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We deal with the existence of positive periodic solutions for functional differential equations

with periodic delay which appear in population models. Our technique is based on a fixed point

theorem on conical shells. We improve recent results in the literature.
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1. INTRODUCTION AND MAIN RESULT

The study of the existence of periodic solutions in delay differential equations was traditionally

motivated by the observance of periodic phenomena in population models. For autonomous equations,

one can find many results about periodic solutions in the literature, by using different methods (see,

for example, [2, 10]). However, sometimes it is more realistic to consider that the parameters
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involved in the model (including the delay parameter) are periodic rather than constant (see, e.g.,

[4]). Recently, Krasnoselskii–type theorems have become an effective tool in proving existence of

periodic solutions in delay differential equations with periodic coefficients [1, 8, 14, 15]. In this

paper, we improve some results from the above cited references by using a new fixed point theorem

for an integral operator defined in a Banach space. To prove this abstract result, we follow the ideas

introduced by Lan in [11] (see also [12] and references therein). Our approach allows us to deal

easily with different models recently investigated in the literature. First, let us consider the equation

u′(t) = −a(t)u(t) + λh(t)f(u(t− τ(t))) , (1)

whereλ > 0, a, h ∈ C(R, [0,∞)) areω–periodic functions with
∫ ω
0 a(s) ds > 0,

∫ ω
0 h(s) ds >

0, τ ∈ C(R,R}) is ω–periodic, andf ∈ C([0,∞), [0,∞)) is positive foru > 0.

Equation (1) with constant coefficients was widely studied due to its applications in many fields

including population dynamics, neurophysiology, metabolic regulation, and agricultural commodity

markets (see, e.g., [7, p. 78]).

Cheng and Zhang [1] have obtained some existence results for Equation (1) depending on the

limits

f0 = lim
x→0

f(x)
x

, f∞ = lim
x→∞

f(x)
x

, (2)

wheref0, f∞ ∈ [0,∞]. In addition, similar results were stated in [14] for equation

u′(t) = a(t)u(t)− λh(t)f(u(t− τ(t))) , (3)

under the same assumptions made for (1).

A more detailed study can be found in the recent paper by Wang [14], where the following

slightly more general form of (3) was investigated:

u′(t) = a(t)g(u(t))u(t)− λh(t)f(u(t− τ(t))) , (4)

whereg ∈ C([0,∞), (0,∞)), and there exist constantsl, L > 0 such thatg(u) ∈ [l, L) for all

u ≥ 0.

In Section 2, we show how our method allows to improve the range of values of the parameter

λ (depending on the functionsa, g, h and the limitsf0, f∞ defined in (2)) for which there exists at

least a positive periodic solution for equations (1) and (4), respectively. The proofs of these new

existence results are easily derived from an abstract result, stated below as Theorem 1, which gives

sufficient conditions to guarantee the existence of a positive fixed point for an integral operator from

a Banach space into itself. This abstract result is based on a well known fixed point theorem for

compact maps on conical shells, and, for convenience of the reader, its proof is presented in Section

3.
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Before stating the above mentioned Theorem 1, we need to introduce some notation and defini-

tions.

Let Eω = {u ∈ C(R,R) : u(t) = u(t+ω)} be the vectorial space of theω-periodic continuous

functions, which is a Banach space with the norm

‖u‖ = sup
t∈[0,ω]

|u(t)|.

We define the integral operatorS: Eω → Eω by

[Su](t) =
∫ t+ω

t
k(t, s)F (s, u(s− τ(s))) ds, t ∈ R, (5)

whereτ :R→ R is a continuousω-periodic function,F :R2 → [0,∞) is continuous andω-periodic

in the first variable, andk:R2 → R is a continuous function satisfying

k(t + ω, s + ω) = k(t, s) for all (t, s) ∈ R2. (6)

Now, we are in a position to enunciate the announced fixed point theorem forS.

Theorem1 — Assume that

(D1) there exist a constantc ∈ (0, 1] and a continuous functionΦ: [0, ω] → [0,∞) such that

cΦ(s) ≤ k(t, s) ≤ Φ(s) for all (t, s) ∈ [0, ω]× [0, ω];

(D2) there exist a constantα > 0 and a functionφ:R → (0,∞), continuous andω-periodic,

such that

F (t, v) ≥ cαφ(t) for all (t, v) ∈ [0, ω]× [cα, α],

and

inf
t∈[0,ω]

∫ ω

0
k(t, s)φ(s) ds ≥ 1;

(D3) there exist a constantβ > 0 and a functionψ:R → (0,∞), continuous andω–periodic,

such that

F (t, v) ≤ βψ(t) for all (t, v) ∈ [0, ω]× [cβ, β],

and

sup
t∈[0,ω]

∫ ω

0
k(t, s)ψ(s) ds ≤ 1.

Then, the following results hold:

(a) if β < cα, then the operatorS has a positive fixed pointu which satisfies

β ≤ ‖u‖ ≤ α and cβ ≤ min
t∈[0,ω]

u(t) ≤ cα ;
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(b) if α < β, then the operatorS has a positive fixed pointu which satisfies

cα ≤ ‖u‖ ≤ β and cα ≤ min
t∈[0,ω]

u(t).

Remark1 : From the proof of Theorem 1 (see Section 3), it is clear that its conclusions remain

valid if the kernelk in (5) depends onu, if we assume thatk = k(u) satisfies (6), (D1), (D2) and

(D3) with the same constantsc, α, β and functionsΦ, φ, ψ for all u ∈ Eω. This remark will be

useful to apply Theorem 1 to equation (4).

2. POPULATION MODELS WITH PERIODIC DELAYS

This section is devoted to obtain some applications of Theorem 1 to the existence of positive periodic

solutions of equations (1) and (4).

DefineF (t, u) = λh(t)f(u). Hence, (7) can be written as

u′(t) = −a(t)u(t) + F (t, u(t− τ(t))) . (7)

Next, (see [1] for details),u is aω–periodic solution of (7) if and only ifu is a fixed point of the

integral operatorS: Eω → Eω defined by

[Sx](t) =
∫ t+ω

t
G(t, s)F (s, u(s− τ(s))) ds , t ∈ R,

where

G(t, s) =
e
R s

t a(r) dr

σ − 1
, σ = e

R ω
0 a(r) dr > 1.

Moreover,
1

σ − 1
≤ G(t, s) ≤ σ

σ − 1
.

Hence, (D1) holds withΦ = σ/(σ − 1), c = σ−1 ∈ (0, 1).

Denote

A = max
t∈[0,ω]

∫ ω

0
G(t, s)h(s) ds , B = min

t∈[0,ω]

∫ ω

0
G(t, s)h(s) ds .

We have the following consequence of Theorem 1, which improves Theorem 2.5 in [1].

Theorem2 — Assume thatf0, f∞ ∈ (0,∞), and

1
B max{f0, f∞} < λ <

1
A min{f0, f∞} . (8)

Then equation (1) has a positiveω–periodic solution.

PROOF : We assume thatf0 < f∞. The casef0 > f∞ is similarly addressed by using part (b)

in Theorem 1.
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Let ε > 0 be such that
1

B(f∞ − ε)
≤ λ ≤ 1

A(f0 + ε)
. (9)

By the definition off∞, there existsα > 0 such thatf(u) ≥ (f∞−ε)u for all u ≥ cα. Choosing

φ(t) = λh(t)(f∞ − ε), hypothesis (D2) clearly holds. Analogously, there existsβ ∈ (0, cα) such

thatf(u) ≤ (f0 + ε)u for all u ≤ β. Hence, (D3) is satisfied withψ(t) = λh(t)(f0 + ε). The result

now follows from Theorem 1 (a). ¤

Now we consider equation (4). As it is shown in [14],u ∈ Eω is aω–periodic solution of (4) if

and only ifu is a fixed point of the integral operator̃S:Eω → Eω defined by

[S̃x](t) =
∫ t+ω

t
Gu(t, s)F (s, u(s− τ(s))) ds , t ∈ R,

where

Gu(t, s) =
e−
R s

t a(r)g(u(r)) dr

1− e−
R ω
0 a(r)g(u(r)) dr

,

andF (t, u) = λh(t)f(u). Let σ = e−
R ω
0 a(r) dr ∈ (0, 1). Since

σL

1− σL
≤ Gu(t, s) ≤ 1

1− σl
,

for all u ∈ Eω, condition (D1) holds withc = σL(1− σl)(1− σL)−1 ∈ (0, 1).
Repeating the same arguments used in the proof of Theorem 2, and using Remark 1, we get the

following result, which improves Theorem 1.3 in [14]

Theorem3 — Assume thatf0, f∞ ∈ (0,∞), and

1− σL

σL
∫ ω
0 h(s)ds

1
max{f0, f∞} < λ <

1− σl

∫ ω
0 h(s)ds

1
min{f0, f∞} . (10)

Then equation (4) has a positiveω–periodic solution.

We emphasize that Theorem 1 is very easy to apply; roughly speaking, it only requires an

integral representation of the considered equation and some bounds for the kernel of the equivalent

integral equation.

Example1 — Let us consider the following modification of the celebrated Nicholson’s blowflies

equation [6]:

u′(t) = −u(t) + λ(1 + sin(2πt))u(t− τ(t))
(
α + βe−γu(t−τ(t))

)
, (11)

whereα, β, γ, λ are positive constants, andτ is a1-periodic delay.

In terms of our Theorem 2, we have

f(u) = u
(
α + βe−γu

)
; h(t) = 1 + sin(2πt)

f0 = lim
x→0

f(x)
x

= α + β ; f∞ = lim
x→∞

f(x)
x

= α.
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Next, sincea(t) ≡ 1, G(t, s) = es−t(e− 1)−1. Denoting by

g(t) =
∫ 1

0
G(t, s)h(s) ds = e−t

(
1− 2π

1 + 4π2

)
,

we easily get

A = g(0) ≈ 0.844777 ; B = g(1) ≈ 0.310776.

Theorem 2 provides the existence of a positive 1-periodic solution of (11) for all values ofλ in

the interval

I =
(

1
(α + β)B

,
1

αA

)
.

For example, if we chooseα = 0.2, β = 1.2, Theorem 2 ensures that (11) has a positive 1-

periodic solution for allλ ∈ (2.3, 5.9). We notice that Theorem 2.5 in [1] does not aply in this case,

since the required inequalities do not hold for any value ofλ.

Remark2 : It is easy to use Theorem 1 to obtain similar results when the limitsf0, f∞ in (2)

take values in[0,∞]. In this way, the corresponding existence results in [1, 14] are also improved.

On the other hand, by using similar ideas to those in [3], the results in Section 2 can be extended

to a system of integral operators

[Siui](t) =
∫ t+ω

t
ki(t, s)Fi(s, u(s− τ(s))) ds, t ∈ R , i = 1, 2, . . . , n, (12)

whereki, Fi are in the conditions given for (5). In this way, we can apply our scheme to the

nonautonomousn–dimensional system considered in [15]

u′(t) = −A(t)u(t) + λH(t)F (u(t− τ(t))),

where

A(t) = diag[a1(t), . . . , an(t)],

H(t) = diag[h1(t), . . . , hn(t)],

F (u) = [f1(u), . . . , fn(u)]t,

λ, ai(t), hi(t) are in the conditions given forλ, a(t), h(t) in equation (1), respectively, andfi :
Rn

+ → [0,∞) is continuous withfi(u) > 0 for ‖u‖ > 0, i = 1, . . . , n.

PROOF OFTHEOREM 1

As it was indicated in the introduction, the proof of Theorem 1 is based on a fixed point theorem

for compact maps on conical shells. We recall the statement of this result below, after introducing

some definitions and notations.

Let (E, ‖·‖) be a Banach space, we say thatK ⊂ E is a cone if it is closed, nonempty,K 6= {0}
and wheneverx, y ∈ K andλ, µ ∈ R with λ ≥ 0, µ ≥ 0 thenλx + µy ∈ K. If D is a subset ofE,

we writeDK = D ∩K and∂KD = (∂D) ∩K.



EXISTENCE OF PERIODIC SOLUTIONS FOR FUNCTIONAL EQUATIONS 7

As usual, we define a compact mapS: E → E as a continuous map such thatS(E) is a compact

subset ofE. A mapS is said to be completely continuous if it is continuous andS(C) is a compact

subset ofE for each bounded subsetC ⊂ E. We are now in a position to state the above mentioned

fixed point theorem, whose proof is based on the properties of the fixed point index (see, e.g., [5]).

Theorem4 — AssumeΩ1, Ω2 are open bounded sets withΩ1
K 6= ∅, Ω1

K ⊂ Ω2
K , and let

S: Ω2
K → K be a compact map such that either

• there existse ∈ K \ {0} such thatu 6= Su + λe for all u ∈ ∂KΩ2 and allλ > 0, and

• ‖Su‖ ≤ ‖u‖ for all u ∈ ∂KΩ1.

or

• there existse ∈ K \ {0} such thatu 6= Su + λe for all u ∈ ∂KΩ1 and allλ > 0, and

• ‖Su‖ ≤ ‖u‖ for all u ∈ ∂KΩ2.

ThenS has a fixed point inΩ2
K \ Ω1

K .

Now, in order to apply Theorem 4 in the proof of Theorem 1, we need to choose an adequate

cone onEω and to check that hypotheses in Theorem 1 guarantee that the cone is invariant byS.

We will consider the cone

K =
{

u ∈ Eω : min
t∈[0,ω]

u(t) ≥ c‖u‖
}

, (13)

wherec ∈ (0, 1] was introduced in (D1). We have the following result:

Lemma1 — Assume (D1) holds. ThenS mapsK into K and it is completely continuous.

PROOF: Using an standard reasoning (see for example [11]) one can show thatS is a completely

continuous operator. So, for simplicity, we omit the proof of that part. Moreover, the periodicity

properties of the functionsF , τ andk guarantee thatS mapsEω into Eω.

Next, to show thatS mapsK into K, let u ∈ K andt ∈ R. We have from (D1) that

|Su(t)| =
∫ t+ω

t
k(t, s)F (s, u(s− τ(s))) ds

≤
∫ t+ω

t
Φ(s)F (s, u(s− τ(s))) ds.

Therefore,

‖Su‖ ≤
∫ t+ω

t
Φ(s)F (s, u(s− τ(s))) ds. (14)

On the other hand, using (D1) again, we have for eachu ∈ K andt ∈ R that

Su(t) =
∫ t+ω

t
k(t, s)F (s, u(s− τ(s))) ds

≥ c

∫ t+ω

t
Φ(s)F (s, u(s− τ(s))) ds ≥ c‖Su‖.
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Thus, min
t∈[0,ω]

Su(t) ≥ c‖Su‖, and thereforeS(K) ⊂ K. ¤
The following pieces that we need in order to apply Theorem 4 are suitable open sets. For each

r > 0 we write

Ar =
{

u ∈ Eω : min
t∈[0,ω]

u(t) < cr

}
,

and

Br = {u ∈ Eω : ‖u‖ < r} .

The sets defined above satisfy the following result, which is an adaptation of Lemma 2.5 in [11]

to the Banach spaceEω. Since the proof is essentially what appears in [11], we omit it.

Lemma2 — SetsAr andBr verify

(a)Ar
K andBr

K are open relative toK.

(b) Bcr
K ⊂ Ar

K ⊂ Br
K .

(c) u ∈ ∂KAr if and only if u ∈ K and min
t∈[0,ω]

u(t) = cr.

(d) If u ∈ ∂KAr, thencr ≤ u(t) ≤ r for eacht ∈ [0, ω].
It is clear that setsAr are unbounded sets for eachr > 0, so we can not use Theorem 4 with

them. However we will be able to apply Theorem 4 taking into account that, for eachδ > r, the

following relations hold:

Ar
K = (Ar ∩Bδ)K and Ar

K = (Ar ∩Bδ)K .

The first equality follows immediately from Lemma 2 (b). For the second letu ∈ Ar
K . Then

from Lemma 2 (c) we have thatc‖u‖ ≤ mint∈[0,ω] u(t) ≤ cr < cδ sou ∈ (Ar ∩ Bδ) ∩K. Now,

sinceAr andBδ are open sets we haveAr ∩Bδ ⊆ Ar ∩Bδ and so

(Ar ∩Bδ)K ⊂ (Ar ∩Bδ)K .

Thusu ∈ (Ar ∩Bδ)K , and thereforeAr
K ⊆ (Ar ∩Bδ)K . The reverse inclusion is trivial.

Now we are in position to prove Theorem 1.

PROOF OFTHEOREM 1 : Lemma 1 ensures that the restrictionsS:Aα
K → K andS: Bβ

K →
K are well defined compact maps for eachα, β ∈ (0,∞).

Next, we claim that:

(I) There existse ∈ K \ {0} such thatu 6= Su + λe for u ∈ ∂KAα andλ > 0.

(II) ‖Su‖ ≤ ‖u‖ for all u ∈ ∂KBβ.

We start with (I). Lete(t) = 1 for t ∈ R. Thene ∈ K \ {0}. Next, suppose that there exists

u ∈ ∂KAα andλ > 0 such thatu = Su + λe. Then from Lemma 2 (d) we havecα ≤ u(t) ≤ α for

t ∈ [0, w]. From (D2) we have, for eacht ∈ [0, w],

u(t) = Su(t) + λ =
∫ t+ω

t
k(t, s)F (s, u(s− τ(s))) ds + λ
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≥ cα

∫ t+ω

t
k(t, s)φ(s) ds + λ ≥ cα + λ. (15)

Hence,mint∈[0,ω] u(t) ≥ cα + λ > cα, contradicting the statement of Lemma 2 (c). This

contradiction proves part (I) of our claim.

Next, let us consider part (II). Ifu ∈ ∂KBβ then‖u‖ = β and from (D3) we obtain, for each

t ∈ R,

|Su(t)| ≤
∫ t+ω

t
k(t, s)F (s, u(s− τ(s))) ds

≤ β

∫ t+ω

t
k(t, s)ψ(s) ds ≤ β sup

t∈[0,ω]

∫ ω

0
k(t, s)ψ(s) ds < β.

Hence,‖Su‖ ≤ ‖u‖ for eachu ∈ ∂KBβ, and so (II) holds.

Now suppose thatβ < cα. Then one has from Lemma 2 thatBβ
K ⊂ Bcα

K ⊂ Aα
K , and

therefore it follows from Theorem 4 thatS has at least a fixed pointu ∈ Aα
K \ Bβ

K . Hence

cβ ≤ mint∈[0,ω] u(t) ≤ cα and‖u‖ ≥ β hold. On the other hand,c‖u‖ ≤ mint∈[0,ω] u(t) ≤ cα,

and therefore‖u‖ ≤ α.

Finally, if α < β one hasAα
K ⊂ Bβ

K , and then Theorem 4 guarantees the existence of at least

one fixed pointu ∈ Bβ
K \Aα

K of S. Hence we obtain the inequalities

cα ≤ ‖u‖ ≤ β and cα ≤ min
t∈[0,ω]

u(t).

Remark3 : The conclusions of Theorem 1 remain valid under more general hypotheses onf

andk. For example, we can assume thatf is a Carath́eodory function with an explicit periodic

dependence of time,f(t, x). In such a case, the limits in (2) are required to be uniform. Also,k can

be assumed not continuous, but only measurable and satisfying the limit relation

lim
t→ν

∫ ω

0
|k(t, s)− k(ν, s)| ds = 0,

for everyν ∈ [0, ω]. The reader interested in these sharper conditions can consult.
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