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Abstract

The problem of global stability in scalar delay differential equations of the form

x′(t) = f1(x(t− h))g2(x(t))− f2(x(t− h))g1(x(t))

is studied. Functions fi and gi, i = 1, 2, are continuous and such that the equation
assumes a unique positive equilibrium. Two types of sufficient conditions for the
global asymptotic stability of the unique equilibrium are established: (i) delay in-
dependent, and (ii) conditions involving the size h of the delay. Delay independent
conditions make use of the global stability in the limiting (as h → ∞) difference
equation f1(xn)g2(xn+1) = f2(xn)g1(xn+1): the latter always implying the global
stability in the differential equation for all values of the delay h ≥ 0. The delay de-
pendent conditions involve the global attractivity property in specially constructed
one-dimensional maps (difference equations) that include the nonlinearities fi and
gi, and the delay h.

AMS (MOS) 2001 Subject Classifications: 34K20, 92D25

1 Introduction

In this paper we study the global stability properties of the nonlinear differential delay
equations

x′(t) =

∣∣∣∣ f1(x(t− h)) g1(x(t))
f2(x(t− h)) g2(x(t))

∣∣∣∣ , x ∈ [0,+∞)
def
= R+. (1.1)

Here fi, gi ∈ C(R+,R+) and some or all of the following hypotheses are assumed throughout
the paper as appropriate:
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(H0) g1(0) = 0, and fi(x) > 0, gi(x) > 0 for all x > 0, i = 1, 2;

(H1) g(x) = g1(x)/g2(x) is strictly increasing for x > 0.
Furthermore g(0+) = 0, and lim

x→+∞
g(x) = +∞;

(H2) Let f(x) = f1(x)/f2(x). There is exactly one point x > 0 such that f(x) = g(x);
moreover, f(x) > g(x) in (0, x) and f(x) < g(x) in (x,∞).

Define F (x) := g−1(f(x)). We also allow for the possibility that lim supx→0+ f(x) =
+∞ (equivalently lim supx→0+ F (x) = +∞), however, in this case we will require that
infx≥0 F (x) > 0.

The family of equations (1.1) includes such important particular cases as

x′(t) = −x(t) + f(x(t− h)) (1.2)

and

x′(t) = f(x(t− h)) or x′(t) = x(t)f(x(t− h)). (1.3)

A great deal of work is done on studying the global stability and oscillation properties of Eq.
(1.2), let us mention here only a few of relevant references: [2, 3, 4, 5, 6, 7, 12, 16, 17, 19].
Starting with [19], Eq. (1.2) sometimes is considered under the assumption of negative
Schwarz derivative (Sf)(x) of the nonlinearity f = f1, where

Sf =
f ′′′

f ′
− 3

2

(
f ′′

f ′

)2

.

See also the papers [3, 6, 14, 16, 17]. To the best of our knowledge, the following result for
Eq. (1.2) with f satisfying the negative Schwarzian assumption provides the best global
stability conditions (at least for the monotone nonlinearity f):

Proposition 1 ([16]) Suppose that f : R+ → R+ is strictly decreasing, bounded, and
Sf(x) < 0, x ∈ R+. Then the unique equilibrium x(t) ≡ x of Eq. (1.2) is globally
attracting if − exp (−h)/f ′(x) > ln ((f ′(x)2 − f ′(x))(1 + f ′(x)2)−1) .

An analog of this result for Eq. (1.3) is known as the 3/2-stability condition. It can
be found in [15], where several concrete applications are also studied. If the nonlinearity
f in (1.2) is not necessarily monotone, we can also use the following stability condition
established in [6]:

Proposition 2 ([6]) Suppose that f : R+ → R+ is either i) strictly decreasing and
bounded or ii) f(0) = 0 and f has only one critical point x∗ : f ′(x∗) = 0, which is exactly
its global maximum. If Sf(x) < 0, x ∈ R+ \ {x∗}, then the unique positive equilibrium
x(t) ≡ x of Eq. (1.2) is globally attracting if |(1− exp(−h))f ′(x)| < 1.
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The purpose of this note is to establish, assuming if necessary the negative Sf , some
analogs of the above results for Eq. (1.1). This goal can be achieved relatively easy while
we study the absolute stability of the equation; in fact, our results here are optimal. On the
other hand, it is more difficult to derive analogs of the above propositions. Here, we state
only some rather general results which could be considered as an attempt to generalize
Proposition 2 for the case of Eq. (1.1). However, in a particular case, we are able to get
the following stability condition.

Theorem 1 Suppose that ϕ : R+ → R+ is strictly increasing, Sϕ(x) < 0 for all x ∈ R+,
and either ϕ(0) > 0 or ϕ(0) = 0 and ϕ is bounded. Then the unique positive equilibrium
x(t) ≡ x of the differential delay equation

x′(t) = 1− x(t)ϕ(x(t− h)) (1.4)

is globally attracting if x2(1− exp(−h/x))ϕ′(x) < 1.

Notice that Eq. (1.4) can be transformed, via a simple change of variables, to the form
y′(t) = y(t)(−y(t) +ϕ(y(t− h))), which is even more resemblant of (1.2); however, Propo-
sitions 1 and 2 cannot be applied to this equation. Finally, note that our consideration of
Eqs. (1.1), (1.4) and of

x′(t) = −g(x(t)) + f(x(t− h)) (1.5)

as well as the above hypotheses (H0)-(H2) are motivated by specific applications (see the
last section of this paper, and also [1, 3, 4, 6, 11, 12, 18] with further references therein).

The paper is organized as follows. Section 2 deals with the delay independent condi-
tions for global asymptotic stability. It also contains a result on uniform persistence and
boundedness of solutions under general assumptions. Section 3 deals with delay depen-
dent conditions for global asymptotic stability. Theorem 1 follows from a general result
for equation (1.1). As an application of Theorem 1 a well known model from respiratory
dynamics is considered.

2 Delay independent conditions for global stability

2.1 Existence of solutions, positive invariance, persistence and
boundedness

We start with an easy observation that under the assumption (H0) and the only additional
requirement of g(0+) = 0 every solution x(t) of the initial value problem x(s) = φ(s), s ∈
[−h, 0] with strictly positive φ ∈ C[−h, 0] is also strictly positive. Indeed, assume x(τ) = 0
while x(t) > 0, t ∈ [0, τ) for some τ > 0. Then there exists a sequence τn ↑ τ such that
0 > x′(τn) = f1(x(τn − h))g2(x(τn)) − f2(x(τn − h))g1(x(τn). This implies that f(x(τn −
h)) − g(x(τn)) < 0. After taking the limit as n → ∞ one gets the contradiction: 0 <
f(x(t − τ)) ≤ g(x(τ)) = 0. It can also be shown that an initial function with a finite
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number of zeros results in a solution that is eventually strictly positive. In the sequel we
consider only the solutions that are strictly positive on the initial interval.

We are assuming that the nonlinearities fi, gi, i = 1, 2, are such that for every initial
function φ ∈ C([−h, 0],R+) with φ(s) > 0 ∀s ∈ [−h, 0] the corresponding solution x(t) =
x(t, φ) of equation (1.1) exists for all t ≥ 0.

Note that under the hypotheses (H0)-(H2) and the additional requirement that gi(x), i =
1, 2, are Lipschitz continuous the solutions do exist for all t ≥ 0 and are unique. This fol-
lows from the fact that for arbitrary initial function φ ∈ C([−h, 0],R+) one solves the
initial value problem for the ordinary differential equation

x′(t) = f1(φ(t− h))g2(x(t))− f2(x(φ(t− h))g1(x(t)), x(0) = φ(0), t ∈ [0, h].

The local solution exists on some interval [0, T ] where T > 0 is determined by a common
upper bound of the Lipschitz constants for g1 and g2. As it will be shown later in the paper,
the condition g(x) > f(x) for all large x (which is a part of assumption (H2)), implies that
the solution x(t, φ) stays bounded from above for all t ≥ 0 with the bound determined
by fi, gi, i = 1, 2, and the initial function φ. Therefore, the uniform upper bound for the
Lipschitz constants for g1, g2 exists along the solution, and the value of T is uniformly
bounded away from zero (for an arbitrary but fixed initial function). The solution x(t, φ)
then exists for all t ≥ 0 by the method of step by step continuation.

Equation (1.1) is equivalent, via the change of variables t = h · s, to the equation

µx′(t) =

∣∣∣∣ f1(x(t− 1)) g1(x(t))
f2(x(t− 1)) g2(x(t))

∣∣∣∣ (2.1)

= f1(x(t− 1))g2(x(t))− f2(x(t− 1))g1(x(t)),

where µ = 1/h. The limiting case µ = 0 (h = +∞) in (2.1) results in difference equation

f(xn) = g(xn+1), n ∈ Z+ (2.2)

which can be solved explicitly for xn+1:

xn+1 = g−1(f(xn)) := F (xn), n ∈ Z+. (2.3)

Some dynamical properties of the one-dimensional map F can be translated to those of
equation (2.1), for arbitrary positive values of the parameter µ. This is true, in particular,
with regard to the invariance property, the contraction property, and the global stability
property.

Let I = [α, β] ⊂ R+ be a closed invariant under F interval, that is F (I) ⊆ I. Set
X := C([−1, 0],R+), and XI := {φ ∈ X : φ(s) ∈ I ∀s ∈ [−1, 0]}.

Lemma 1 (Invariance) Assume (H0)-(H1). The set XI is invariant under equation
(2.1). That is, for arbitrary φ ∈ XI the corresponding solution x(t) = x(t;φ) satisfies
x(t) ∈ I for all t ≥ 0 and every µ ≥ 0.
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Proof. Assume that τ ≥ 0 is the first point of exit of solution x(t) from the interval
[α, β] at the endpoint β. That is, x(τ) = β, α ≤ x(t) ≤ β for t < τ , and there exists a
sequence τn ↓ τ such that x′(τn) > 0 and x(τn) > β. Equation (2.1) shows

0 < x′(τn) = f1(x(τn − 1))g2(x(τn))− f2(x(τn − 1))g1(x(τn)),

which is equivalent to

f(x(τn − 1)) > g(x(τn)) or F (x(τn − 1)) > x(τn) > β.

The latter is a contradiction to interval I being invariant under F . The case when τ is the
first point of exit from I at the level α is treated similarly.

Lemma 2 (Contraction Property) Assume (H0)-(H1). Let J := [γ, δ] be a closed interval
such that F (J) := J1 := [γ1, δ1] ⊆ J . Let φ ∈ XJ be arbitrary and x(t) = x(t, φ), t ≥ 0, be
the corresponding solution of equation (2.1).

(i) If neither of the endpoints γ1 or δ1 is a fixed point of the map F , then there exists a
finite T = T (φ) ≥ 0 such that x(t) ∈ J1 for all t ≥ T ;

(ii) If δ1 is a fixed point of the map F and γ1 is not, then for any ε > 0 there exists a
finite T = T (φ, ε) ≥ 0 such that x(t) ∈ [γ1, δ1 + ε] for all t ≥ T . Likewise, if γ1 is a
fixed point of the map F and δ1 is not, then x(t) ∈ [γ1 − ε, δ1] for all t ≥ T ;

(iii) If both γ1 and δ1 are fixed points of F then for any ε > 0 there exists a finite
T = T (φ, ε) such that x(t) ∈ [γ1 − ε, δ1 + ε] for all t ≥ T ;

Proof. Note first that in view of the invariance property (Lemma 1) x(t) ∈ J ∀t ≥ 0.
Assume first that x(0) = φ(0) ∈ J1. Then x(t) ∈ J1 for all t ≥ 0. This is proved exactly

the same way as the invariance property, Lemma 2.1. We leave the details to the reader.
Assume next that x(0) = φ(0) 6∈ J1. To be definite, let x(0) > sup{J1} = δ1. Equation

(2.1) then implies that x′(0) < 0, therefore x(t) is decreasing in some right neighborhood
of t = 0.

(i) In this case, there exists a finite T = T (φ) > 0 such that x(T ) = δ1, and one can
argue then as in the case x(0) ∈ J1. Note also that x(t) is decreasing in [0, T ]. Indeed, if
not then x(t) > δ1 for all t ≥ 0. Since g(x) > sup{f(u), u ∈ J} for all x ≥ δ1, equation
(2.1) shows that x′(t) = f1(x(t − 1))g2(x(t)) − f2(x(t − 1))g1(x(t)) ≤ 0, therefore x(t) is
decreasing for all t ≥ 0.

Let limt→∞ x(t) = δ0 ≥ δ1. Since δ1 is not a fixed point of the map F one has
sup{F (x), x ∈ [δ0, x(0)]} < δ1. Therefore,

x′(t) =
f(x(t− 1))− g(x(t))

f2(x(t− 1))g2(x(t))
≤ −ε1 < 0

for some ε1 > 0 and all sufficiently large t. This is a contradiction to x(t) having a finite
limit.

The reasoning for the other possibility, x(0) = φ(0) < inf{J1} = γ1, is very similar to
the one above and is omitted.

5



(ii) Exactly as in the case (i) above, it can be shown that for any ε > 0 satisfying
δ1 + ε < δ there exists a finite T = T (φ, ε) such that x(T ) = δ1 + ε and x(t) is decreasing
in [0, T ]. The interval [γ, δ1 + ε] is invariant under F , therefore x(t) ∈ [γ, δ1 + ε] ∀t ≥ T .

(iii) This part is proved by combining the two subcases of the case (ii).

The contraction property justifies the assumption (H2), that we will be making later
in the paper, as Propositions 3 and 4 below show.

Proposition 3 Let (H0)-(H1) be satisfied. Assume additionally f(x) < g(x) for all x ∈
(0, x), where f(x) = g(x). Then for every initial function φ ∈ C([−1, 0],R+) with 0 <
φ(s) < x ∀s ∈ [−1, 0] the corresponding solution x(t) has the property limt→∞ x(t) = 0.

Proof. Let M = sup[−1,0] φ(s). Set γ = 0, δ = M < x.
The assumption f(x) < g(x)∀x ∈ (0, x) implies that for any 0 < M < x the correspond-

ing interval J = [0,M ] is mapped into itself under F . Moreover, F (J) ⊃ J, sup{F (J)} :=
M1 < M, and ∩n≥0F

n(J) = 0. Therefore, by Lemma 2 (ii), there exists T1 ≥ 0 such that
x(t) ∈ F (J) ∀t ≥ T1. The repeated application of this shows that there exists an increasing
sequence Tn ↑ ∞ such that x(t) ∈ F n(J) ∀t ≥ Tn. This obviously implies limt→∞ x(t) = 0.

Proposition 4 Let (H0)-(H1) be satisfied. Assume additionally f(x) > g(x) for all x ∈
(x,∞), where f(x) = g(x). Then for every initial function φ ∈ C([−1, 0],R+) with φ(s) >
x ∀s ∈ [−1, 0] the corresponding solution x(t) has the property limt→∞ x(t) =∞.

Proof. Let m = inf [−1,0] φ(s). Set γ = m, δ = ∞, and J1 = [m,∞). Then, since
f(x) > g(x), x ∈ (x,∞), one has that F (J1) ⊂ J1, and inf{F (J1)} > m. Moreover,
limn→∞ inf{F n(J1)} = ∞. Exactly as in the proof of the contraction property, one shows
that given φ ∈ C([−1, 0],R+) with φ(s) > x ∀s ∈ [−1, 0] there exists T1 = T1(φ) ≥ 0
such that x(t) ∈ F (J1) ∀t ≥ T1. By induction, there exists a sequence Tn ↑ ∞, such that
x(t) ∈ F n(J1) ∀t ≥ Tn. Therefore, limt→∞ x(t) =∞.

Our next result shows that solutions of equation (2.1) are eventually uniformly bounded
away from zero and the infinity.

Theorem 2 (Persistence and Boundedness) Let (H0)-(H1) be satisfied. Assume ad-
ditionally that f(x) > g(x) for all x ∈ (0, x0) and f(x) < g(x) for all x > x0 for some
x0 > 0 and x0 > 0. Then there is an interval I∗ := [α∗, β∗], α∗ > 0, β∗ <∞, determined by
f(x) and g(x), with the following property: for every initial function φ(s) ∈ C([−1, 0],R+)
with φ(s) > 0 ∀s ∈ [−1, 0] there exists a finite time T = T (φ) such that the corresponding
solution of equation (2.1) satisfies x(t) ∈ I∗ for all t ≥ T .

Proof. The proof is based on the existence of a globally attracting invariant interval of
the map F and the application of the contraction property, Lemma 2.

We claim first that the assumptions of the theorem imply the existence of an invariant
interval I of the map F which is also globally attracting. That is, F (I) ⊆ I and for every
point x ∈ R+ \ {0} there exists a positive integer n = n(x) such that F n(x) ∈ I.
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Indeed, the assumption f(x) > g(x) ∀x ∈ (0, x0) and f(x) < g(x) ∀x ∈ (x0,∞) implies
that the map F has at least one fixed point in R+ \ {0}. Let x+ and x+ be its smallest and
largest fixed points, respectively. In the case f(0) < ∞ let sup{F (x), x ∈ [0, x0]} := L ≥
x+. If f(0) > 0 set l := inf{F (x), x ∈ [0, L]} > 0 and define I := [l, L]. One also has l ≤ x+.
If f(0) = 0 then either f(x) < g(x+) ∀x ∈ (0, x+) or sup{f(x), x ∈ [0, x+]} > g(x+). In
the former case set l := inf{F (x), x ∈ [x+, L]} > 0 and define I := [l, L]. In the latter
case, there exists the leftmost point x̂ > 0 such that f(x̂) = g(x+) and f(x) < g(x+) for
all x ∈ (0, x̂). Set l := inf{F (x), x ∈ [x̂, L]} > 0 and define I := [l, L].

Interval I is invariant under F by the construction, i.e. F (x) ∈ I ∀x ∈ I. It is also
a globally attracting interval of the map F in R+ \ {0}. Indeed, if x < l and f(0) > 0
then F (x) ∈ [l, L] = I. If f(0) = 0 then x = 0 is a repelling fixed point. Therefore,
for any x ∈ (0, l) there exists a positive integer N = N(x) such that FN(x) ∈ [l, L]
and F n(x) < l ∀ 0 < n < N . If x > sup{I} = L then F (x) < x. Consider the
trajectory of point x: o(x) := {F n(x), n ≥ 0}. If inf{o(x)} > sup{I} then F n(x) is
decreasing and limn→∞[F n(x)] ∈ [x0,∞) is a fixed point of the map F , a contradiction. If
l ≤ inf{o(x)} ≤ L then there exists a positive integer N = N(x) such that FN(x) ∈ [l, L]
and therefore, F n(x) ∈ I ∀ n ≥ N . If inf{o(x)} < l then there exists a positive integer
N = N(x) such that FN(x) > L ∀0 < n < N and FN(x) < l. Then set y := FN(x) and
repeat the above argument for the case x < l.

In the case f(0+) = +∞ one has infx≥0 F (x) := l > 0, by the assumption made below
the hypothesis (H2). Set L := sup{F (x), x ∈ [l, x0]} and define I := [l, L]. As above,
interval I is invariant by the construction and also is globally attracting under F . The
latter is shown in the same way as the above consideration in the case f(0) <∞. We leave
the details to the reader.

Given I as defined above, choose ε > 0 such that 0 < α∗ := inf{I}−ε < β∗ := sup{I}+ε
and set I∗ := [α∗, β∗]. Interval I being globally attracting implies that for every closed
interval J ⊃ I, ∩n≥0F

n(J) ⊆ I. Therefore, there exists a finite positive integer N = N(J)
such that FN(J) ⊂ I∗ and α∗ < inf{FN(J)} ≤ sup{FN(J)} < β∗.

Finally, let φ(s) ∈ C([−1, 0],R+) with φ(s) > 0 ∀s ∈ [−1, 0] be given. Set m :=
inf [−1,0] φ(s),M := sup[−1,0] φ(s). Choose J to be a closed invariant interval such that
[m,M ] ⊂ J and I ⊂ J . Then, by repeated application of the contraction property, Lemma
2, one shows that there exists a finite T = T (N, J) such that x(t) ∈ I∗ ∀t ≥ T .

2.2 Global stability: sufficient conditions

The most important implication of the contraction property is the following global stability
result for equation (2.1).

Theorem 3 (Global Stability) Assume (H0)-(H1). Let x be an attracting fixed point
of the map F with the domain J0 of immediate attraction: limn→∞ F

n(x) = x, ∀x ∈ J0.
Then, for every initial function φ(s) ∈ XJ0 = C([−1, 0], J0) the corresponding solution
x(t) = x(t, φ) has the property limt→∞ x(t) = x.

Proof. Note that J0 is open in R+. Let m = inf [−1,0] φ(s),M = sup[−1,0] φ(s). Then
[m,M ] ⊂ J0. J0 being the domain of immediate attraction of x implies that there exists a
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closed interval I such that [m,M ] ⊆ I ⊂ J0, F (I) ⊂ I, and ∩n≥0F
n(I) = x. The repeated

application of the contraction property (Lemma 2) shows that there exists a sequence
Tn = Tn(φ) ↑ ∞ such that x(t) ∈ F n(I) ∀t ≥ Tn.

Corollary 1 Assume (H0)-(H2) and that x is the globally attracting fixed point of the map
F : limn→∞ F

n(x) = x ∀x ∈ R+\{0}. Then for every initial function φ(s) ∈ C([−1, 0],R+)
with φ(s) > 0 ∀s ∈ [−1, 0] the corresponding solution x(t) has the property limt→∞ x(t) = x.

We indicate next a couple of simple conditions under which the fixed point x of the map
F is globally attracting in R \ {0}. In view of Corollary 1 the constant solution x(t) = x
of equation (2.1) (resp. (1.1)) is globally asymptotically stable for all µ > 0 (resp. h > 0).

In view of the Sharkovsky cycle coexistence ordering [21] the most general condition
for x to be globally attracting is that

(C) The second iteration F 2 of the map F does not have a fixed point in R+ \ {0} other
than x, and x is locally attracting.

Some partial cases that imply (C) are the following

(C1) f(x) > g(x) and f(x) < g(x) ∀x ∈ (0, x);

(C2) f(x) < g(x) and f(x) > g(x) ∀x ∈ (x,∞);

(C3) F (x) is unimodal or strictly monotone, has the negative Schwarz derivative, SF (x) <
0, outside the critical point, and |F ′(x)| ≤ 1 [21].

2.3 Absolute global stability: a necessary condition

In the case when fi, gj are all smooth functions, it is rather easy to indicate a simple
necessary condition for the absolute global stability of Eq. (1.1). Indeed, in this case
the equilibrium is also locally asymptotically stable for all h > 0, so that the variational
equation

y′(t) =

∣∣∣∣ f1(x) g′1(x)
f2(x) g′2(x)

∣∣∣∣ y(t) +

∣∣∣∣ f ′1(x) g1(x)
f ′2(x) g2(x)

∣∣∣∣ y(t− h)

= Ay(t) +By(t− h)

along x(t) ≡ x should be stable for all h ≥ 0 (in our special case). It is a well known fact
(see, for example, [8]) that this is possible only when

A ≤ 0 and − A ≥ |B|. (2.4)

The first inequality in (2.4) is equivalent to g′(x) ≥ 0 and is satisfied automatically in
view of (H1). Furthermore, if g′(x) = 0 and Eq. (1.1) is absolutely stable, then, due to
the second condition in (2.4), we have f ′1(x)g2(x) − f ′2(x)g1(x) = 0 implying f ′(x) = 0.
Thus, in the case g′(x) = 0, we obtain the following necessary condition for the global
absolute stability: f ′(x) = 0. Suppose now that g′(x) > 0. In this case, as an elementary
calculation shows, the second condition in (2.4) is equivalent to |F ′(x)| = |f ′(x)/g′(x)| ≤ 1.
By summing up the above, we have
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Lemma 3 If the equilibrium x = x of Eq. (1.1) is globally absolutely stable then |f ′(x)| ≤
g′(x).

3 Delay dependent conditions for global stability

In this section, we are assuming all three hypotheses (H0)-(H2). Moreover, to simplify the
exposition, we suppose here that fi are continuous and gj are Lipschitz continuous so that
we have the existence and uniqueness of solutions for Eq. (1.1) for all t ≥ 0 (i = 1, 2).

3.1 General global stability theorem

From Subsections 2.2 and 2.3, we know that in some cases condition |F ′(x)| ≤ 1 is necessary
and sufficient for the absolute global stability. In this subsection we assume that F is
differentiable at x and |F ′(x)| > 1, that is, −f ′(x) > g′(x) > 0.

Let x(t) be a solution of (1.1). In view of Theorem 2, one has 0 < lim inft→+∞ x(t) =
m ≤ lim supt→+∞ x(t) = M < +∞.

Now we prove several useful lemmas:

Lemma 4 F ([m,M ]) ⊇ [m,M ].

Proof. If x(t) is monotone then, by (1.1), there exists the finite limit x′(+∞) which
should be equal to 0. The latter implies m = M = x and lemma is proved. The same
argument works when we assume m = M . Hence, the only case we are interested in is
m < M . In this case x(t) oscillates. We can find sequences x(tn) → m,x(sn) → M such
that x′(tn) = x′(sn) = 0. Using (1.1), we get immediately that x(tn) = F (x(tn − h)) and
x(sn) = F (x(sn− h)) so that m,M ∈ F ([m,M ]). Since F ([m,M ]) is a connected interval,
Lemma 4 is proved.

Corollary 2 Suppose that x(t) is not converging to x. Then x(t) oscillates around x.

Proof. Indeed, in this case m < M and, by Lemma 4, there exists at least one fixed
point c of F in [m,M ]. Since F has a unique equilibrium, c = x.

Lemma 5 Let x : R→ R+ be a solution of (1.1) and M = x(θ) > x be its global maximum.
Then x(θ− h) ≤ x. Likewise, if m = x(θ1) < x is its global minimum, then x(θ1− h) ≥ x.

Proof. Assume that M = x(θ) > x and x(θ − h) > x. Then, by (H2), f(x(θ − h)) <
g(x(θ−h) and therefore, by (H1), F (x(θ−h)) < x(θ−h). On the other hand, since x′(θ) = 0
we have that f(x(θ − h)) = g(x(θ)), implying that M = x(θ) = F (x(θ − h)) < x(θ − h), a
contradiction with the assumption that M is the global maximum.

The proof for m is completely analogous.

According to Corollary 2, we know that every solution x : R+ → R+ of Eq. (1.1) is
either oscillating around the steady state x or monotonically converging to it.
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Next, if x(t) is a solution to (1.1), then the trajectory xt : R+ → C where xt(s) =
x(t + s), s ∈ [−h, 0] can be considered. It is easy to see that for every φ ∈ ω(x) =
∩t≥0{xr, r ≥ t} ⊂ C there exists a solution x(s, φ) : R→ R+ such that φ(s) = x(s, φ), s ∈
[−h, 0]. Obviously, we have for all φ ∈ ω(x) that

lim inf
t→+∞

x(t) = m ≤ x(s, φ) ≤M = lim sup
t→+∞

x(t),

while M = x(q1, ψ),m = x(q2, χ) for some ψ, χ ∈ C and q1, q2 > 0. Moreover, by Lemma
5, we may assume that qi ≤ h, i = 1, 2, and x(0, ψ) = x(0, χ) = x with x(t, ψ) ∈ (x,M)
for all t ∈ (0, q1), x(t, χ) ∈ (m,x) for all t ∈ (0, q2). Now, since

x′(t, ψ) =

∣∣∣∣ f1(x(t− h, ψ)) g1(x(t, ψ))
f2(x(t− h, ψ)) g2(x(t, ψ))

∣∣∣∣ ≤ ∣∣∣∣ maxu∈[m,M ] f1(u) g1(x(t, ψ))
minu∈[m,M ] f2(u) g2(x(t, ψ))

∣∣∣∣ ,
by the standard comparison results (see, e.g. [22, Theorem 5.III]), we conclude that
x(t, ψ) ≤ z(t,m,M), t ≥ 0, where z(t,m,M) solves the initial value problem

z′(t) = F+(z(t),m,M), z(0) = x, where F+(z,m,M) =

∣∣∣∣ maxu∈[m,M ] f1(u) g1(z)
minu∈[m,M ] f2(u) g2(z)

∣∣∣∣ .
(3.1)

Furthermore, since −f ′(x) > g′(x) ≥ 0, we have that g(z) < maxu∈[m,M ] f(u) ≤
maxu∈[m,M ] f1(u)/minu∈[m,M ] f2(u) for all z in some interval [x, U).

Thus F+(z,m,M) > 0 for all z ∈ [x, U), and therefore function

Π(ζ) =

∫ ζ

x

dz

F+(z,m,M)

is well defined for ζ ∈ [x, U).
Let ζ∗ ≥ U be the smallest zero of F+(z,m,M), for fixed m,M . Notice that such

zero ζ∗ ≥ U always exists, for otherwise F+(z,m,M)/g1(z) > 0 for all z > x, while
limz→+∞ F+(z,m,M)/g1(z) = −minu∈[m,M ] f2(u) < 0. Since F+(z,m,M) > 0 on (x, ζ∗)
and since F+(z,m,M) is smooth at z = ζ∗, we find that Π(ζ∗ − 0) = +∞. This property
of Π(ζ) is sufficient to justify the reasoning that follows.

Integrating (3.1), we find that Ψ(m,M) = z(q,m,M) ≥M satisfies the equation∫ Ψ

x

dz

F+(z,m,M)
= q ≤ h.

Therefore, if we define Φ+ = Φ+(m,M) > x as the unique solution of∫ Φ+

x

dz

F+(z,m,M)
= h,

on the interval [x, ζ∗), we obtain that Φ+(m,M) ≥ Ψ(m,M) ≥M . Likewise, an analogous
consideration of x(t, χ) shows that Φ−(m,M) ≤ m, where Φ− is defined by∫ Φ−

x

dz

F−(z,m,M)
= h, where F−(z,m,M) =

∣∣∣∣ minu∈[m,M ] f1(u) g1(z)
maxu∈[m,M ] f2(u) g2(z)

∣∣∣∣ .
Summarizing the above, we get the following statement:
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Theorem 4 Suppose that the system of two inequalities

Φ+(a, b) ≥ b, Φ−(a, b) ≤ a

does not have a solution (a, b) such that 0 < a < x < b. Then the steady state x(t) = x of
Eq. (1.1) is globally attracting.

As a simple application of Theorem 4, we prove here the following global asymptotic
stability condition for Eq. (1.5), which is a partial case of Eq. (1.1) with f1 = f, g1 =
g, f2 = g2 = 1 (announced in [9]):

Corollary 3 Suppose that x = x is the globally attracting fixed point of the map

G(x) :=
1− e−αh

α
f(x) +

[
x− 1− e−αh

α
f(x)

]
, (3.2)

where α := inf{g(x)−g(x)
x−x , x > 0} is assumed to be positive. Then the constant solution

x(t) = x of Eq. (1.5) is globally asymptotically stable.

Notice that for g(x) differentiable the quantity β := inf{g′(x), x > 0} can be used as
an approximation to α.

Proof. Take an arbitrary solution x(t) of Eq. (1.5) and consider the real values

0 < m = lim inf
t→+∞

x(t) ≤ x ≤M = lim sup
t→+∞

x(t).

Following the notations in the proof of Theorem 4, we have, in view of the definition
of α,

h =

∫ Φ+

x

dz

F+(z,m,M)
=

∫ Φ+

x

dz

−g(z) + maxu∈[m,M ] f(u)

≥
∫ Φ+

x

dz

−α(z − x)− g(x) + maxu∈[m,M ] f(u)
.

Integrating the last expression, we obtain:

h ≥ −1

α
ln
α(Φ+ − x) + g(x)−maxu∈[m,M ] f(u)

g(x)−maxu∈[m,M ] f(u)
.

Hence, since g(x) = f(x) < maxu∈[m,M ] f(u), we get

Φ+(m,M) ≤ x+
1− e−αh

α

(
max

u∈[m,M ]
f(u)− f(x)

)
= max

u∈[m,M ]
G(u),

where G is defined by (3.2).
Analogously, we can prove that Φ−(m,M) ≥ minu∈[m,M ] G(u). Now, if (m,M) is such

that 0 < m ≤ x ≤ M , Φ+(m,M) ≥ M , and Φ−(m,M) ≤ m, then it follows that
M ≤ maxu∈[m,M ]G(u) and m ≥ minu∈[m,M ] G(u), implying that [m,M ] ⊂ G([m,M ]).
Finally, since x is a globally attracting fixed point of G, we conclude that m = x = M ,
and the proof of the corollary follows from Theorem 4.
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3.2 Proof of Theorem 1

In this subsection we prove Theorem 1 stated in Section 1 as a consequence of Theorem 4.
Let us observe that Eq. (1.4) is a particular case of (1.1), with F (x) = 1/ϕ(x), x > 0.

Hence F is strictly decreasing.
From the properties of Schwarz derivative, we have that (Sϕ)(x) < 0 implies (SF )(x) <

0 for all x > 0. Hence the global attractivity of x in the case |F ′(x)| = x2ϕ′(x) ≤ 1 is a
direct consequence of Corollary 1 and the remarks below it.

Therefore, we can assume that |F ′(x)| > 1.
Take an arbitrary solution x(t) of Eq. (1.4) and consider the real values

0 < m = lim inf
t→+∞

x(t) ≤ x ≤M = lim sup
t→+∞

x(t).

By using the notations in the proof of Theorem 4, we have

Φ+(m,M) = G(F (m)) , Φ−(m,M) = G(F (M)) ,

where G(x) = x− e−h/x(x− x).
Hence Theorem 1 will be proved if we show that the unique solution of the system of

inequalities
G(F (M)) ≤ m , G(F (m)) ≥M , 0 < m ≤ x ≤M

is m = M = x.

Remark 3.1 Notice that G ◦ F : R+ → R+ is a strictly decreasing map (continued con-
tinuously at x = 0 if ϕ(0) = 0, since G(+∞) = x+ h). These relations imply immediately
the following estimations for the limit values of any solution x of Eq. (1.4):

G(F (x+ h)) ≤ lim inf
t→+∞

x(t) = m ≤ x ≤M = lim sup
t→+∞

x(t) ≤ G(+∞) = x+ h.

To finish the proof of Theorem 1, we have to examine the behavior of one-dimensional
map G ◦ F . Numerical evaluations show that the Schwarz derivative of G ◦ F is negative;
however, we were not able to find an analytic proof of this (unfortunately, (SG)(x) can
be positive for small values of x so that we cannot apply the well-known argument that
S(G ◦ F ) is negative if both SG and SF are negative). To avoid the necessity to check
every time that S(G ◦ F )(y) is negative, we will approximate G by a rational map.

Set

a = G′(x) = 1− e−h/x , b = G′′(x) =
−2he−h/x

x2 ,

and define the rational function

Q(x) = x+
a(x− x)

1− (b/2a)(x− x)
= x+

(1− exp(−h/x))(x− x)

1 + h exp(−h/x)(x−x)

(1−exp(−h/x))x2

.

This function satisfies Q(x) = G(x) = x, Q′(x) = G′(x) = a, Q′′(x) = G′′(x) = b.
Moreover, Q is well defined for all x ≥ 0 since 1 − (b/2a)(x − x) = 0 only for x =
x− h−1x2eh/x, which is negative due to the relation eh/x > 1 + h/x.

Next, the following lemma will allow us to work with Q instead of G:
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Lemma 6 Q is strictly increasing on R+. Furthermore, Q(x) > G(x) for all x > x and
Q(x) < G(x) for all 0 < x < x.

Proof. Since Q′(x) = a(1− (b/2a)(x− x))−2 > 0, it follows that Q is strictly increasing
on R+.

Now, for positive x 6= x, the inequality (Q(x)−G(x))(x− x) > 0 is equivalent to

1 +
h exp(−h/x)(x− x)

(1− exp(−h/x))x2 <
1− exp(−h/x)

1− exp(−h/x)
,

which is true since we have, for some θ between x and x, that

1− exp(−h/x)

1− exp(−h/x)
= 1 +

h exp(−h/x)(x− x)

(1− exp(−h/x))x2 + T (θ, x, h)(x− x)2/2,

where

T (θ, x, h) =
h exp(−h/θ)(1− exp(−h/x))

(1− exp(−h/θ))3θ4
((2θ + h) exp(−h/θ) + h− 2θ) ≥ 0.

Lemma 6 implies immediately that Φ = Q ◦ F is well-defined and strictly decreasing
on R+. Notice that SΦ = S(Q ◦ F )(x) = (SF )(x) < 0 and that Φ′(x) = (Q ◦ F )′(x) =
(G ◦ F )′(x). Moreover, in the case of our interest Φ maps [0,Φ(0)] into itself:

Lemma 7 If |Φ′(x)| < 1, then Φ2(0) = Φ ◦ Φ(0) > 0.

Proof. Suppose that Φ2(0) ≤ 0 and take the maximal x1 < x such that Φ2(x1) = 0.
Since (Φ ◦Φ)′(x) < 1 it follows that Φ ◦Φ has at least one fixed point on (x1, x). Let x2 be
the largest fixed point of Φ ◦Φ on (x1, x). Obviously, Φ(x2) is also a fixed point of Φ ◦Φ so
that the interval I = [x2,Φ(x2)] is invariant under the action of Φ2. Since both endpoints
of I and x ∈ I are all fixed points by Φ2, and (Φ2)′(x) < 1, we obtain a contradiction with
the assumption SΦ2 < 0.

From previous Lemmas, we obtain that M ≤ G◦F (m) ≤ Q◦F (m) = Φ(m) ≤ Φ(0) and
m ≥ G ◦ F (M) ≥ Q ◦ F (M) = Φ(M). Hence [m,M ] ⊆ [0,Φ(0)] and [m,M ] ⊆ Φ[m,M ].
Finally, since |Φ′(x)| = |G′(x)F ′(x)| = x2(1 − exp(−h/x))ϕ′(x) < 1, and SΦ < 0, we
conclude that m = x = M . This completes the proof of Theorem 1.

3.3 An example

In this subsection we apply our results to obtain some global stability conditions for a
delay equation arising in respiratory dynamics.

The following differential delay equation

x′(t) =

∣∣∣∣∣ λ x(t)
µxn(t−h)

σn+xn(t−h)
1

∣∣∣∣∣ , n, h, σ, µ > 0, (3.3)

was proposed by Mackey and Glass (see [11, 18, 20]) to model dynamics of respiratory
systems. The following result was established in [12, p. 158]:
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Proposition 5 Let x(t) ≡ x∗ be the unique positive steady state of (3.3). Assume that
one of the following two conditions holds: (i) n ≤ 1 and µ < 2x∗λσ−1; (ii) n > 1, nλσ−1 >
0.25µ(n + 1)(n+1)/n(n − 1)(n−1)/n. Then it is absolutely globally asymptotically stable. If
(λσ−1 +µ(n+1)(n+1)/n(n−1)(n−1)/n/(4n))µλσ−1h < 1 and n > 1, then x(t) ≡ x∗ is globally
asymptotically stable.

A different and rather more complicated sufficient condition for the global asymptotic
stability of the unique positive equilibrium of (3.3) was also proved in [4, Theorem 3.1].
Our analysis shows that Proposition 5 provides better conditions for the stability compared
with those given in [4] (also see a numerical comparison at the end of this paper).

Applying Corollary 1, we get the following improvement of the absolute global stability
part of Proposition 5:

Theorem 5 If (i) n ≤ 1 or (ii) n > 1 and nλσ−1 ≥ µ(n− 1)(n+1)/n, then the steady state
x(t) ≡ x∗ of Eq. (3.3) is globally attracting for every h > 0.

Proof. We have that g(x) = x and F (x) = f(x) = λµ−1(σn + xn)/xn.
(i) The equation F (F (a)) = a determines all 2-periodic points of F : (0,∞)→ (0,∞).

Since F (x) > λµ−1 for all x > 0 we obtain that necessarily a > λµ−1. Using the strict
monotonicity of F , we can conclude that F (a) = F−1(a), which implies immediately

p(a) =

(
λ

µ

)n
(σn + an)n =

λσnan
2

µa− λ
= q(a).

This equation has exactly one solution a for every n ∈ (0, 1] since p(a) increases in a and
q(a) is decreasing. Since F has only one periodic point (which is exactly the fixed point x∗)
it must attract all trajectories of F . An application of Corollary 1 ends the consideration
of this case.

(ii) Let now n > 1. Since F is strictly decreasing and has negative Schwarz derivative:
(SF )(x) = F ′′′(x)/F ′(x)− (3/2)(F ′′(x)/F ′(x))2 = (−n2 + 1)/(2x2) < 0, we can apply the
well-known Singer theorem to conclude that the local attractivity of the equilibrium x∗ of
the map F : (0,∞)→ (0,∞) implies its global attractivity. Now, a direct verification shows
that |F ′(x∗)| ≤ 1 if and only if x∗ ≥ (nλσn/µ)1/(n+1). Fix now σ and consider the solution
x∗ of the determining equation λµ−1(σn + xn) = xn+1 as a function of the parameter
λµ−1: it is clear that x∗(λµ−1) is strictly decreasing in λµ−1 while (nλσn/µ)1/(n+1) is
strictly increasing in the same variable. This implies that there exists λ0µ

−1
0 such that

x∗(λµ−1) ≥ (nλσn/µ)1/(n+1) for all λµ−1 ≥ λ0µ
−1
0 . Moreover, when λµ−1 = λ0µ

−1
0 , we

obtain x∗(λ0µ
−1
0 ) = (nλ0σ

n/µ0)1/(n+1). Finally, we get (using the determining equation)
that λ0µ

−1
0 = σn−1(n− 1)n+1/n.

Next, we apply Theorem 1 to establish delay dependent global stability conditions for
Eq. (3.3). First, we simplify this equation by applying the change of variable x = λy to
get

y′(t) =

∣∣∣∣∣ 1 y(t)
µyn(t−h)

σn
1 +yn(t−h)

1

∣∣∣∣∣ , n, h, µ > 0, (3.4)
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with σ1 = σ/λ > 0.
Let y be the unique positive equilibrium of Eq. (3.4). As a direct consequence of

Theorem 1, we have the following easily verifiable delay dependent stability condition:

Corollary 4 Assume that (1− exp(−h/y))nσn1 /(µy
n+1) < 1. Then every solution of (3.4)

converges to y.

To have a more clear idea about how our delay dependent stability condition given by
Corollary 4 compares with others, consider Eq. (3.3) with λ = 1, n = σ = µ = 2. In
this case, Theorem 3.1 in [4] provides the global attractivity for all h < 0.230854..., while
Proposition 5 improves this condition up to h < (0.5 + 3

√
3/4)−1 = 0.555.... Now, we

have that y = (1 + (217 + 12
√

327)1/3 + (217 + 12
√

327)−1/3)/6 = 1.450540170... and that
4(1− exp(−h/y)) < y3 for all h < −y ln(1− y3/4) = 2.088... We can apply Corollary 4 to
derive the global stability of y(t) ≡ y for all h < 2.088.... Finally, the local analysis of the
steady state of Eq. (3.3) shows that it losses the local stability when h > 4.18....
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