‘ðxÞ � Pn; for some m $ 1}; ð3:1Þ

and thus it is a sequence of hyperplanes in Kn.

Furthermore, if F is K-periodic, then the forbidden set consists only of at most ðK 2 1Þ

hyperplanes in Kn given by

FSðFÞ ¼
[K21

m¼1

{x [ Kn : Am‘ðxÞ � Pn}:

3.1 Periodic points and global periodicity

Our main result is a criterion for the global periodicity of F. Here, I denotes the identity

matrix.

Theorem 3.1. Let FðxÞ ¼ ðF1ðxÞ; . . . ;FnðxÞÞ be defined by equation (1.5) and let A be a

matrix such that F ¼ qA‘.

(a) A point x [ Kn is K-periodic if and only if ‘ðxÞ is an eigenvector of AK (necessarily

associated to a non-zero eigenvalue).

(b) F is globally K-periodic if and only if AK ¼ lI for some l – 0.

Proof. According to Lemma 2.1 (a) and Proposition 2.3, FKðxÞ ¼ x is equivalent to

qðAK‘ðxÞÞ ¼ x ¼ qð‘ðxÞÞ. The statement of part (a) follows at once from Lemma 2.1 (c).

In order to prove (b), for each N [ Nn{0}, let us consider the domain of definition of FN ,

given by the open set

UN ¼ {x [ Kn : Aj‘ðxÞ [ Pn; for all j ¼ 1; . . . ;N}:

If AK ¼ lI for some l – 0, then it follows easily from Proposition 2.3 that F is globally K-

periodic. Conversely, if F is a K-periodic map then qAK‘ ¼ q‘ on UK and hence for each
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x [ UK there exists lx – 0 such that AK‘ðxÞ ¼ lx‘ðxÞ. Now let us fix an element x [ UK

and r . 0 such that the open ball B of center x and radius r lies completely in UK . Consider

y [ B and z ¼ ðxþ yÞ=2. Clearly also z [ B. A direct calculation shows that ‘ðzÞ ¼

ð‘ðxÞ þ ‘ðyÞÞ=2 and then

0 ¼ 2lz‘ðzÞ2 2AK‘ðzÞ ¼ lzð‘ðxÞ þ ‘ðyÞÞ2 ðAK‘ðxÞ þ AK‘ðyÞÞ

¼ ðlz 2 lxÞ‘ðxÞ þ ðlz 2 lyÞ‘ðyÞ:

Therefore, either lx ¼ lz ¼ ly or ‘ðxÞ and ‘ðyÞ are linearly dependent eigenvectors of AK

and, hence, are associated to the same eigenvalue l ¼ lx ¼ ly. This shows that A
K‘ ¼ l‘

on B. Now, let {ei : 1 # i # n} be an arbitrary basis of Kn not containing x and s . 0 such

that xþ sei [ B for all i # n. The set {‘ðxþ seiÞ : 1 # i # n} < {‘ðxÞ} turns to be a basis

of the whole Knþ1 composed of eigenvectors of AK with eigenvalue l, which implies that

AK ¼ lI as claimed. A

Remark 3.1. Some interesting consequences of the theorem above are:

1. From Theorem 3.1, it follows that a point x [ Kn is periodic with minimal period K if

and only if ‘ðxÞ is an eigenvector of AK associated to a nonzero eigenvalue, but is

not an eigenvector of Am for any m , K. Thus equation (1.5) has minimal K-periodic

points if and only if AK has eigenvectors which are not eigenvectors of Am for

m ¼ 1; 2; . . . ;K 2 1. This is only possible if A has a pair of eigenvalues l, m such that

lK ¼ mK and lm – mm for m , K. In addition, the corresponding eigenspace associated

to lK must have nonempty intersection with the hyperplane xnþ1 ¼ 1 in Knþ1. Some

consequences can be derived from this fact. For example, if all the eigenvalues of A have

different modulii, then equation (1.5) does not have any periodic orbit different from the

fixed points of F. IfA is real and symmetric, then equation (1.5) has only periodic orbits of

minimal periods 1 and 2. The latest is only possible if ðl;2lÞ is a pair of eigenvalues of A

for some l – 0.

2. If n ¼ 1, then F is the Möbius transformation (1.2), and the matrix A has size 2 £ 2. A

direct consequence of our results gives Theorem 10.6.1 in Ref. [6]: namely, if there exists

a point x such that FKðxÞ ¼ x, then either FðxÞ ¼ x or F is globally K-periodic.

3. If F is linear, that is ci ¼ bi ¼ 0 for i ¼ 1; 2; . . . ; n, d ¼ 1, then Theorem 3.1 (b) reduces

to the well-known result that a linear n-dimensional map FðxÞ ¼ Mx is K-periodic if and

only if MK ¼ I.

3.2 The case of rational coefficients

Theorem 3.1 gives us the possibility to construct globally periodic rational maps in Rn of the

form (1.5) with any prescribed minimal period K $ 1. However, in realistic uses, one works

with rational coefficients. In the spirit of Ref. [6], we investigate how many minimal periods

are possible with this restriction. First, we recall that, for a positive integer K, Euler’s phi-

function fðKÞ is defined as the number of positive integers m $ K that are coprime with K

(i.e. gcd{m;K} ¼ 1). It is well known that fðKÞ is the degree of the cyclotomic polynomial

FKðxÞ whose roots are exactly the primitive Kth roots of the unity. Moreover, FKðxÞ has

integer coefficients and it is irreducible over the rationals; that is, no proper factor of FKðxÞ

Periodicity on discrete dynamical systems 1205



has rational coefficients. The following formulas are useful for the computation of fðKÞ (see,

e.g. [12,13]):

(i) fðmnÞ ¼ fðmÞfðnÞ for all relatively prime integers m, n.

(ii) fðpnÞ ¼ pn 2 pn21, for any prime number p . 1, and all integer n $ 1.

As a consequence, if K ¼ pn11 p
n2
2 . . . pnrr with p1; . . . ; pr different primes, then

fðKÞ ¼ fðpn11 Þfðp
n2
2 Þ . . .fðp

nr
r Þ ¼ pn121

1 pn221
2 . . . pnr21

r ðp1 2 1Þ . . . ðpr 2 1Þ:

Proposition 3.2. Let K and n be positive integers. Then, the following conditions are

equivalent:

(a) There exists a matrix A [ Mn£nðQÞ such that AK ¼ I and Am – I for

m ¼ 1; . . . ;K 2 1.

(b) n $ gðKÞ, where

gðKÞ U min
Xr
i¼1

fðdiÞ : K ¼ l:c:m:ðd1; . . . ; drÞ

( )
; ð3:2Þ

and l:c:m:ðd1; . . . ; drÞ means the least common multiple of d1; . . . ; dr:

Proof. First we show that (a) implies (b). We will make use of the irreducible factorization of

xK 2 1 in Q½x�, given by the formula [12,13]

xK 2 1 ¼
Y
djK

FdðxÞ; ð3:3Þ

where djK means that d is a positive integer divisor of K (including 1 and K).

Let A [ Mn£nðQÞ satisfying (a). Denote by mAðxÞ the minimal polynomial of A, and by

qAðxÞ its characteristic polynomial. Since qAðxÞ and mAðxÞ have the same irreducible factors

and mAðxÞ divides x
K 2 1, it follows that the irreducible factors of qAðxÞ are powers of the

cyclotomic polynomials FdðxÞ, djK. Let m be the least common multiple of

{d : FdðxÞjqAðxÞ}. Then, all roots of qAðxÞ are mth roots of the unity, and, therefore,

Am ¼ I. Hence, m ¼ K, and thus the degree of qAðxÞ is at least gðKÞ.

The proof that (b) implies (a) is constructive. First, notice that if An [ Mn£nðQÞ satisfies

AK
n ¼ I and Am

n – I for m ¼ 1; . . . ;K 2 1, then, for any N . n, we can construct an N £ N

block matrix AN with the same property: namely,

AN ¼
An 0

0 I

 !
;

where I is the identity matrix of size N 2 n. Thus, it is enough to find the matrix A for

n ¼ gðKÞ. If d1; . . . ; dr satisfy K ¼ l:c:m:ðd1; . . . ; drÞ and gðKÞ ¼
Pr

i¼1fðdiÞ, then we can

choose A ¼ C
Qr

i¼1Fdi

� �
, where C½p� stands for the companion matrix to the polynomial pðxÞ

(see, e.g. [9, p. 146]). A

The following result provides an explicit formula to compute gðKÞ.
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Proposition 3.3. If K ¼ pn1

1 pn2

2 . . . pnss is the factorization of K into distinct prime powers,

then

gðKÞ ¼

Ps
i¼1 fðp

ni
i Þ2 1 if K . 2 is even and 4 does not divide K;Ps

i¼1 fðp
ni
i Þ otherwise:

8<
:

Proof. In the latest case, the least common multiple in equation (3.2) is attached for d1 ¼

pn1

1 ; d2 ¼ pn2

2 ; . . . ; ds ¼ pnss ðr ¼ sÞ: In the first one, we can assume pn1

1 ¼ 2. Taking into

account that fð2pnÞ ¼ fðpnÞ if p . 2 is prime, we get the minimum in equation (3.2) for

r ¼ s2 1, and d1 ¼ 2pn2

2 ; d2 ¼ pn3

3 ; . . . ; ds21 ¼ pnss . A

Remark 3.2. We point out some useful comments on gðKÞ. First, if K . 2 is even and K=2

is odd (the first case in the definition of g), then gðKÞ ¼ gðK=2Þ. Notice also that, by the

definition, gðKÞ # fðKÞ , K holds for all positive integer K. Moreover, gðKÞ ¼ fðKÞ if and

only if K is a prime power, K ¼ 2pn with p . 2 prime, or K ¼ 12.

Another interesting property is that gðKÞ # K=2 if K is even. Moreover, gðKÞ ¼ K=2 if

and only if K is a power of 2.

Finally, another consequence of the definition (3.2) is that if K1, K2 are two positive

integers, then gðl:c:m:ðK1;K2ÞÞ # gðK1Þ þ gðK2Þ.

Proposition 3.2 says that there exists a globally periodic linear map L : Rn ! Rn with

rational coefficients and minimal period K if and only if n $ gðKÞ. On the other hand, for any

fixed positive integer n, the set of values K for which gðKÞ # n is finite. Thus, the set of

possible minimal periods for globally periodic linear maps with rational coefficients in Rn is

finite. Moreover, Proposition 3.2 gives not only the way to find such a set, but also the way to

construct examples of globally periodic maps with any possible minimal period using the

corresponding companion matrices.

Example 3.1 A globally periodic linear map in R2 or R3 with rational coefficients may only

have minimal period K [ {1; 2; 3; 4; 6}:

It is easy to verify that gðKÞ # 3 , fðKÞ # 3, and gðKÞ # 2 , fðKÞ # 2. Since

fðKÞ $
ffiffiffiffi
K

p
, for all K – 2; 6 ([13]), we get fðKÞ . 3 for all K $ 10. For K , 10 we

compute directly fð1Þ ¼ fð2Þ ¼ 1, fð3Þ ¼ fð4Þ ¼ fð6Þ ¼ 2, fð5Þ ¼ fð8Þ ¼ 4, and

fð7Þ ¼ fð9Þ ¼ 6. Hence, fðKÞ # 3 , fðKÞ # 2 , K [ {1; 2; 3; 4; 6}:

Using the companion matrices associated to different cyclotomic polynomials, we can

easily construct globally periodic linear maps in R2 and R3 with integer coefficients and

minimal periods 1; 2; 3; 4; 6. For example, in R2 we have L1ðx; yÞ ¼ ðx; yÞ, L2ðx; yÞ ¼ ð2x; yÞ,

L3ðx; yÞ ¼ ðy;2x2 yÞ, L4ðx; yÞ ¼ ðy;2xÞ, and L6ðx; yÞ ¼ ðy;2xþ yÞ.

Next we try to extend the result of Proposition 3.2 in order to get similar consequences for

rational maps of the form (1.5). Our main result states that the admissible periods for such a

rational map form a finite set; explicitly:

Proposition 3.4. For each n [ N, let us consider Mn ¼ max{m [ N : gðmÞ , n}.

If A [ Mn£nðQÞ satisfies AK ¼ qI for some q – 0 and Am – lI for every l – 0 and

m ¼ 1; 2; . . . ;K 2 1, then K # nMn:
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As a consequence, if a rational map given by equation (1.5) on U , Rn with rational

coefficients is globally periodic with minimal period K, then K # ðnþ 1ÞMnþ1.

Proof. Let l [ C be any of the characteristic roots of A and let s [ N be the smallest integer

such that jlj
s [ Q. Now, let us consider r [ N such that jlj

r [ Q; then s # r and, thus,

there exists j [ N such that js # r , ðjþ 1Þr. If js – r then jlj
r2js

[ Q and hence

r 2 js $ s, a contradiction, which shows that js ¼ r. One then obviously gets that s divides

both n and K since jlj
n
¼ jdetðAÞj [ Q and jlj

K
¼ jqj [ Q. Let us denote p ¼ K=s. We

have that ðj1=lj
s
AsÞ is a root of the identity with minimal period p and, according to

Proposition 3.2, it follows that n $ gðpÞ. This clearly means that p # Mn and, consequently,

K ¼ sp # sMn # nMn, as claimed.

The second part of the statement is now straightforward bearing in mind Theorem 3.1. A

Proposition 3.4 gives an upper bound for the possible minimal periods of a globally

periodic rational map with rational coefficients defined by equation (1.5). However, this

bound is far from being sharp, as in the case of linear maps. Our next results in this section

are devoted to strengthen this result.

First, we show that the aforementioned upper bound cannot be less than gðKÞ.

Proposition 3.5. Let K and n be positive integers. If n $ gðKÞ, then there exists a matrix

A [ Mn£nðQÞ such that AK ¼ qI for some q – 0 and Am – lI for every l – 0 and

m ¼ 1; 2; . . . ;K 2 1.

Proof. For n ¼ 1, it is trivial, so we set n $ 2. As in the proof of Proposition 3.2, it is enough

to consider the case n ¼ gðKÞ. Moreover, in general, we can choose the same matrices A such

that AK ¼ I. The unique exception are those cases such that K is even, AK ¼ I and

AK=2 ¼ 2I. To solve this, notice that AK=2 ¼ 2I implies that mAðxÞjðx
K=2 þ 1Þ, and hence

mAðxÞ ¼ ðxK=2 þ 1Þ (since ðxK=2 þ 1Þ is irreducible). Thus, gðKÞ ¼ n $ K=2. In view of

Remark 3.2, this is only possible if K ¼ 2m for some positive integer m. In this case,

n ¼ gðKÞ ¼ fðKÞ ¼ K=2 and C½FK�
K ¼ I, C½FK�

n ¼ 2I. Since n ¼ gðKÞ ¼ gð2mÞ ¼

fð2mÞ ¼ fð3:2m21Þ ¼ fð3K=2Þ, we can choose A ¼ C½F3K=2�. Then A [ Mn£nðQÞ,

AK ¼ I, Am – ^I for m ¼ 1; . . . ;K 2 1. We are done. A

Our next result is a partial converse of Proposition 3.5. In the sequel, we will denote by

KerðAÞ and ImðAÞ respectively the null space and the range of a matrix A.

Proposition 3.6. Let K and n be positive integers. Suppose that there exists a matrix

A [ Mn£nðQÞ such that AK ¼ qI for some q – 0 and Am – lI for every l – 0 and

m ¼ 1; 2; . . . ;K 2 1. Then n $ gðKÞ holds in either of the following cases:

(i) K and n are coprime.

(ii) K is prime.

(iii) n is prime.
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Proof.

(i) If s [ N is the smallest integer such that jlj
s
[ Q for a characteristic root l [ C of A,

one sees as in the proof of Proposition 3.4 that s must divide both K and n but, since K

and n are coprime, this is only possible if s ¼ 1 and therefore jlj [ Q. Now if q . 0,

then the matrix B ¼ ð1=jljÞA satisfies BK ¼ I with minimal period K which by

Proposition 3.2 leads to n $ gðKÞ. If, instead, q , 0, then B2K ¼ 1 and it can be easily

seen that 2K is the smallest integer for which this occurs; again, by Proposition 3.2, we

have n $ gð2KÞ $ gðKÞ:

(ii) In view of (I), we can assume that K and n are not coprime. Since K is prime, this

means that n $ K . gðKÞ.

(iii) For n ¼ 2, this result was obtained in [6, Theorem 10.6.2]. Hence, we may suppose

that n is odd. Further, if K # n then the result follows from gðKÞ # fðKÞ , K. Let us

then consider K . n. Since n is odd, A admits a real eigenvalue l1. Clearly,

ln1 ¼ ^detðAÞ [ Q. The non-null, A-invariant subspace V ¼ KerðAn 2 ln1IÞ admits a

basis B , Qn. Let us consider the associated matrix M of the restriction AjV with

respect to such basis. Obviously, M [ Mr£rðQÞ where r ¼ dimðVÞ , n since K . n

andMn ¼ ln1I. Therefore, the minimal polynomial ofMmust (strictly) divide xn 2 ln1.

This means that xn 2 ln1 is reducible inQ½x�. Since n is prime, in view of Theorem 9.1

in Ref. [12], this is only possible if ln1 ¼ an for some a [ Q: Now, the injectivity of

the mapping f ðxÞ ¼ xn on R for odd n shows that l1 ¼ a [ Q. Since aK ¼ lK1 ¼ q,

we have that ða21AÞK ¼ I and ða21AÞm – I for 0 , m , K, which according to

Proposition 3.2, implies n $ gðKÞ. A

Remark 3.3. One might think that the condition jlj [ Q is always satisfied, but this is not

the case even for K . n. For instance, the companion matrix C½p� of the polynomial

pðxÞ ¼ x6 þ 3x3 þ 9 has all its characteristic roots of modulus
ffiffiffi
33

p
and C½p�9 ¼ 27I. Actually

this is also a possibility in the case that n is prime and K # n; for example, if qðxÞ ¼ x 3 2 3

then C½q�3 ¼ 3I.

In the light of Propositions 3.5 and 3.6, we guess that the following statement is true,

although we are not able to prove it at this moment.

Conjecture 3.1. Let K and n be positive integers. Then, the following conditions are

equivalent:

(a) There exists a matrix A [ Mn£nðQÞ such that AK ¼ qI for some q – 0 and Am – lI for

every l – 0 and m ¼ 1; 2; . . . ;K 2 1.

(b) n $ gðKÞ:

For rational maps of the form (1.5), the following result follows easily from Theorem 3.1

and Propositions 3.5 and 3.6.

Corollary 3.7. Let F : U , Rn ! U be a globally periodic map defined by equation

(1.5) with aij; bi; ci; d [ Q:
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(a) If nþ 1 is prime, then F may have minimal period K if and only if gðKÞ # nþ 1.

(b) If K is prime, then F may have minimal period K if and only if n $ K 2 2.

Remark 3.4. In view of Example 3.1, Corollary 3.7 indicates that, although one can find

globally periodic maps in R2 with rational coefficients of the form (1.5) which are not linear,

no new minimal period appears. The situation in R3 is different, since we can easily construct

globally periodic rational functions in R3 of the form (1.5) with rational coefficients and

minimal period K [ {1; 2; 3; 4; 6} < {5; 8; 10; 12}: This latest set is obtained as the set of

numbers K for which gðKÞ ¼ 4.

Example 3.2. The map

Fðx; y; zÞ ¼
21

xþ yþ zþ 1
ðy; z; 1Þ

is well defined in U ¼ {ðx; y; zÞ [ R3 : xyzðxþ yþ zþ 1Þ – 0}, and it is globally 5-periodic

in U. Moreover, all points in U have minimal period 5.

Open Problem. We notice that there exist rational maps in R2 with integer coefficients and

minimal period different from 1; 2; 3; 4; 6. For example, the Lyness recurrence (see, e.g. Ref.

[5] and references therein) provides the map Fðx; yÞ ¼ ðy; ð1 þ yÞ=xÞ, which has minimal

period 5. It would be interesting to find the set of all possible minimal periods of globally

periodic rational maps in R2 with rational coefficients. According the results in Ref. [14], if F

comes from a difference equation

xmþ2 ¼
a0 þ a1xm þ a2xmþ1

b0 þ b1xm þ b2xmþ1

; m ¼ 0; 1; . . . ;

where a0; a1; a2; b0; b1; b2 [ Q, then the unique possible minimal periods are

1; 2; 3; 4; 5; 6; 8; 12. In fact, periods 1; 2; 3; 4; 6 and their respective double values

2; 4; 6; 8; 12 appear, respectively, in the Möbius generated transformations of first-order

(a1 ¼ b1 ¼ 0) and second-order (a2 ¼ b2 ¼ 0). Finally, period 5 recurrences are only those

equivalent to the Lyness one (a0 ¼ a2 ¼ b1 ¼ 1, a1 ¼ b0 ¼ b2 ¼ 0).

4. Eventual global periodicity of F

In this section, we address the problem of eventual global periodicity in maps F defined by

equation (1.5).

Let U be an open subset of Kn and consider a map F : U ! U. We will say that point x [ U
is eventually K-periodic if it is not K-periodic but there exists m [ N such that FmðxÞ is K-

periodic.

The map F is said to be globally eventually periodicwhenever F is not globally K-periodic

but FKþm ¼ Fm for some m [ Nn{0}.

Theorem 4.1. Let FðxÞ ¼ ðF1ðxÞ; . . . ;FnðxÞÞ be defined by equation (1.5) and let A [

Mnþ1£nþ1ðKÞ be a matrix such that F ¼ qA‘.
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(a) A point x [ Kn is eventually K-periodic if and only if ‘ðxÞ ¼ vþ u where v is an

eigenvector of AK associated to a non-zero eigenvalue and 0 – u [ KerðAmÞ for some

m $ 1.

(b) F is globally eventually K-periodic if and only if A is singular and the restriction ~A of A

to ImðAnþ1Þ satisfies ~AK ¼ lId for some l – 0; where Id stands for the identity map of

ImðAnþ1Þ.

Proof.

(a) Let us consider the well-known decomposition Knþ1 ¼ ImðAnþ1Þ%KerðAnþ1Þ. Recall

that both ImðAnþ1Þ and KerðAnþ1Þ are invariant under A and that the restrictions of A to

ImðAnþ1Þ and KerðAnþ1Þ are respectively invertible and nilpotent. Suppose that x [ Kn is

eventuallyK-periodic withFKðFmðxÞÞ ¼ FmðxÞ for somem [ Nn{0}. By Proposition 2.3

and Lemma 2.1, we have that AKAm‘ðxÞ ¼ lAm‘ðxÞ for some l – 0. According to the

decomposition above, there exist v [ ImðAnþ1Þ and u [ KerðAnþ1Þ such that ‘ðxÞ ¼

vþ u and we get AKþmvþ AKþmu ¼ lAmvþ lAmu. Since ImðAnþ1Þ and KerðAnþ1Þ are

invariant underA, this last equation impliesAKþmv ¼ lAmðvÞ andAKAmu ¼ lAmu. Now,

l – 0 and the fact that the restriction of A to KerðAnþ1Þ is nilpotent clearly imply that

Amu ¼ 0. Further, if we denote by T the inverse of the restriction ofA to ImðAnþ1Þ then we

have that AKv ¼ T mAKþmv ¼ T mðlAmvÞ ¼ lv, which shows that v is an eigenvector of

AK . Finally, u – 0 for otherwise, according to Theorem 3.1, x would be K-periodic.

Conversely, if ‘ðxÞ ¼ vþ u where AKv ¼ lv with l – 0 and u [ KerðAmÞ for

m $ 1, then FKþmðxÞ ¼ qðAKþmvþ AKþmuÞ ¼ qðlAmvÞ ¼ qðAmvÞ ¼ qðAmðvþ uÞÞ ¼

FmðxÞ; which shows that x is eventually K-periodic.

(b) Suppose that ~AK ¼ lId where l – 0 and let n [ Nn{0} be the index of A (this is to

say, n is the smallest positive integer such that KerðAnþ1Þ ¼ KerðAnÞ). It is clear

that ImðAnþ1Þ ¼ ImðAnÞ and hence ~A is the restriction of A to ImðAnÞ. Take x [ UKþn

and let v [ ImðAnÞ, u [ KerðAnÞ be such that ‘ðxÞ ¼ vþ u. We then have that

FKþnðxÞ ¼ qðAKþnvþ AKþnuÞ ¼ qðlAnvÞ ¼ qðAnvÞ ¼ qðAnðvþ uÞÞ ¼ F nðxÞ, show-

ing that F is eventually K-periodic.

For the converse, suppose that there exists m [ N, m $ 1 such that FKþm ¼ Fm on

UKþm. By the first part, for all x [ UKþm one has ‘ðxÞ ¼ vx þ ux where AKvx ¼ lxvx
and ux [ KerðAmÞ. Let us fix a point x [ UKþm and consider again r . 0 such that the

open ball B of center x and radius r lies completely on UKþm. If y [ B, z ¼ ðxþ yÞ=2

and ‘ðyÞ ¼ vy þ uy, ‘ðzÞ ¼ vz þ uz are the corresponding decompositions with

AKvy ¼ lyvy, A
Kvz ¼ lzvz and uy; uy [ KerðAmÞ, then from 2‘ðzÞ ¼ ‘ðxÞ þ ‘ðyÞ one

immediately gets that 2vz ¼ vx þ vy and 2uz ¼ ux þ uy: As in the proof of Theorem 3.1,

one verifies that lx ¼ ly. Let us denote l ¼ lx. Again, for a basis {ei : 1 # i # n} ofKn

not containing x and s . 0 such that xþ sei [ B for all i # n, one gets that {‘ðxþ reiÞ :

1 # i # n} < {‘ðxÞ} linearly spans Knþ1. Thus, if we denote v0 ¼ vx; u0 ¼ ux and for

each i # n we set ‘ðxþ reiÞ ¼ vi þ ui, where vi is a l-eigenvector of AK and

ui [ KerðAmÞ, then every w [ Knþ1 may be written w ¼
Pn

i¼0aiðvi þ uiÞ. This clearly

implies that Anþ1w ¼
Pnþ1

i¼0 aiA
nþ1vi since KerðAmÞ # KerðAnþ1Þ and hence

AKAnþ1w ¼
Xnþ1

i¼0

aiA
nþ1AKvi ¼ l

Xnþ1

i¼0

aiA
nþ1vi ¼ lAnþ1w;
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which proves that AK is a multiple of the identity on ImðAnþ1Þ. Finally, if A was

invertible, then F would be K-periodic according to Theorem 3.1; therefore A must be

singular in order to exclude this case. A

Remark 4.1. The results of section 3.2 together with the theorem above show that if a map F

defined by equation (1.5) on an open set U , Kn has all its coefficients rational, then global

eventual K-periodicity of F implies that K , nMn, whereMn is defined as in Proposition 3.4.

Further, for a prime integer K it is easy to see that such a globally eventually periodic map F

may have minimal period K if and only if n $ K 2 1. Both results follow immediately

bearing in mind that a corresponding matrix must be singular.
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