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For a family of difference equations xnþ1 ¼ axn þ f ðxn2kÞ; n ¼ 0; 1; . . .;wherea [ ð0; 1Þ; k [ {1; 2; . . .};
and f : ½0;1Þ! ð0;1Þ is continuous and decreasing, we find sufficient conditions for the convergence of
all solutions to the unique positive equilibrium. In particular, we improve, up to our knowledge, all previous
results on the global asymptotic stability of the equilibrium in the particular cases of the discrete Mackey–
Glass and Lasota–Wazewska models in blood-cells production.
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1. Introduction

It is well-known that many discrete models in biology can be described by a difference

equation

xnþ1 ¼ axn þ f ðxn2kÞ; n ¼ 0; 1; . . .; ð1:1Þ

where a [ ð0; 1Þ; k [ {1; 2; . . .}; and f : ½0;1Þ! ð0;1Þ is a continuous function. For some

examples, see sections 4.5–4.7 in the monograph [11]. Equation (1.1) is not only interesting

by itself, but also as the discretization of an extensively studied family of delay differential

equations, namely

x0ðtÞ ¼ 2dxðtÞ þ f ðxðt 2 hÞÞ; d . 0; h . 0: ð1:2Þ

Relations between equations (1.1) and (1.2) can be found, for example, in refs. [1,10]. For

processes modeled by equation (1.2), the reader can find many examples in the interesting

list in [8, p. 78], including models in neurophysiology, metabolic regulation and agricultural

commodity markets.

We will focus our attention on the case of a decreasing nonlinearity f. In fact, we will

assume that f is differentiable and f 0ðxÞ , 0 for all x . 0: Under this hypothesis, it is clear

that equation (1.1) has a unique constant solution ð�xÞ; where �x solves the scalar equation
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h(x) ¼ x, with hðxÞ ¼ ð1 2 aÞ21f ðxÞ: For any initial string {x2k; . . .; x0} with xi $ 0; i ¼

2k; . . .; 0; the solution of equation (1.1) is a sequence {xn}n$2k constructed by induction,

and it is positive. We will only consider these solutions. Our aim in this paper consists in

finding sufficient conditions to ensure that all solutions of equation (1.1) converge to �x: In

this case, we will say that �x is a global attractor of equation (1.1).

Our research is mainly motivated by two well-known examples of equation (1.1) with

decreasing f, namely, the discrete analogue of the Mackey–Glass equation in haematopoiesis

xnþ1 ¼ axn þ
b

1 þ x
p
n2k

; n ¼ 0; 1; . . .; ð1:3Þ

where a [ ð0; 1Þ and p, b are positive constants, and the discrete analogue of the Lasota–

Wazewska model for the survival of red blood cells in an animal

xnþ1 ¼ axn þ pe2qxn2k ; n ¼ 0; 1; . . .; ð1:4Þ

with p, q . 0: For these equations, sufficient conditions to ensure the convergence of all

positive solutions to the equilibrium were obtained in recent years [2,5–7,9–12]. By rigorous

comparisons with these papers, we will show that our results improve all conditions stated

there for the particular cases of equations (1.3) and (1.4).

A well-known result [11, Corollary 2.4.1] establishes that, for decreasing f, all positive

solutions of equation (1.1) converge to the unique equilibrium �x if �x is a global attractor for

the discrete dynamical system generated by h, that is, if the sequence defined by xnþ1 ¼

hðxnÞ; n $ 0; converges to �x for every x0 $ 0: (In fact, this result has a more general form in

ref. [9, Theorem 1], where it is only required the existence of an invariant closed interval for

h containing the attracting fixed point �x).

It can be checked [4,6,9] that the nonlinearities in equations (1.3) and (1.4) not only are

decreasing but also they have negative Schwarzian derivative. This property makes the study

of the global stability in equations (1.3) and (1.4) easier. The following hypothesis will be

required when necessary:

(H) f [ C 3ð½0;1Þ; ð0;1ÞÞ; f 0ðxÞ , 0; ðSf ÞðxÞ , 0 for all x . 0; where (Sf )(x) is the

Schwarzian derivative of f at x, defined by

ðSf ÞðxÞ ¼
f 000ðxÞ

f 0ðxÞ
2

3

2

f 00ðxÞ

f 0ðxÞ

� �2

:

Denote c U jh0ð�xÞj: As it was pointed out in ref. [2] (see also refs. [6,9]), under hypothesis

(H), �x is a global attractor for h if and only if c # 1: Hence, the following result holds:

Proposition 1.1 [2,6] If c # 1 and (H) holds, then �x is a global attractor of

equation (1.1).

Let us observe that Proposition 1.1 provides a condition independent of the size of the

delay k (depends only on a and f ). Moreover, condition c # 1 is the sharpest condition for

the global asymptotic stability independent of k (often called absolute stability). Indeed,

the linearized equation of (1.1) at �x is

xnþ1 ¼ axn þ f 0ð�xÞxn2k; n ¼ 0; 1; . . .; ð1:5Þ
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According to ref. [14, Theorem 4], this equation is asymptotically stable if and only if

j f 0ð�xÞj , ða2 þ 1 2 2a cos uÞ1=2; ð1:6Þ

where u is the solution in ð0;p=k þ 1ÞÞ of sin ðkuÞ=sin ½ðk þ 1Þu � ¼ 1=a: Hence, it is easily

seen that if c . 1; there exists an integer k . 0 such that inequality (1.6) is violated (and

therefore �x is unstable).

Since Proposition 1.1 gives a criterion for the absolute stability in equation (1.1), we will

focus our attention in obtaining delay-dependent conditions for the global attractivity of the

equilibrium.

In recent years, several authors made relevant contributions in this direction. In [12], Krause

and Pituk have obtained a global stability result for equation (1.1) (without assuming that f is

decreasing), by using an elegant approach based on monotonicity arguments. Theorem 7 in

ref. [12] ensures the convergence of all solutions to the equilibrium under condition

max
x.0

{j f 0ðxÞj} # a kþ1 k k

ðk þ 1Þðkþ1Þ
: ð1:7Þ

Our theorem 2.7 below proves the convergence to �x of all solutions of equation (1.1) under

condition

max
x[½a;b �

{j f 0ðxÞj} # a kþ1 3k þ 4

2ðk þ 1Þ2
; ð1:8Þ

where a, b satisfy 0 , a , �x , b; and will be defined in the second section. Since

equation (1.8) is sharper than equation (1.7), for f decreasing our Theorem 2.7 improves

ref. [12, Theorem 7].

Using Liapunov functions, Graef and Qian proved in [5] the convergence of all solutions to

the equilibrium �x of equation (1.1) with decreasing f under the following condition (also

sharper than equation (1.7)):

max
x$0

{j f 0ðxÞj} #
1 2 a

1 2 a kþ1
: ð1:9Þ

Let us observe that equations (1.7)–(1.9) require the estimation of f 0ðxÞ at least on a real

interval containing �x; while Proposition 1.1 only involves the value of f 0 at the equilibrium

point �x: The consideration of hypothesis (H) permits to obtain results in this direction, as

shown in Győri and Trofimchuk [6]. The following statement is equivalent to their

Corollary 17:

Theorem 1.2 [6] Assume that c . 1 and (H) holds. Then �x is a global attractor of

equation (1.1) if

a kþ1 .
c2 2 c

c 2 þ 1
: ð1:10Þ

In fact, the statement in [6] is more general, since it applies also to unimodal nonlinearities

with negative Schwarzian. Next, it is a matter of calculations to check that Theorem 1.2

improves the results in [5] for f satisfying (H), and, in particular, it gives better results for

equations (1.3) and (1.4). Indeed, equation (1.9) requires that

j f 0ð�xÞj #
1 2 a

1 2 a kþ1
;
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which, for c $ 1; is equivalent to

a kþ1 $
c 2 1

c
:

This condition is stronger than inequality (1.10).

Recently, in ref. [2] a new global stability result was proved which applies in some

cases for which equation (1.10) does not hold. However, both results are not comparable.

Our main result in this paper extends Theorem 3.1 in ref. [2] and, in particular, improves

Theorem 1.2 when f satisfies (H). As a result, we find sharper conditions for the convergence

of all positive solutions of equations (1.3) and (1.4) to the corresponding equilibria.

Some of our conditions involve the estimation of f 0ðxÞ on a certain compact interval ½a; b � ,

ð0;1Þ:

The paper is organized as follows: in section 2, we state and prove some results on the

global attraction of �x without assuming condition (H). Next, in section 3, we apply the results

from the second section to the particular situation when (H) holds, improving, up to our

knowledge, all previous results for this class of difference equations. Moreover, we establish

some comparisons among our estimations and the conditions for the local asymptotic

stability of �x; which lead us to formulate some conjectures and open problems. Finally, in

section 4, we apply our main result to equations (1.3) and (1.4).

2. Main results for f decreasing

Throughout this section, we do not assume that condition (H) holds, but only that f 0 is

negative. Since h is decreasing, �x is a global attractor of equation (1.1) under the assumption

that �x is the unique fixed point of h2 ¼ h + h: Hence, we can assume that h2 has more than one

fixed point. In this case, we can define the numbers

a ¼ inf {x . 0 : h2ðxÞ ¼ x}; b ¼ sup {x . 0 : h2ðxÞ ¼ x}:

Moreover [2], for a given solution {xn} of equation (1.1),

a # lim inf
n!1

xn ¼ L # S ¼ lim sup
n!1

xn # b:

Next, by induction one can choose integer subsequences {nl} and {n0
l}; with liml!1

nl ¼ liml!1 n0
l ¼ 1; such that

lim
l!1

xnlþ1 ¼ L; lim
l!1

xnl2i ¼ Li; lim
l!1

x
n
0

l
þ1

¼ S; lim
l!1

x
n
0

l
2i

¼ Si;

with Li, Si [ ½L; S � for all i ¼ 0; 1; 2; . . .; 2k:

Since any solution of equation (1.1) is also a solution of the higher order equation [2, p.

754],

xnþ1 ¼ Fðxn2kÞ þ ð1 2 aÞ
Xk

i¼1

a ihðxn2k2iÞ; n $ 2k; ð2:1Þ
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where FðxÞ ¼ a kþ1x þ ð1 2 aÞhðxÞ for all x [ ½a; b �: Then, taking the limits in both sides of

equations (1.1) and (2.1) through nl and n0
l; we obtain the following equations:

L ¼ aL0 þ ð1 2 aÞhðLkÞ; ð2:2Þ

S ¼ aS0 þ ð1 2 aÞhðSkÞ; ð2:3Þ

L ¼ FðLkÞ þ ð1 2 aÞ
Xk

i¼1

a ihðLkþiÞ; ð2:4Þ

and

S ¼ FðSkÞ þ ð1 2 aÞ
Xk

i¼1

a ihðSkþiÞ: ð2:5Þ

Since hðxÞ ¼ x only if x ¼ �x; then, assuming L , S; F must satisfy the relations

ð1 2 aþ a kþ1ÞhðSÞ , FðxÞ , ð1 2 aþ a kþ1ÞhðLÞ for all x [ ½L; S �. Therefore,

equations (2.4) and (2.5) yield

L . hðSÞ and S , hðLÞ; ð2:6Þ

and hence there exist two numbers c1 [ ½L; �xÞ; c2 [ ð�x; S � such that hðc1Þ ¼ S and hðc2Þ ¼ L:

Also, equation (2.6) implies that L . h2ðLÞ and S , h2ðSÞ; that is L, S [ ða; bÞ:

Lemma 2.1 Assume that the numbers c1, c2, L, Li, S, Si are defined as before such that

L , S: Then Lk [ ½c2; S � and Sk [ [L,c1].

Proof Since L0 $ L and S0 # S; then equations (2.2) and (2.3) yield

L $ hðLkÞ and S # hðSkÞ

or equivalently,

hðc2Þ $ hðLkÞ and hðc1Þ # hðSkÞ:

Our assertion follows now from the decreasing nature of h. A

Let us now define the family of functions Fl on [a,b ] as follows:

FlðxÞ ¼ la kþ1x þ ð1 2 aÞhðxÞ ¼ FðxÞ2 ð1 2 lÞa kþ1x; l $ 0:

Then

F0
lðxÞ ¼ la kþ1 þ ð1 2 aÞh0ðxÞ:

For convenience in the presentation of our next results, we state the following lemma,

whose proof is an easy consequence of the previous relation.

Lemma 2.2 The following statements hold:

(a) F0
lðxÞ # 0 for all x [ ½a; b � if and only if

min
x[½a;b �

{j f 0ðxÞj} $ la kþ1: ð2:7Þ
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(b) F0
lðxÞ $ 0 for all x [ ½a; b � if and only if

max
x[½a;b �

{j f 0ðxÞj} # la kþ1: ð2:8Þ

Next, equations (2.4) and (2.5) can be rewritten as follows:

L ¼ FlðLkÞ þ ð1 2 lÞa kþ1Lk þ ð1 2 aÞ
Xk

i¼1

a ihðLkþiÞ; ð2:9Þ

and

S ¼ FlðSkÞ þ ð1 2 lÞa kþ1Sk þ ð1 2 aÞ
Xk

i¼1

a ihðSkþiÞ: ð2:10Þ

We are now ready to state our main results.

Theorem 2.3 Let l [ ½0; 1� be such that equation (2.7) holds. Define GðxÞ ¼

la kþ1x þ ð1 2 a kþ1ÞhðxÞ; CðxÞ ¼ x 2 ð1 2 lÞa kþ1h21ðxÞ; and VðxÞ ¼ C21ðGðxÞÞ for all

x [ ½a; b � where h 21 is the inverse of h. If �x is the unique fixed point of V 2 in (a,b), then �x is a

global attractor of all solutions of equation (1.1)

Proof Assume that {xn} is any solution of equation (1.1) such that L , S: From Lemma

2.2, Fl is nonincreasing on [a, b]. Hence equations (2.9), (2.10) and Lemma 2.1 yield

L $ FlðSÞ þ ð1 2 lÞa kþ1Lk þ ða2 a kþ1ÞhðSÞ $ ð1 2 lÞa kþ1h21ðLÞ þ GðSÞ;

and

S # FlðLÞ þ ð1 2 lÞa kþ1Sk þ ða2 a kþ1ÞhðLÞ # ð1 2 lÞa kþ1h21ðSÞ þ GðLÞ:

Rearranging, and taking into account that C is increasing, we obtain L $ VðSÞ and

S # VðLÞ; and hence, since V is decreasing,

L $ V 2ðLÞ and S # V 2ðSÞ;

which, in view of the fact that V 2ð½a;B�Þ # ða; bÞ; lead to the existence of a fixed point of the

map V 2 in (a, b) different from �x: This contradiction proves that L ¼ S ¼ �x; and hence

limn!1xn ¼ �x for all solution {xn} of equation (1.1). A

We notice that, for l ¼ 1; Theorem 2.3 gives Theorem 3.1 in [2].

Theorem 2.4 Let l $ 1 be such that equation (2.8) holds. Define ZðxÞ ¼ ð1 2 lÞa kx þ

ð1 2 a kÞhðxÞ; FðxÞ ¼ x 2 la kh21ðxÞ; and HðxÞ ¼ F21ðZðxÞÞ for all x [ ½a; b �; where h 21

is the inverse of h. If �x is the unique fixed point of H 2 in (a, b), then �x is a global attractor of

all solutions of equation (1.1).

Proof Proceeding as in the proof of the above theorem, the increasing nature of Fl on [a,b],

equation (2.9) and Lemma 1 yield

L $ Flðc2Þ þ aZðSÞ ¼ la kþ1h21ðLÞ þ ð1 2 aÞL þ aZðSÞ:

Rearranging, we obtain L 2 lakh21ðLÞ $ ZðSÞ; and hence, since F is increasing,

L $ F21ðZðSÞÞ ¼ HðSÞ:
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Using similar arguments with equation (2.10), it follows that S # HðLÞ: Therefore,

L $ H 2ðLÞ and S # H 2ðSÞ:

Since H 2ð½a; b�Þ # ða; bÞ; it follows that H 2 has a fixed point in (a, b) different from �x;

which contradicts our assumptions. The proof is complete. A

Next we assume that Fl has only one critical point in [a, b ], say x*
l; which will be a local

minimum.

Theorem 2.5 Assume that l [ ½0; 1�; x*
l; V are defined as before,

F0
lð�xÞ # 0 and either V Fl x*

l

� �� �
# x*

l or VðaÞ # x*
l: ð2:11Þ

If the map V 2 has no fixed points in (a,b) different from �x; then �x is a global attractor of all

solutions of equation (1.1).

Proof Let us assume that {xn} be any solution of equation (1.1) such that L , S: Since

F0
lð�xÞ # 0; then �x # x*

l: Thus, FlðxÞ is decreasing on ½L; �x�; and equation (2.10) yields

S # VðLÞ: Next, since L . a and L . Fl x*
l

� �
(from equation (2.9)), it follows from

equation (2.11) that either S , V Fl x*
l

� �� �
# x*

l or S , VðaÞ # x*
l: This means that Fl is

decreasing on [L, S]. Therefore, the proof can be completed as the proof of Theorem 2.3. A

Theorem 2.6 Assume that x*
l and H are defined as before. If

F1 x*
1

� �
þ ða2 a kþ1Þa $ x*

1 ð2:12Þ

and, for l ¼ 1; the map H 2 has no fixed points in (a,b) different from �x; then �x is a global

attractor of all solutions of equation (1.1).

Proof As usual, we assume that L , S: Then equations (2.9) and (2.12) yield

L $ F1 x*
1

� �
þ ða2 a kþ1Þa $ x*

1:

Therefore, F0
1ðxÞ $ 0 for all x [ ½L; S�; and hence the proof can be completed using the

same reasoning as in the proof of Theorem 2.4, but with l ¼ 1: A

In addition to the above technique, one may also apply linear methods to obtain global

attractivity criteria for equation (1.1). First, we have to prove that any solution of

equation (1.1), say {xn}, is a solution of a corresponding linear equation. This can be done

using the mean value theorem, which implies f ðxn2kÞ ¼ f ð�xÞ þ ðxn2k 2 �xÞf 0ðjnÞ; where jn lies

between �x and xn2k: Therefore, from equation (1.1), we obtain

xnþ1 2 axn ¼ ð1 2 aÞ�x þ ðxn2k 2 �xÞf 0ðjnÞ:

With this idea, we can prove the following result:

Theorem 2.7 Assume that

max
x[½a;b �

{j f 0ðxÞj} # a kþ1 3k þ 4

2ðk þ 1Þ2
: ð2:13Þ

Then the equilibrium point �x is a global attractor of all solutions of equation (1.1).
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Proof According the remark stated in ref. [3, p. 160], if {pn} is a sequence of nonnegative

real numbers and the inequality

Xn

i¼n2k

pi #
3

2
þ

1

2ðk þ 1Þ
ð2:14Þ

eventually holds, then every solution of the difference equation

xnþ1 2 xn þ pnxn2k ¼ 0; n ¼ 0; 1; . . .

is bounded.

Let {xn} be a given solution of equation (1.1). Then, using the above reasoning, we get that

{zn} ¼ {ðxn 2 �xÞa2n} satisfies

znþ1 2 zn þ a2k21j f 0ðjnÞjzn2k ¼ 0;

for some jn between �x and xn2k. As L; S [ ða; bÞ; then a positive integer n0 exists such that

xn2k [ ða; bÞ for all n $ n0: Thus jn [ ða; bÞ for all n $ n0; and hence inequality (2.13)

implies that the sequence {pn} defined by pn ¼ a2k21j f 0ðjnÞj satisfies equation (2.14) for n

large. Hence, {zn} is bounded, and therefore, since a [ ð0; 1Þ; {xn} converges to �x: A

3. The case of negative Schwarzian

In this section, we assume that hypothesis (H) holds. In this case, one can state easier and

more explicit global attractivity criteria from the above general results. We need two

previous lemmas. The first of them shows that, when (H) holds, the function h can have only

one 2-cycle.

Lemma 3.1 Assume that g : ½0;1Þ! ð0;1Þ satisfies ðSgÞðxÞ , 0 and g0ðxÞ , 0 for all

x . 0; and let �x be the unique solution of gðxÞ ¼ x: If jg0ð�xÞj . 1; then there exists a unique

pair ða; bÞ [ ð0;1Þ2; a , �x , b; such that g(a) ¼ b and g(b) ¼ a.

Proof Existence of (a,b) follows from ref. [2, Lemma 3.3]; uniqueness is a straightforward

consequence of Lemma 2.6 in ref. [16]. A

Lemma 3.2 Let I ¼ ½a; b � be a real interval, and assume that g: I ! I satisfies ðSgÞðxÞ , 0

for all x [ I: Let glðxÞ ¼ lx þ gðxÞ with l . 0: If g0
lðxÞ , 0 for all x [ I; then ðSglÞðxÞ , 0

for all x [ I:

Proof First we notice that g0
lðxÞ , 0 for all x [ I implies that g0ðxÞ , 0 for all x [ I: Since

g0
lðxÞ , 0; (Sgl)(x) , 0 if and only if g0

lðxÞg
000
l ðxÞ , ð3=2Þðg00

lðxÞÞ
2: In particular, ðSglÞðxÞ , 0

if g000
l ðxÞ ¼ g000ðxÞ . 0: Hence, we can assume that g000ðxÞ # 0: Since g0

lðxÞ ¼ lþ g0ðxÞ;

g00
lðxÞ ¼ g00ðxÞ; and g000

l ðxÞ ¼ g000ðxÞ; it follows that g0
lðxÞg

000
l ðxÞ # g0ðxÞg000ðxÞ , ð3=2Þ £

ðg00ðxÞÞ2 ¼ ð3=2Þðg00
lðxÞÞ

2; and therefore ðSglÞðxÞ , 0 for all x [ I: A

Lemma 3.2 ensures that ðSGÞðxÞ , 0 for all x [ ½a; b � provided that F0
lðxÞ # 0 for all

x [ ½a; b �; that is, when equation (2.7) holds. Moreover, as in ref. [6, Section 3.1], one can

see that ðSC21ÞðxÞ , 0; ðSF21ÞðxÞ , 0 for all x . 0: Consequently, the known formula

ðSð f +gÞÞðxÞ ¼ Sð f ÞðgðxÞÞðg0ðxÞÞ2 þ ðSgÞðxÞ
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implies that ðSVÞðxÞ , 0 for all x [ ½a; b � when equation (2.7) holds, and that ðSHÞðxÞ , 0

for all x [ ½a; b � as long as ðSZÞðxÞ # 0 for all x [ ½a; b �:

On the other hand, since f is decreasing and has negative Schwarzian, Proposition 2.4 in

ref. [16] ensures that f 0 cannot have a local maximum. Therefore, min {j f 0ðxÞj : x [

½a; b �} ¼ min {j f 0ðaÞj; j f 0ðbÞj}: Hence, equation (2.7) reads

min {j f 0ðaÞj; j f 0ðbÞj} $ la kþ1; ð3:1Þ

where {a,b} is the unique 2-cycle of h ¼ ð1 2 aÞ21f :

Now, we can prove the following result:

Theorem 3.3 Assume that (H) holds. Then all solutions of equation (1.1) converge to the

equilibrium point �x if either c # 1 or c . 1 and one of the following conditions is satisfied:

(1) There exists l [ ½0; 1� such that equation (3.1) holds and

a kþ1 $
c2 2 c

lðc 2 1Þ þ c2 þ 1
: ð3:2Þ

(2) There exists l $ 1 such that equation (2.8) holds, ðSZÞðxÞ # 0 for all x [ ½a; b �; and

a k $
c2 2 c

lð1 2 cÞ þ c 2 þ c
: ð3:3Þ

(3) G0ðxÞ , 0 for all x [ ½a; b � and equations (2.11), (3.2) hold for some l [ ½0; 1�:

(4) Condition (2.12) holds and

a k $
c2 2 c

c2 þ 1
: ð3:4Þ

Proof Let w : ½a; b�! ½a; b� be a C 3 map such that w0ðxÞ , 0; ðSwÞðxÞ , 0 for all x [

ða; bÞ; and let �x be the unique fixed point of w in ða; bÞ: According to ref. [15, Proposition 3.3]

(see also ref. [2, Lemma 3.2]), �x is the unique fixed point of w2 in [a,b] if and only if

w0ð�xÞ $ 21:

To prove part (1), let V be the function defined in the statement of Theorem 2.3. It is

clear that V 0ðxÞ , 0 for all x [ ða; bÞ: Moreover, by the above reasonings, ðSVÞðxÞ , 0 for

all x [ ½a; b� when equation (3.1) holds. Hence, in view of Theorem 2.3, we only have to

show that V 0ðxÞ $ 21 if equation (3.2) is satisfied. Indeed, since VðxÞ ¼ C21ðGðxÞÞ;

it follows that G 0ðxÞ ¼ C 0ðVðxÞÞV 0ðxÞ for all x [ ða; bÞ; in particular, V 0ð�xÞ ¼ G 0ð�xÞ=

C0ð�xÞ $ 21 if and only if G 0ð�xÞ $ 2C0ð�xÞ: It is easy to check that this inequality is

equivalent to equation (3.2).

The proofs of items (2)–(4) follow in an analogous way, by using Theorems 2.4–2.6,

respectively. A

Remark 3.4 Since a2k21 min {j f 0ðaÞj; j f 0ðbÞj} . 0; we can always take a positive l in

equation (3.2) for which equation (3.1) holds. Hence, Theorem 3.3 improves Theorem 1.2.

The sharpest form of equation (3.2) is reached for l ¼ 1; and it takes the form

a kþ1 $
c 2 1

c þ 1
: ð3:5Þ
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Thus, we have the following consequence of Theorem 3.3 (1):

Corollary 3.5 Assume that c . 1; (H) holds, and

a kþ1 # min{j f 0ðaÞj; j f 0ðbÞj}: ð3:6Þ

Then equation (3.5) implies that �x is a global attractor for equation (1.1).

On the other hand, since ðSZÞðxÞ , 0 for all x . 0 when l ¼ 1; condition (3.4) is sufficient

for the global attractivity if equation (2.8) holds for l ¼ 1: Hence, we have the following

consequence from Theorem 3.3 (2):

Corollary 3.6 Assume that c . 1; (H) holds, and

a kþ1 $ max
x[½a;b �

{j f 0ðxÞj}: ð3:7Þ

Then equation (3.4) implies that �x is a global attractor for equation (1.1).

Notice that checking conditions (3.6) and (3.7) require to estimate the 2-cycle of h.

However, this is not a difficult task for particular cases of equation (1.1) using computer

programs (see the numerical examples in section 4).

Remark 3.7 Elementary calculations show that Corollary 3.6 gives better results than

Theorem 2.7 whenever k ¼ 1; or k . 1 and a # a1; where a1 is the unique root in (0,1) of

equation ð4 2 4p 2 p2Þx2 þ 4ð p 2 2Þx þ 4 ¼ 0; with p ¼ pðkÞ ¼ ð3k þ 4Þ=ð2ðk þ 1Þ2Þ: For

a close to 1, it seems that both results are not comparable, so Theorem 2.7 is of independent

interest even for f satisfying (H).

On the other hand, condition (3.7) implies equation (3.4) whenever

a # a0 U 2ð
ffiffiffi
2

p
2 1Þ ¼ 0:828427. . . ð3:8Þ

Hence, we have the following consequence of Corollary 3.6:

Corollary 3.8 Assume that c . 1; (H) holds, and a # a0: Then condition (3.7) implies

that �x is a global attractor for equation (1.1).

It is interesting to compare our global attractivity conditions with the criterion for the local

asymptotic stability of �x: For the sake of simplicity, we consider the case k ¼ 1; that is, the

second order difference equation

xnþ1 ¼ axn þ f ðxn21Þ; n ¼ 0; 1; . . .; ð3:9Þ

In this case, the criterion (1.6) for the local asymptotic stability reads j f 0ð�xÞj , 1: On the

other hand, Proposition 1.1 gives the global asymptotic stability under condition j f 0ð�xÞj #

1 2 a; which is sharp when a is close to 0. For a close to 1, Corollary 3.6 gives better

approximations. Indeed, it is easy to check that condition (3.4) always holds when �x is locally

asymptotically stable. Therefore, Corollary 3.6 ensures the convergence of all solutions of

equation (3.9) to �x when j f 0ð�xÞj . 1 2 a and max {j f 0ðxÞj : x [ ½a; b �} # a2; where {a,b}

is the 2-cycle of ð1 2 aÞ21 f ðxÞ:
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In the literature, there are several conjectures regarding the local and global asymptotic

stability of the equilibrium for delay differential and difference equations. For the delay

equation (1.2), it was suggested in [15], the equivalence between the local and global

asymptotic stability conditions when f satisfies (H), which has as a limit case ðd ¼ 0Þ the

celebrated Wright conjecture [13, p. 125].

For the discrete version of the Nicholson’s blowflies equation, a similar conjecture was

posed in ref. [6]. We guess that the following statement is true, although we are not able to

prove it at this moment.

Conjecture 3.9 Assume that (H) holds. If �x is asymptotically stable then all solutions of

equation (1.1) converge to �x:

In view of the above discussion for k ¼ 1; we propose the following open problem as the

first step in proving the conjecture:

Open problem. Investigate if, for k ¼ 1; �x attracts all solutions of equation (1.1) when (H)

holds and j f 0ð�xÞj , 1:

4. Applications

In this section, we apply some of our previous results to state detailed global stability

results for equations (1.3) and (1.4). We first consider the Mackey–Glass type

equation (1.3). In this case, f ðxÞ ¼ b=ð1 þ xpÞ; and the equilibrium �x is the unique positive

solution of xpþ1 þ x ¼ b=ð1 2 aÞ: From [11, Theorem 4.6.3], we know that �x attracts all

solutions of equation (1.3) if p # 1; so we can assume that p . 1: One can check that

f 0ðxÞ ¼ 2bpxp21=ð1 þ xpÞ2 , 0 and ðSf ÞðxÞ ¼ ð1 2 p2Þ=ð2x2Þ , 0 for all x . 0; therefore,

hypothesis (H) holds.

Next, Proposition 1.1 ensures that all solutions of equation (1.3) converge to �x if

c ¼ jh0ð�xÞj # 1; that is, if

�x $
ð p 2 1Þb

pð1 2 aÞ
: ð4:1Þ

Now, setting qðxÞ ¼ xpþ1 þ x 2 b=ð1 2 aÞ; we have that qð0Þ , 0 and �x is the unique

positive root of q. Thus, equation (4.1) is equivalent to the inequality

q
ð p 2 1Þb

pð1 2 aÞ

� �
# 0;

or, equivalently, ðb=ð1 2 aÞÞp # pp=ð p 2 1Þpþ1: This condition (with the strict inequality)

was also obtained in [11, Theorem 4.6.3].

Taking into account the above discussion and using our results, we can state the

following list of sufficient conditions for the convergence of all solutions to

the equilibrium in equation (1.3), improving the corresponding estimations in

refs. [5,9,11,12].

Discrete population models 127



Theorem 4.1 Each one of the following conditions is sufficient to ensure that all solutions

of equation (1.3) converge to �x :

(i) p # 1 (independent of a, b and k);

(ii) p . 1 and ðb=ð1 2 aÞÞp # pp=ð p 2 1Þpþ1 (independent of k);

(iii) p . 1 and

a kþ1 $
p2 2 p

p2 þ 1
ð4:2Þ

(independent of b);

(iv) c . 1 and a kþ1 $ ðc2 2 cÞ=ð1 þ c 2Þ;

(v) c . 1 and

a kþ1 $
bðk þ 1Þ2

2ð3k þ 4Þp
ð p þ 1Þð pþ1Þ=pð p 2 1Þð p21Þ=p; ð4:3Þ

(vi) c . 1; a k $ ðc2 2 cÞ=ðc2 þ 1Þ; and

a kþ1 $
b

4p
ð p þ 1Þð pþ1Þ=pð p 2 1Þð p21Þ=p; ð4:4Þ

(vii) c . 1 and inequalities (3.8), (4.4) hold.

(viii) c . 1 and min {j f 0ðaÞj; j f 0ðbÞj} $ a kþ1 $ ðc 2 1Þ=ðc þ 1Þ; where (a, b) is the unique

2-cycle of hðxÞ ¼ ð1 2 aÞ21f ðxÞ ¼ ð1 2 aÞ21b=ð1 þ xpÞ:

Proof As it was mentioned above, (i) and (ii) follow, respectively from refs. [11] and [12].

To prove (iii), let us observe that 0 , c ¼ p 2 b21pð1 2 aÞ�x , p; and function g ðxÞ ¼

ðx2 2 xÞ=ðlðx 2 1Þ þ x2 þ 1Þ is increasing for x . 1: Since equation (3.1) always holds for

l ¼ 0; Theorem 3.3 (1) ensures that �x is a global attractor if p . 1 and equation (4.2) holds.

Analogously, condition (iv) follows directly from Theorem 3.3 (1), taking l ¼ 0:

Next, it is easy to check that

max
x$0

{j f 0ðxÞj} ¼
b

4p
ð p þ 1Þð pþ1Þ=pð p 2 1Þð p21Þ=p: ð4:5Þ

Hence, equation (4.3) implies equation (2.13), and then the result in (v) follows from

Theorem 2.7. Next, from equation (4.5), we can see that equation (3.7) is true if

equation (4.4) holds. Hence, (vi) and (vii) follow from Corollary 3.6 and 3.8, respectively.

Finally, (viii) is a straightforward consequence of Corollary 3.5. A

Remark 4.2 Of course, the remainder conditions in Theorem 3.3 can be applied to

equation (1.3) as well. For example, condition (iv) in Theorem 4.1 can be improved to

c . 1 and a kþ1 $ ðc2 2 cÞ=ðlðc 2 1Þ þ 1 þ c2Þ;

with l # 1 satisfying equation (3.1). In particular, using the relations hð0Þ , a , b , h2ð0Þ;

we can choose l ¼ min {1; j f 0ðhð0ÞÞj; j f 0ðh2ð0ÞÞj} with independence of k. The same

comment applies to condition (iii).
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To complete our discussion, we present two numerical examples. First one shows that

condition (viii) works in some cases in which (i)–(vii) do not apply.

Example 4.3 Consider equation (1.3) with a ¼ 0:7; b ¼ 0:77; p ¼ 2 and k ¼ 7; that is,

xnþ1 ¼ 0:7xn þ
0:77

1 þ x2
n27

; n ¼ 0; 1; . . .: ð4:6Þ

The equilibrium �x is the unique real solution of x3 þ x ¼ 7:7=3; with an approximate value

of �x ¼ 1:1287. . . . On the other hand, c ¼ jh0ð�xÞj ¼ 1:12049. . . . 1; and a kþ1 ¼

0:05764801: One can check that (i)–(vii) in Theorem 4.1 do not hold.

Now, since jh0ð�xÞj . 1; there is a unique pair (a,b) such that h2ðaÞ ¼ a; h2ðbÞ ¼ b; and

a , �x , b: In this case, a ¼ 0:479005. . . and b ¼ 2:08766. . .: Next,

min {j f 0ðaÞj; j f 0ðbÞj} ¼ j f 0ðbÞj ¼ 0:111975. . . . a kþ1 . 0:0568202. . . ¼
c 2 1

c þ 1
:

Therefore, condition (viii) in Theorem 4.1 ensures that �x is globally attracting.

Our next numerical example shows that in general condition (3.5) does not guarantee that �x

is a global attractor if equation (3.6) does not hold.

Example 4.4 Consider equation (1.3) with a ¼ 0:96; b ¼ 3; p ¼ 7 and k ¼ 6; that is,

xnþ1 ¼ 0:96xn þ
3

1 þ x7
n26

; n ¼ 0; 1; . . .: ð4:7Þ

The equilibrium �x takes an approximate value of �x ¼ 1:71053. . .: On the other hand,

c ¼ jh0ð�xÞj ¼ 6:84035. . . . 1; and a kþ1 ¼ 0:751447 . ðc 2 1Þ=ðc þ 1Þ ¼ 0:744909. . .:

Thus equation (3.5) holds. However, one can check that the characteristic

polynomial associated to the linearized equation of (4.7) at �x has a pair of conjugate roots

with modulus greater than one. Hence, �x is unstable. Of course, in this example (3.6) does

not hold.

Finally, we discuss the application of our results to the Lasota–Wazewska type equation (1.4).

In this case, f ðxÞ ¼ pe2qx; and the equilibrium �x is the unique positive solution of pe2qx ¼

ð1 2 aÞx:One can easily check that (H) holds. Next, since c ¼ q�x; condition c # 1 is equivalent

to pq # ð1 2 aÞe; which was already found in ref. [10]. If c . 1; we can use Theorem 3.3 to

obtain new conditions for the global attractivity of �x: Let us observe that f 0 is increasing

and negative. Therefore, equation (3.1) holds if and only if a kþ1 # l21j f 0ðbÞj ¼ l21pqe2qb;

while equation (2.8) holds if and only if a kþ1 $ l21j f 0ðaÞj ¼ l21pqe2qa: Moreover,

for l . 1;

ðSZÞðxÞ ¼
ð1 2 a kÞpq3 e2qx

2ðhðxÞÞ2ð1 2 aÞ
2ðl2 1Þa k 2

ð1 2 a kÞpqe2qx

ð1 2 aÞ

� �
;

where hðxÞ ¼ a kðl2 1Þ þ ð1 2 a kÞð1 2 aÞ21pqe2qx: Thus, ðSZÞðxÞ # 0 in [a,b ] when l #

l2 U 1 þ ð1 2 a kÞ=ð2a kÞaq:Now, an application of Theorem 3.3 gives the following theorem,

which improves the results in refs. [2], [5–7], [9–11].
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Theorem 4.5 Each one of the following conditions is sufficient to ensure that all solutions

of equation (1.4) converge to �x :

(i) pq # ð1 2 aÞe (independent of k);

(ii) pq . ð1 2 aÞe and there exists l [ (0,1] such that

pqe2qb

l
$ a kþ1 $

c2 2 c

lðc 2 1Þ þ 1 þ c2
; ð4:8Þ

where b is the unique solution in ð�x;1Þ of h2ðxÞ ¼ x; with hðxÞ ¼ ð1 2 aÞ21pe2qx:

(iii) pq . ð1 2 aÞe and there exists 1 # l # l2 such that equation (3.3) holds and a kþ1 $

l21pqe2qa; where a is the unique solution in ð0; �xÞ of h2ðxÞ ¼ x:

Notice that for l # pqe2qb the first inequality in equation (4.8) trivially holds and hence

Theorem 4.5 improves the result for equation (1.4) obtained by applying Theorem 1.2.

Theorem 2.7 and Corollary 3.8 provide the following conditions easier to verify:

Corollary 4.6 Assume that pq . ð1 2 aÞe: Then all solutions of equation (1.4) converge

to �x if either a kþ1 $ 2pqe2qaðk þ 1Þ2=ð3k þ 4Þ; or a kþ1 $ pqe2qa and condition (3.8)

holds.

One can also use the rest of Theorem 3.3 to find other global attractivity criteria. For

example, for the Lasota–Wazewska type equation (1.4), the function F1(x) has a critical

point x*
1 given by

x*
1 ¼

1

q
ln

pq

a kþ1

� �
:

Therefore, the inequality

F1 x*
1

� �
þ ða2 a kþ1Þa ¼ a kþ1x*

1 þ
a kþ1

q
þ ða2 a kþ1Þa $ x*

1

is equivalent to

ln
pq

a kþ1

� �
#

a kþ1

1 2 a kþ1
þ

a2 a kþ1

1 2 a kþ1
aq: ð4:9Þ

Hence, equation (2.12) holds if and only if equation (4.9) is satisfied. Now, applying

Theorem 3.3(4), we see that all solutions of equation (1.4) converge to �x provided that

conditions (3.4) and (4.9) are satisfied.
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