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We describe the asymptotic behaviour and the stability properties of the solutions
to the nonlinear second-order difference equation

xnþ1 ¼
xn21

aþ bxnxn21
; n $ 0;

for all values of the real parameters a, b, and any initial condition ðx21; x0Þ [ R2.
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1. Introduction

We consider the second-order difference equation defined by

xnþ1 ¼
xn21

aþ bxnxn21
; ð1:1Þ

for all integers n $ 0, with initial condition ðx21; x0Þ [ R2, where a and b are real
parameters.

Equation (1.1) is a special case of the family of rational difference equations

xnþ1 ¼
aþ bxnxn21 þ gxn21

Aþ Bxnxn21 þ Cxn21
;

recently investigated by Amleh, Camouzis and Ladas [3,4] for nonnegative values of both
the parameters and the initial conditions. Notice that the difference equation

xnþ1 ¼
Cxn21

Aþ Bxnxn21
ð1:2Þ

can be obviously reduced to (1.1) if C – 0. Equation (1.2) with positive values of A, B, C
can be written in the equivalent form

xnþ1 ¼
gxn21

1þ xnxn21
; ð1:3Þ
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with g . 0. Equation (1.3) was studied in Section 6 of [3], where the authors proved that,
for nonnegative initial conditions, there is a period-two trichotomy:

. if g , 1, then every solution converges to zero;

. if g ¼ 1, then every solution converges to a cycle of period two (not necessarily
prime);

. if g . 1, then there are unbounded solutions.

This result was recently generalized by Sedaghat [13], who studied equation (1.3) with
g . 0 and arbitrary initial conditions x21, x0 [ R. The author proved that the trichotomy
result holds for this case as well. An important difference is that there are initial conditions
for which a complete solution of (1.3) cannot be constructed. The set of such initial
conditions is called the forbidden set, and it is also described in [13].

In this paper, we address the study of the global behaviour of the solutions of (1.1),
where both the coefficients a and b and the initital conditions are arbitrary real numbers. A
consequence of our results is that the period-two trichotomy still holds for the general
situation, with the unique exception of the case a ¼ 21, bx0x21 ¼ 0, x20 þ x221 – 0, that
leads to periodic solutions of prime period four.

We emphasize that equation (1.1) has its own history previous to the papers of Amleh
et al. As far as we know, the first particular case considered in the literature was a ¼ b ¼ 1,
with positive initial conditions; see [14]. Some particular cases when not all the
coefficients are positive were also studied; see [5,8] for the case a ¼ 21, b . 0, and [2] for
the case a . 0, b ¼ 21.

We succeed in giving a complete picture of the asymptotic behaviour of the solutions
of (1.1) depending on the involved parameters and the initial data.

We show that this study can be splitted into three cases, namely, a ¼ 21, jaj $ 1 with
a –21, and jaj , 1. We get as particular cases all the mentioned known results in the
literature about equation (1.1), but also other cases are solved here for the first time. Our
results on bifurcation and stability of the solutions in Sections 4 and 5 are also new.

The key feature of the solutions to (1.1) is that the sequence {yn} defined by yn ¼
xnxn21 for all n $ 0 solves a rational difference equation of Möbius type

ynþ1 ¼
yn

aþ byn
; ð1:4Þ

this is to say, the vectorization of equation (1.1) is semiconjugated to a Möbius map where
the corresponding fibres are hyperbolas (see [12,13] for more details on semiconjugated
maps). Further, equation (1.4) is reducible to a linear difference equation (see, e.g., [9,10]).
We notice that other authors refer to equation (1.4) as a Ricatti difference equation [1,
Section 3.3], [11, Section 1.6]. When a . 0, b . 0, equation (1.4) is equivalent to the
Pielou logistic equation [1, Example 3.3.4], [10, Example 2.39].

This semiconjugacy allows us to write equation (1.1) in the form

xnþ1 ¼ hðnÞ xn21;

where the term h(n) depends only on the parameter a and the product a ¼ bx21x0 for each
n $ 0. Thus, the subsequences of even and odd terms from a solution {xn} of (1.1) are
given by the expressions

x2kþ2 ¼ x0
Yk

i¼0

hð2iþ 1Þ; x2kþ1 ¼ x21

Yk

i¼0

hð2iÞ; k $ 0:
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Notice that if these subsequences converge, say, lim
k!1

x2kþ1 ¼ p, lim
k!1

x2kþ2 ¼ q, then,
by continuity arguments, the pair ( p, q) satisfies

q ¼ q

aþ bqp
; p ¼ p

aþ bqp
: ð1:5Þ

Hence, either p ¼ q ¼ 0 or pq ¼ ð12 aÞ=b. In particular, {p; q; p; q; . . . } is a two-periodic
solution of (1.1), in such a way that the solution {xn} either converges to zero or to a
two-periodic solution. For this reason, the analysis of the convergence of {x2k} and
{x2kþ1} is an important step in our proofs.

The paper is organized as follows: in Section 2 we derive the mentioned representation
for the solutions of (1.1). In Section 3, we describe the asymptotic behaviour of the
solutions; it is divided into three subsections depending on the values of a. In Section 4, we
give an interpretation of our results in terms of a bifurcation problem. Finally, we devote
Section 5 to analyse the stability properties of the periodic solutions of (1.1).

2. A formula for the solutions

Throughout the paper, we denote a ¼ bx21x0. In this section, we state a representation
formula for the solutions of (1.1) starting at any initial condition ðx21; x0Þ [ R2, except the
following cases:

(1) a ¼ 1 and a ¼ 21=n, for some n $ 1.
(2) a – 1 and a ¼ anða2 1Þ=ð12 anÞ, for some n $ 1.

We emphasize that, in these cases, it is not possible to construct a complete solution
{xn}

1
n¼21 starting at ðx1; x0Þ, since at some point the denominator in (1.1) becomes zero.

Notice that this generalizes the characterization of the forbidden set for equation (1.3)
given in [13].

On the other hand, it is convenient to consider the cases a ¼ 0 and a ¼ 1 2 a
separately due to their singularity (see Propositions 2.3 and 2.4 below).

These facts motivate us to introduce the following definitions:

Definition 2.1.We say that the pair ðx21; x0Þ is an admissible initial condition for (1.1) if
either a ¼ 1 and a – 21=n, or a – 1 and a – anða2 1Þ=ð12 anÞ, for all n $ 1.

Solutions of (1.1) corresponding to admissible initial conditions are called admissible
solutions.

Definition 2.2. An admissible solution of (1.1) is called a regular solution if a – 0 and
a – 1 2 a. Admissible solutions that are not regular are called singular solutions.

In the following two propositions, we describe the singular solutions of (1.1).
We notice that for a ¼ 0 all solutions are admissible if a – 0, while for a ¼ 1 2 a all
solutions are admissible.

Proposition 2.3. Assume that a ¼ 0 and a – 0. Then, x2k ¼ x0=ak and x2k21 ¼ x21=ak,
for all k $ 1.

Proof. First, assume that b ¼ 0. Hence, equation (1.1) reduces to xnþ1 ¼ xn21=a, and it
follows by induction that x2k ¼ x0=ak and x2k21 ¼ x21=ak, for all k $ 1.
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If x0 ¼ 0, then

x2 ¼
x0

aþ bx1x0
¼ 0:

It is easily derived by induction that x2k ¼ 0 for all k $ 1.
On the other hand,

x2kþ1 ¼
x2k21

aþ bx2kx2k21
¼ x2k21

a
; ; k $ 0:

Thus, x2kþ1 ¼ x21=akþ1, for all k $ 0.
The proof in the case x21 ¼ 0 is completely analogous. In this case, we obtain

x2k21 ¼ 0, x2k ¼ x0=ak, for all k $ 1. A

Proposition 2.4. If a ¼ 1 2 a, then the solution of (1.1) with initial condition ðx21; x0Þ is
two-periodic.

Proof. Using (1.1), we have

x1 ¼
x21

aþ bx0x21
¼ x21

aþ a
¼ x21; x2 ¼

x0
aþ bx1x0

¼ x0
aþ bx21x0

¼ x0
aþ a

¼ x0:

The result follows by induction. A
In order to get a representation for the regular solutions of (1.1), we first state the

explicit expression for the solutions of the Möbius recurrence (1.4). For a proof of the
following proposition, see, e.g. [10, Example 2.39].

Proposition 2.5. Assume that a ¼ by0 is in the conditions of Definition 2.1, and
a ! {0,1 2 a}. Then, the solution of equation (1.4) starting at the initial condition y0 is
given by

yn ¼
y0ð12aÞ

a nð12aÞþy0bð12a nÞ; if a – 1;

y0
1þy0bn

if a ¼ 1:

8
<

:

Now, we are in a position to provide a representation for all admissible solutions of
(1.1).

Theorem 2.6. Denote a ¼ bx21x0. If ðx21; x0Þ is an admissible initial condition for (1.1),
then the corresponding solution is given by

x2kþ2 ¼ x0
Yk

i¼0

hð2iþ 1Þ x2kþ1 ¼ x21

Yk

i¼0

hð2iÞ;

for all integer k $ 0, where

hðnÞ ¼
a nð12aÞþað12a nÞ

a nþ1ð12aÞþað12a nþ1Þ; if a – 1;

1þan
1þaðnþ1Þ; if a ¼ 1:

8
<

: ð2:1Þ

The proof of Theorem 2.6 follows by induction from the following result:
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Proposition 2.7. If {xn} is an admissible solution of (1.1), then

xnþ1 ¼ hðnÞxn21; ð2:2Þ

for all n $ 0, where h(n) is defined by (2.1).

Proof. First, we assume that {xn} is a regular admissible solution of (1.1).
Denote yn ¼ xnxn21. Multiplying equation (1.1) in both sides by xn, we get

ynþ1 ¼ xnþ1xn ¼
xnxn21

aþ bxnxn21
¼ yn

aþ byn
:

On the other hand,

xnþ1 ¼
xn21

aþ bxnxn21
¼ xn21

aþ byn
¼ hðnÞxn21;

where hðnÞ ¼ 1=ðaþ bynÞ. Since {yn} is the solution of (1.4) with an initial condition
y0 ¼ x21x0, a direct application of Proposition 2.5 gives formula (2.1).

For singular solutions, the result is also true. From Proposition 2.3, we can see that
(2.2) holds for a ¼ 0 with hðnÞ ¼ 1=a for all n $ 0. Using Proposition 2.4, it is clear
that (2.2) is satisfied for a ¼ 1 2 a with h(n) ¼ 1 for all n $ 0. A

Remark 1. The formulae given for some particular cases of equation (1.1) in Refs.
[2,6,8,13,14] are particular cases of Theorem 2.6.

3. Asymptotic behaviour of the solutions

In this section, we use the representation formula given in Section 2 to study
the asymptotic behaviour of the solutions to (1.1). We will consider three different
cases.

3.1 The case a 5 21

When a ¼ 21, the expression for all admissible solutions given in Theorem 2.6 becomes
very simple:

x2kþ2 ¼ x0ða2 1Þkþ1; ð3:1Þ

x2kþ1 ¼
x2 1

ða2 1Þkþ1
; ð3:2Þ

for all k $ 0. We notice that all solutions with a – 1 are admissible. Moreover, they are
regular if a ! {0,2}.

Thus, we have the following result:

Theorem 3.1. If a ¼ 21, then all regular solutions of (1.1) are unbounded. Moreover, if
{xn} is a regular solution of (1.1), then some subsequences of {xn} are divergent and other
converge to zero. The singular solutions are two-periodic if a ¼ 2, and four-periodic if
a ¼ 0.
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Proof. It follows easily from the relations (3.1) and (3.2). The complete behaviour of the
solutions is the following (here sign(x) ¼ 1 if x . 0, and sign(x) ¼ 21 if x , 0):

(1) If a . 2 then lim
k!1

x2kþ2 ¼ signðx0Þ1, lim
k!1

x2kþ1 ¼ 0:

(2) If a ¼ 2 then x2kþ2 ¼ x0, x2kþ1 ¼ x21, for all k $ 0.

(3) If 1 , a , 2 then lim
k!1

x2kþ2 ¼ 0, lim
k!1

x2kþ1 ¼ signðx21Þ1:

(4) If 0 , a , 1 then lim
k!1

x2kþ2 ¼ 0, lim
k!1

x4kþ1 ¼ 2sign ðx21Þ1; and lim
k!1

x4kþ3 ¼
sign ðx21Þ1:

(5) If a ¼ 0 then x4kþ1 ¼ 2x21, x4kþ2 ¼ 2x0, x4kþ3 ¼ x21, x4kþ4 ¼ x0; for all k $ 0.

Thus, xkþ4 ¼ xk, for all k $ 21.

(6) If a , 0 then lim
k!1

x4k ¼ sign ðx0Þ1, lim
k!1

x4kþ2 ¼ 2sign ðx0Þ1; and lim
k!1

x2kþ1 ¼ 0:

A

3.2 The case jaj $ 1, a "21

The main result in this section is the following:

Theorem 3.2. If jaj $ 1 and a –21, then all admissible solutions of (1.1) converge to
zero if a – 1 2 a, and are two-periodic if a ¼ 1 2 a.

Proof. From Proposition 2.4, we already know that the solutions of (1.1) are two-periodic
if a ¼ 1 2 a. Next, we assume that a – 1 2 a.

We first address the case a ¼ 1. As we already mentioned in Section 1, it was proved in
[14] that all regular solutions of (1.1) converge to zero if a ¼ b ¼ 1. The same arguments
of Theorem 1 in [14] apply to the case a ¼ 1, b – 0, using Theorem 2.6.

It remains the case jaj . 1, a – 1 2 a. Let {xn} be an admissible solution of (1.1).
Using Proposition 2.7, and the fact that lim

n!1
a2n ¼ 0, we have:

lim
n!1

jxnþ1j
jxn21j

¼ lim
n!1

jhðnÞj ¼ lim
n!1

anð12 aÞ þ að12 anÞ
anþ1ð12 aÞ þ að12 anþ1Þ

!!!!

!!!!

¼ lim
n!1

anð12 a2 aÞ þ a

anþ1ð12 a2 aÞ þ a

!!!!

!!!! ¼ lim
n!1

ð12 a2 aÞ þ aa2n

að12 a2 aÞ þ aa2n

!!!!

!!!! ¼
1

jaj , 1:

The D’Alembert criterion ensures that lim
k!1

jx2kj ¼ lim
k!1

jx2kþ1j ¼ 0. Hence, lim
n!1

xn ¼ 0.

A

3.3 The case jaj < 1

We begin this subsection with a simple result corresponding to the case a ¼ 0. Notice that
in this case all solutions are admissible if a – 0.

Proposition 3.3. If a ¼ 0, then all admissible solutions of (1.1) are two-periodic.

Proof. In this case, equation (1.1) becomes xnþ1 ¼ 1=ðbxnÞ. Thus, xnþ2 ¼ 1=ðbxnþ1Þ ¼ xn;
for all n $21. A
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The proof of the following lemma is very easy from expression (2.1), so we omit it:

Lemma 3.4. Let a – 1 and a – anða2 1Þ=ð12 anÞ, for all n $ 1. Then, h(n) ¼ 1 2 g(n),
where

gðnÞ ¼ ðaþ a2 1Þð12 aÞan

anþ1ð12 aÞ þ að12 anþ1Þ ; ð3:3Þ

for all n $ 0.
In order to address the case 0 , jaj , 1, we investigate the character of the

subsequences of even and odd terms, which depend on the sequence {h(n)}. For example,
if h(2k) . 1 for all sufficiently large k, then it is clear from (2.2) that the subsequence of
odd terms is eventually increasing.

Notice that, in view of Lemma 3.4, h(n) , 1 if and only if g(n) . 0, and h(n) . 1 if
and only if g(n) , 0.

Proposition 3.5. Assume that 0 , jaj , 1, a – 0, a – 1 2 a, and
a – anða2 1Þ=ð12 anÞ, for all n $ 1. Then, there exists N [ N such that the sequences
{g(2k)} and {g(2k þ 1)} have constant sign for all k $ N.

Proof. We first consider the case a [ (0,1), and distinguish three situations:

(1) If a [ (0,1) and a . 1 2 a, then ðaþ a2 1Þð12 aÞan . 0 and anþ1ð12 aÞ þ
að12 anþ1Þ . ð12 aÞ . 0; for all n $ 0. Thus, g(n) . 0 for all n [ N.

(2) If a [ (0,1) and 0 , a , 1 2 a, then ðaþ a2 1Þð12 aÞan , 0 and anþ1ð12
aÞ þ að12 anþ1Þ . a . 0; for all n $ 0. Thus, g(n) , 0 for all n [ N.

(3) If a [ (0,1) and a , 0 , 1 2 a, then ðaþ a2 1Þð12 aÞan , 0 for all n $ 0.
On the other hand, since

lim
n!1

anþ1ð12 aÞ þ að12 anþ1Þ ¼ a , 0;

we can conclude that there exists n0 [ N such that g(n) . 0 for all n $ n0.
Analogously, we consider the same situations for a [ (21,0).

(1) If a [ (21,0) and a . 1 2 a, then ðaþ a2 1Þð12 aÞa2k . 0 and ðaþ a2 1Þ %
ð12 aÞa2kþ1 , 0; for all k $ 0. Since anþ1ð12 aÞ þ að12 anþ1Þ . ð12 aÞ .
0; for all n $ 0, it follows that g(2k) . 0 and g(2k þ 1) , 0 for all k $ 0.

(2) If a [ (21,0) and 0 , a , 1 2 a, then ðaþ a2 1Þð12 aÞa2k , 0 and ðaþ a2
1Þð12 aÞa2kþ1 . 0; for all k $ 0. Since

lim
n!1

anþ1ð12 aÞ þ að12 anþ1Þ ¼ a . 0;

it follows that there exists k1 [ N such that g(2k) , 0 and g(2k þ 1) . 0 for all
k $ k1.

(3) If a [ (21,0) and a , 0 , 1 2 a, then ðaþ a2 1Þð12 aÞa2k , 0 and ðaþ a2
1Þð12 aÞa2kþ1 . 0; for all k $ 0. Since

lim
n!1

anþ1ð12 aÞ þ að12 anþ1Þ ¼ a , 0;
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it follows that there exists k2 [ N such that g(2k) . 0 and g(2k þ 1) , 0 for all
k $ k2. A

As a consequence of Proposition 3.5, we have:

Corollary 3.6. If 0 , jaj , 1, and {xn} is a regular solution of (1.1), then the
subsequences {x2k} and {x2kþ1} are eventually monotone.

Proof. From Proposition 3.5, we know that there exists N [ N such that the sequences
{g(2k)} and {g(2k þ 1)} have constant sign for all k $ N. Assume that g(2k) . 0 for all
k $ N. Then, h(2k) ¼ 1 2 g(2k) , 1 for all k $ N. On the other hand, since
limn!1hðnÞ ¼ 1 . 0, it is clear that there exists N1 $ N such that 0 , h(2k) , 1 for all
k $ N1.

Since, by Proposition 2.7, x2kþ1 ¼ hð2kÞx2k21, ; k $ 0, it follows that x2kþ1 , x2k21,
; k $ N1, that is, the subsequence {x2kþ1}

1
k¼N1

is decreasing.
The remainder cases are analogous. A
Using this corollary, we can prove the following key result:

Proposition 3.7. If 0 , jaj , 1, and {xn} is a regular solution of (1.1), then the
subsequences {x2k} and {x2kþ1} are convergent.

Proof. We only prove this result for the sequences of even terms, since the other case is
completely analogous.

As we noticed above, limn!1hðnÞ ¼ 1 . 0, and therefore h(n) . 0 for all sufficiently
large n. Without loss of generality, we assume that h(n) . 0 for all n $ 0.

Since {x2k} is eventually monotone, we only have to prove that it is bounded.
For it, we use Theorem 2.6 and Lemma 3.4:

jx2kj ¼ jx0j
Yk21

i¼0

hð2iþ 1Þ ¼ jx0jexp
Xk21

i¼0

lnðhð2iþ 1ÞÞ
 !

¼ jx0jexp
Xk21

i¼0

ln 12
ðaþ a2 1Þð12 aÞa2iþ1

a2iþ2ð12 aÞ þ að12 a2iþ2Þ

" # !

# jx0jexp ð12 a2 aÞð12 aÞ
Xk21

i¼0

a2iþ1

a2iþ2ð12 aÞ þ að12 a2iþ2Þ

 !

U jx0jexp ð12 a2 aÞð12 aÞ
Xk21

i¼0

bðiÞ
 !

:

For the inequality above, we have used that lnð12 xÞ # 2x for all x , 1.
Since

lim
i!1

jbðiþ1Þj
jbðiÞj ¼ lim

i!1
a 2iþ2 a 2iþ2ð12aÞþað12a 2iþ2Þð Þ
a 2iþ1 a 2iþ3ð12aÞþað12a 2iþ3Þð Þ
!!!

!!!

¼ lim
i!1

a a 2iþ2ð12aÞþað12a 2iþ2Þð Þ
a 2iþ3ð12aÞþað12a 2iþ3Þð Þ

!!!
!!! ¼ jaj , 1;
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it follows from the D’Alembert rule that the series
P1

i¼0 bðiÞ is convergent. This ensures
that {x2k} is bounded. A

Finally, we can state the main result of this subsection for the regular solutions of (1.1).

Theorem 3.8. If 0 , jaj , 1, then all regular solutions of (1.1) converge to a two-
periodic solution (p,q) of (1.1), with pq ¼ (1 2 a)/b – 0.

Proof. By Proposition 3.7, there exist lim k!1x2kþ1 ¼ p [ R, lim k!1x2kþ2 ¼ q [ R. As
it was mentioned in Section 1, the sequence {yn} ¼ {xnxn21} is a solution of (1.4) and, by
Proposition 2.5,

pq ¼ lim
n!1

yn ¼
12 a

b
– 0:

Taking limits as n!1 in (1.1), it is clear that the relations (1.5) hold, and therefore (p,q)
is a two-periodic solution of (1.1). A

Using Theorem 3.8 and Propositions 2.3, 2.4 and 3.3, we can describe completely the
behaviour of all admissible solutions in the case jaj , 1.

Theorem 3.9. Assume that jaj , 1, and {xn} is an admissible solution of (1.1). Then:

(1) If either a ¼ 0 or a ¼ 1 2 a, then {xn} is two-periodic.
(2) If a – 0, a – 0 and a – 1 2 a, then {xn} converges to a two-periodic solution.
(3) If a – 0, a ¼ 0 and ðx21; x0Þ – ð0; 0Þ, then {xn} is unbounded.
(4) If x21 ¼ x0 ¼ 0; then xn ¼ 0 for all n $ 1.

Remark 1. Notice that zero is the unique equilibrium of (1.1) if (1 2 a)b # 0. When
(1 2 a)b . 0, there are two nontrivial equilibrium points x^ ¼ ^ðð12 aÞ=bÞ1=2. Thus, the
minimal period of the two-periodic solution ( p, q) mentioned in Theorem 3.9 is actually 1
if (1 2 a)b . 0 and p ¼ q ¼ x^.

As a by-product of Theorems 3.1, 3.2 and 3.9, we have the following result on the
boundedness of the solutions to (1.1):

Proposition 3.10. All admissible solutions of (1.1) are bounded, except in the following
two cases:

(1) a ¼ 21 and a ! {0; 2};
(2) jaj , 1, a ¼ 0, and ðx21; x0Þ – ð0; 0Þ.

4. A bifurcation point of view

The analysis made in Section 3 can be also viewed in terms of bifurcation diagrams.
First, notice that the case b . 0 may be reduced to b ¼ 1 by the change of variables
vn ¼ b1=2 xn, and the case b , 0 may be reduced to b ¼ 21 by the change of variables
vn ¼ ð2bÞ1=2 xn. Thus, we can view equation (1.1) as a one-parameter family of difference
equations depending only on a, if we consider the cases b . 0, b ¼ 0, and b , 0
separately.

As an example, we consider the case b ¼ 21.
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There are two regular bifurcation points in a ¼ 21 and 1. When a . 1, all regular
solutions converge to zero; as a passes through 1 to the left, the v-limit set of any regular
solution is a two-periodic point. One of the branches of this periodic solution in the
bifurcation diagram approaches zero as a tends to21, and the other one diverges toþ1 or
21. After crossing the other bifurcation point a ¼ 21, only the bounded branch remains,
and all regular solutions are attracted by zero.

If we plot the bifurcation diagram corresponding to an initial condition ðx21; x0Þ with
a – 0, we also observe a singular bifurcation point when 12 a ¼ a ¼ 2x21x0 (that is, for
a* ¼ 1þ x21x0) if j1þ x21x0j . 1. Indeed, for all values of a in a neighbourhood of a* the
limit of the solution is zero, while for a ¼ a* the solution is two-periodic. In Figure 1, we
plotted the bifurcation diagram corresponding to b ¼ 21 and the initial condition
ðx21; x0Þ ¼ ð1; 2Þ.We observe the singular bifurcation point a* ¼ 3, for which the solution is
two-periodic.

As it may be seen from Proposition 3.10, the case when a ¼ 2 is special because all
admissible solutions of (1.1) are bounded. For b ¼ 21, this happens when x21x0 ¼ 22.
We plot in Figure 2(a) the bifurcation diagram corresponding to the initial data
ðx21; x0Þ ¼ ð1;22Þ. In Figure 2(b), we show a magnification for a close to 21 in order to
emphasize that the branches of periodic points for this initial condition are continuous on
the right at a ¼ 21. Of course, there is a discontinuity on the left, since for a ¼ 21 the
solution is two-periodic, and for a , 21 it converges to zero.

Remark 1.We produced the bifurcation diagrams in a standard way: for all values of awith a
step 0.005, we constructed the first 400 iterations corresponding to the initial conditions
ðx21; x0Þ ¼ ð1; 2Þ and ðx21; x0Þ ¼ ð1;22Þ, and plotted them starting at n ¼ 350. For the
magnification in Figure 2(b), we produced 1600 iterations for each value of a, with a step
0.0001.

5. Stability properties

As we have shown, the v-limit set of a bounded solution of (1.1) is a periodic solution of
minimal period 1, 2 or 4. In this section, we study the stability properties of these periodic
solutions. We begin with the zero solution.

–2 –1 0 1 2 3 4
–1

0

1

2

3

4

5

Figure 1. Bifurcation diagram for (1.1) with b ¼ 21, x21 ¼ 1, x0 ¼ 2.
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Proposition 5.1. The zero solution of (1.1) is asymptotically stable if and only if either
jaj . 1 or a ¼ 1 and b – 0. Moreover, in both cases it attracts all regular solutions.

Proof. The characteristic equation associated to the linearization of (1.1) at the equilibrium
x ¼ 0 is given by the quadratic equation x2 ¼ 1=a. Thus, the zero solution is locally
asymptotically stable if jaj . 1, and unstable if jaj , 1. Theorem 3.2 shows that zero is
actually a global attractor of all regular solutions when a ! [21,1).

If a ¼ 1 and b ¼ 0, then all solutions are two-periodic (the minimal period may be
one), and they are clearly stable but not asymptotically stable.

Finally, if a ¼ 21, it follows from Theorem 3.1 that zero is unstable, since solutions
starting at initial conditions arbitrarily close to (0,0) are unbounded. A

Next, we deal with the nontrivial periodic solutions.
The unique periodic solutions with period greater than 2 are the four-periodic points

indicated in Theorem 3.1 for a ¼21 and a ¼ 0. They are clearly unstable.
As proved in Proposition 3.3, all admissible solutions of (1.1) for a ¼ 0 are two-

periodic; moreover, from the proof of this proposition, it is clear that they are stable.
If a – 0, then the two-periodic points of (1.1) are defined by the initial conditions ( p,q)

such that a þ bpq ¼ 1. This can be easily seen taking into account the correspondence
between the solutions of (1.1) and the orbits of the discrete dynamical system associated to
the map F defined by Fðx; yÞ ¼ ðy; x=ðaþ bxyÞÞ: The two-periodic solutions of (1.1) are
defined by the fixed points of the map F 2 ¼ F +F. It is straightforward to prove that, if
a – 0 and (a,b) – (1,0), F 2ðx; yÞ ¼ ðx; yÞ if and only if a þ bxy ¼ 1. Notice that, as
mentioned in Remark 1, equation (1.1) has two nontrivial equilibria x^ ¼ ^ðð12 aÞ=bÞ1=2
if (1 2 a)b . 0; thus, the minimal period of ( p,q) is one if p ¼ q ¼ ^ðð12 aÞ=bÞ1=2.
Otherwise, the minimal period is two.

Direct computations show that the linearization of F 2 at any point ( p,q) satisfying
a þ bpq ¼ 1 has two eigenvalues: a and 1. Thus, all nonzero two-periodic solutions are
unstable for jaj . 1. When a ¼ 21 or a ¼ 1, it follows from Theorems 3.1, 3.2 that they
are also unstable.

Since we already studied the case a ¼ 0, the remainder part of this section is devoted to
prove that every nonzero periodic solution of (1.1) is stable if 0 , jaj , 1. For it, we will use
the formula given in Theorem 2.6. First, we need some bounds for the involved products.

Lemma 5.2. Assume that 0 , jaj , 1 and a . ð12 aÞ=2. For all n $ 0 one has:

anð12 aÞ þ að12 anÞ . 0;

and, as a consequence, hðnÞ . 0; ; n $ 0:

Figure 2. Bifurcation diagrams for (1.1) with b ¼ 21, x21 ¼ 1, x0 ¼ 22.
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Proof. Since a . (1 2 a)/2, we have

anð12 aÞ þ að12 anÞ . anð12 aÞ þ ð12 anÞð12 aÞ=2 ¼ ð1þ anÞð12 aÞ=2 . 0:

A

Proposition 5.3. If 0 , jaj , 1 and a . ð12 aÞ=2, then

ð1Þ
Yk

i¼0

hð2iþ 1Þ # exp
2jð12 a2 aÞaj

12 a2

$ %
:

ð2Þ
Yk

i¼0

hð2iÞ # exp
2j12 a2 aj

ð12 a2Þð1þ aÞ

$ %
:

Proof.

(1) As in the proof of Proposition 3.7, one gets

Yk

i¼0

hð2iþ 1Þ # exp ð12 a2 aÞð12 aÞ
Xk21

i¼0

a2iþ1

a2iþ2ð12 aÞ þ að12 a2iþ2Þ

( )

:

First, if (1 2 a 2 a)a , 0 then

ð12 a2 aÞað12 aÞ
Xk21

i¼0

a2i

a2iþ2ð12 aÞ þ að12 a2iþ2Þ , 0

and the result is trivial.

If (1 2 a 2 a)a $ 0 and a . 0 we have that 1 2 a $ a and hence

a2iþ2ð12 aÞ þ að12 a2iþ2Þ $ a2iþ2aþ a ð12 a2iþ2Þ ¼ a . 0:

Therefore,

ð12 a2 aÞað12 aÞ
Xk21

i¼0

a2i

a2iþ2ð12 aÞ þ að12 a2iþ2Þ

# ð12 a2 aÞað12 aÞ
Xk21

i¼0

a2i

a
,

ð12 a2 aÞað12 aÞ
a

X1

i¼0

a2i ¼ ð12 a2 aÞað12 aÞ
að12 a2Þ

,
2ð12 a2 aÞa

12 a2
¼ 2jð12 a2 aÞaj

12 a2
:

On the other hand, if (1 2 a 2 a)a $ 0 and a , 0 then 1 2 a # a and this implies

a2iþ2ð12 aÞ þ að12 a2iþ2Þ $ a2iþ2ð12 aÞ þ ð12 aÞð12 a2iþ2Þ ¼ ð12 aÞ . 0:
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Thus,

ð12 a2 aÞað12 aÞ
Xk21

i¼0

a2i

a2iþ2ð12 aÞ þ að12 a2iþ2Þ

# ð12 a2 aÞað12 aÞ
Xk21

i¼0

a2i

12 a
, ð12 a2 aÞa

X1

i¼0

a2i

¼ jð12 a2 aÞaj
12 a2

#
2jð12 a2 aÞaj

12 a2
:

(2) The same argument used in the proof of Proposition 3.7 shows

Yk

i¼0

hð2iÞ # exp ð12 a2 aÞð12 aÞ
Xk21

i¼0

a2i

a2iþ1ð12 aÞ þ að12 a2iþ1Þ

( )

:

Again, if 1 2 a 2 a , 0 then

ð12 a2 aÞð12 aÞ
Xk21

i¼0

a2i

a2iþ1ð12 aÞ þ að12 a2iþ1Þ , 0

and the inequality of the statement is straightforward.

When we suppose that 1 2 a 2 a $ 0 and a . 0 then, as we did before,

a2iþ1ð12 aÞ þ að12 a2iþ1Þ $ a . 0
and, hence,

ð12 a2 aÞð12 aÞ
Xk21

i¼0

a2i

a2iþ1ð12 aÞ þ að12 a2iþ1Þ

# ð12 a2 aÞð12 aÞ
Xk21

i¼0

a2i

a
,

ð12 a2 aÞð12 aÞ
að12 a2Þ

#
ð12 a2 aÞ

12 a2
#

ð12 a2 aÞ2
ð1þ aÞð12 a2Þ :

Finally, if 1 2 a 2 a $ 0 and a , 0, then a2iþ1 . a, and therefore

a2iþ1ð12 aÞ þ að12 a 2iþ1Þ ¼ a 2iþ1ð12 a2 aÞ þ a . að12 a2 aÞ þ a ¼ ð12 aÞðaþ aÞ:

Since a . ð12 aÞ=2, we get that aþ a . ð1þ aÞ=2 which leads us to

a2iþ1ð12 aÞ þ að12 a2iþ1Þ . ð12 a2Þ=2 . 0:

Therefore,

ð12 a2 aÞð12 aÞ
Xk21

i¼0

a2i

a2iþ1ð12 aÞ þ að12 a2iþ1Þ

# ð12 a2 aÞð12 aÞ
Xk21

i¼0

a2i

ð12 a2Þ=2 ,
ð12 a2 aÞð12 aÞ
ð12 a2Þð12 a2Þ=2 ¼ ð12 a2 aÞ2

ð1þ aÞð12 a2Þ :
A
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Proposition 5.4. If 0 , jaj , 1 and a . (1 2 a)/2, then

ð1Þ
Yk

i¼0

hð2iþ 1Þ $ min{1; ð12 aÞ=a}exp 2
2j12 a2 aj

ð12 a2Þð1þ aÞ

$ %
:

ð2Þ
Yk

i¼0

hð2iÞ $ min{1; ð12 aÞ=a}exp 2
2jð12 a2 aÞaj

12 a2

$ %
:

Proof. First, notice that we have

Yk

i¼0

hð2iþ 1Þ
Yk

i¼0

hð2iÞ ¼ 12 a

a2kþ2ð12 aÞ þ að12 a2kþ2Þ :

If a , 1 2 a then

12 a

a2kþ2ð12 aÞ þ að12 a2kþ2Þ .
12 a

12 a
¼ 1;

and when a $ 1 2 a we get

12 a

a2kþ2ð12 aÞ þ að12 a2kþ2Þ .
12 a

a
:

Therefore, we get the inequality

Yk

i¼0

hð2iþ 1Þ
Yk

i¼0

hð2iÞ $ min{1; ð12 aÞ=a}

and the result claimed follows at once from Proposition 5.3. A

Theorem 5.5. If 0 , jaj , 1 then every nonzero periodic solution of (1.1) is stable.

Proof. As mentioned above, if 0 , jaj , 1 then every nonzero periodic solution {xn} of
(1.1) is given by x2k21 ¼ p; x2k ¼ q for all k $ 0, where bpq ¼ 1 2 a. Let us, then, fix p, q
such that bpq ¼ 1 2 a.

Since the mapping f ðx21; x0Þ ¼ 12 a2 bx0x21 is continuous, we may find d1 . 0
such that j12 a2 bx0x21j , ð12 aÞ=2 whenever kðx21; x0Þ2 ðp; qÞk1 , d1.

Let {xn} be the solution of (1.1) obtained for some initial conditions ðx21; x0Þ verifying
kðx21; x0Þ2 ðp; qÞk1 , d1. According to Propositions 5.3 and 5.4, there exist continuous
functions f iðx21; x0Þ; 1 # i # 4 such that f ið p; qÞ ¼ 1 for 1 # i # 4 and

f 1ðx21; x0Þ #
Yk

i¼0

hð2iþ 1Þ # f 2ðx21; x0Þ;

f 3ðx21; x0Þ #
Yk

i¼0

hð2iÞ # f 4ðx21; x0Þ;
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for all k $ 0. For every e . 0, we can therefore find d2 . 0 such that kðx21; x0Þ2
ðp; qÞk1 , d2 implies

j f iðx21; x0Þ2 1j , e

2M
; 1 # i # 4;

where M ¼ max{jpþ e j; jp2 e j; jqþ e j; jq2 e j}. This clearly implies that, for every
k $ 0,

Yk

i¼0

hð2iþ 1Þ2 1

!!!!!

!!!!! ,
e

2M
;

Yk

i¼0

hð2iÞ2 1

!!!!!

!!!!! ,
e

2M
:

Since, by Theorem 2.6,

x2k ¼ x0
Yk

i¼0

hð2iþ 1Þ;

it follows that

jx2k 2 x0j ¼ jx0j
Yk

i¼0

hð2iþ 1Þ2 1

!!!!!

!!!!! # jx0j
e

2M
:

Now, if we choose d ¼ min{d1; d2; e=2} and kðx21; x0Þ2 ðp; qÞk1 , d; then we have
q2 e , x0 , qþ e which implies jx0j , M; and then

jx2k 2 qj # jx2k 2 x0jþ jx0 2 qj # jx0j
e

2M
þ e

2
, e :

The same argument applied to the subsequence {x2kþ1} completes the proof. A

6. Conclusions and open problems

Wedescribed completely the dynamics and stability properties of equation (1.1) for all values
of the real coefficients a, b. This was possible because of the relation of this equation with the
Möbius recurrence (1.4). We list some open problems related to equation (1.1).

(1) Analyse the behaviour of the solutions of (1.1) when the coefficients and the initial
conditions are complex. For a recent work on the dynamics of Möbius
transformations with complex coefficients, see [7].

(2) In the case jaj , 1, try to determine the actual value of the two-periodic point (p, q) to
which a regular solution of (1.1) converges for a given initial condition ðx21; x0Þ. In
the light of Theorem 2.6, this is equivalent to find the value of the infinite productsQ1

i¼0hð2iÞ,
Q1

i¼0hð2iþ 1Þ:
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[14] S. Stević, More on a rational recurrence relation, Appl. Math. E-Notes 4 (2004), pp. 80–85.

I. Bajo and E. Liz1486

D
ow

nl
oa

de
d 

by
 [U

vi
], 

[M
r E

du
ar

do
 L

iz
] a

t 0
2:

00
 0

3 
O

ct
ob

er
 2

01
1 


