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Abstract. In an attempt to explain experimental evidence of chaotic oscil-

lations in blood cell population, A. Lasota suggested in 1977 a discrete-time
one-dimensional model for the production of blood cells, and he showed that

this equation allows to model the behavior of blood cell population in many

clinical cases. Our main aim in this note is to carry out a detailed study of
Lasota’s equation, in particular revisiting the results in the original paper and

showing new interesting phenomena. The considered equation is also suitable

to model the dynamics of populations with discrete reproductive seasons, adult
survivorship, overcompensating density dependence, and Allee effects. In this

context, our results show the rich dynamics of this type of models and point out

the subtle interplay between adult survivorship rates and strength of density
dependence (including Allee effects).

1. Introduction. Based on experimental results, the Polish mathematician An-
drzej Lasota proposed in 1977 [5] a discrete model for the production of red blood
cells (erythrocytes). If xn denotes the number of cells at time n, and σxn is the num-
ber of cells destroyed in the time interval [n, n+ 1], then the dynamics is governed
by equation

xn+1 − xn = −σxn + pn, (1.1)

where pn is the number of cells which are produced in the bone marrow during
the same period. The bone marrow has the ability to change production when the
number of blood cells changes, so pn = p(xn). Based on experimental results, the
form p(x) = (cx)γ e−x was proposed for the production function, thus leading to
the difference equation

xn+1 = (1− σ)xn + (cxn)γe−xn , (1.2)

where σ ∈ (0, 1) and c, γ are positive constants.
As indicated by Lasota, equation (1.2) provides a flexible model that explains

the behavior of the blood cell population in many clinical cases. For example, if
γ > 1, then there is a critical value of the population size such that populations
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below it cannot survive in the long term. In population dynamics, such effect is
known as a strong Allee effect [4]. In the model under consideration, it means that
if the number of cells is too small (for example, after a heavy hemorrhage), then the
organism eventually dies. Cell populations above the critical value usually persist
and they can approach a stable positive equilibrium (which is considered the normal
behavior), but the number can oscillate when there is a disease affecting the blood
cell production, and even behave in an erratic (aperiodic) way in the case of a severe
disease. As the examples in [5] show, an increasing value of σ leads to severe disease
(because a large proportion of cells are destroyed). Even though this model assumes
that the blood production is not a continuous process (a more accurate model seems
to be a delay differential equation [5, 16]), it is quite intuitive and displays a very
rich dynamics.

On the other hand, equation (1.2) can also be considered as a discrete model for
iteroparous populations (that is, part of the population survives the reproductive
season) whose recruitment function is defined by a gamma-Ricker map [8]. In this
context, equation (1.2) is a flexible model for populations with discrete reproduc-
tive seasons, adult survivorship, overcompensating density dependence, and Allee
effects.

In this note, we show some interesting aspects of the dynamics of (1.2) that can
help to understand the potential effects of increasing either the destruction rate of
cells (in the erythropoietic model), or the adult mortality rate (in the population
model).

2. Preliminary results. We first introduce the maps f : [0,∞) → [0,∞) and
F : [0,∞)→ [0,∞) defined by

f(x) = (cx)γe−x , F (x) = (1− σ)x+ (cx)γe−x = (1− σ)x+ f(x), (2.1)

where σ ∈ (0, 1), c, γ > 0. Notice that equation (1.2) can be written in the form
xn+1 = F (xn).

Some properties of the map f have been recently proved in [8], and they will be
useful in our analysis. Now, we state the intervals of monotonicity of F depending
on the parameters. We prove that F can be either increasing or bimodal (see
Figure 2.1).

Theorem 2.1. The map F defined in (2.1) has the following properties:

(a): F (0) = 0 and limx→∞ F (x) =∞.
(b): F is differentiable in (0,∞), F ′(0+) = 1− σ if γ > 1, F ′(0+) = 1− σ+ c if
γ = 1, and F ′(0+) =∞ if 0 < γ < 1. In any case, limx→∞ F ′(x) = 1−σ > 0.

(c): Define H(γ) =
√
γ(γ +

√
γ)γ−1e−γ−

√
γ .

(i) If cγH(γ) < 1 and 0 < σ ≤ σ∗ := 1 − cγH(γ), then F is increasing in
(0,∞).

(ii) If cγH(γ) ≥ 1, or cγH(γ) < 1 and σ > σ∗, then F has two positive
critical points c1 < c2. Moreover, F attains a local maximum at c1 and a
local minimum at c2.

Proof. The proof of items (a) and (b) is elementary, so we only provide the proof
of (c).

The first and second derivatives of F in (0,∞) are

F ′(x) = (1− σ) + cγxγ−1e−x(γ − x),

F ′′(x) = cγe−x xγ−2(x2 − 2γx+ γ2 − γ).
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Figure 2.1. Graphs of the map F for γ = 0.3, c = 0.6, and
different values of σ: σ = 0.6 < σ∗ ≈ 0.774 in red (F is increasing),
and σ = 0.9 > σ∗ in blue (F has two critical points). The dashed
line is the graph of y = x.

We distinguish two cases according to the zeros of F ′′ on (0,∞) (see Figure 2.2).
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Figure 2.2. Graphs of the map F ′ (solid, blue) and the line y = 0
(dashed, black), with c=1. (a): γ = 0.25 < 1, σ = 0.8 > σ∗ ≈
0.707; (b): γ = 2 > 1, σ = 0.9 > σ∗ ≈ 0.841. In both cases, there
are two intersection points, that determine the critical points of F .

If γ ≤ 1, then F ′ has a unique critical point at d+ = γ +
√
γ; moreover, F ′ is

decreasing on (0, d+) and increasing on (d+,∞).
If γ > 1, then F ′′(d+) = F ′′(d−) = 0, where d+ = γ +

√
γ > d− = γ −√γ > 0.

In this case, F ′(0+) > 0, F ′ is increasing on (0, d−) ∪ (d+,∞), and decreasing on
(d−, d+).

In both cases, it is clear that F ′(x) ≥ 0 for all x > 0 if and only if F ′(d+) ≥ 0,
and F ′ has two positive zeros c1 < c2 if F ′(d+) < 0. Moreover, it follows from the
sign of F ′ that c1 corresponds to a local maximum of F , and c2 to a local minimum.

Finally, it is easy to check that condition F ′(γ +
√
γ) ≥ 0 is equivalent to σ ≤

1− cγH(γ).

3. Fixed points and stability. We first address the case 0 < γ ≤ 1, for which
the map F can have at most one positive equilibrium.
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Theorem 3.1. Assume that 0 < γ ≤ 1.

(a): If γ < 1, then F has a unique positive fixed point p. Moreover, F (x) > x if
0 < x < p, and F (x) < x if x > p.

(b): If γ = 1, then F has a unique positive fixed point p if c > σ and no positive
fixed points if c ≤ σ. In the former case, F (x) > x if 0 < x < p, and F (x) < x
if x > p.

(c): Assume that 0 < γ < 1, or γ = 1 and c > σ. Then the unique positive
equilibrium p is locally asymptotically stable for the Lasota equation (1.2) if
the following condition holds:

cγ < G(γ, σ) := σ

(
γ +

2

σ
− 1

)1−γ

eγ+
2
σ−1. (3.1)

If cγ > G(γ, σ), then p is unstable.

Proof. We only prove the case γ < 1, since the proof for γ = 1 is very similar.
The fixed point p > 0 satisfies the identity

f1(p) := σp1−γ = cγe−p =: f2(p).

The existence and uniqueness of p follows from the fact that f1(x) = σx1−γ is
increasing, with f1(0) = 0, and f2(x) = cγe−x is decreasing, with f2(0) > 0,
f2(∞) = 0. A simple graphical analysis shows that F (x) > x if 0 < x < p, and
F (x) < x if x > p.

The derivative of F at the fixed point p is

F ′(p) = 1− σ + γcγpγ−1e−p − cγpγe−p = 1 + σ(γ − 1− p). (3.2)

Since γ < 1, it is clear that F ′(p) < 1. On the other hand, it follows from (3.2) that

F ′(p) > −1⇐⇒ p < γ +
2

σ
− 1.

Using the statement in (a), it is clear that the last inequality holds if and only if

F

(
γ +

2

σ
− 1

)
< γ +

2

σ
− 1,

and this inequality is equivalent to (3.1).

Remark 3.2. We notice that equation (1.2) is uniformly permanent if either γ < 1
or γ = 1 and σ < c. This means that there exists a compact interval [A,B] such
that 0 < A ≤ lim infn→∞ Fn(x) ≤ lim supn→∞ Fn(x) ≤ B, for all x > 0. Indeed,
if F is increasing then the unique positive equilibrium p is a global attractor, and
we can choose A = B = p; if F is bimodal, then elementary arguments show that
we can choose A = F (c2), B = F (c1), where c1, c2 are the critical points of F
(0 < c1 < c2).

Next, if γ > 1, then F can have 0, 1, or 2 positive fixed points. This case is
studied in our next result.

Theorem 3.3. Assume that γ > 1, and define

c∗ :=
(
σ (γ − 1)

1−γ
eγ−1

)1/γ

. (3.3)

Then the map F defined in (2.1) has two positive fixed points if c > c∗, one positive
fixed point if c = c∗, and no positive fixed points if c < c∗. If F has only one fixed
point q, then q = γ − 1, F ′(q) = 1 and q is semi-stable. If F has two positive fixed
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points q, p, then q < γ − 1 < p, F ′(q) > 1, and F ′(p) < 1. The fixed point q is
unstable, while p is asymptotically stable if (3.1) holds. If c < c∗, then all solutions
of (1.2) converge to 0.

Proof. The positive fixed points of F are the solutions of equation f1(x) = f2(x),
where f1(x) = σx1−γ and f2(x) = cγe−x. Since f1(0+) = ∞, f2(0) = cγ , f1
and f2 are decreasing and convex, and limx→∞(f1(x)/f2(x)) = ∞, it follows from
elementary arguments that F can have at most two positive fixed points.

Assume that there is at least one positive fixed point of F , and denote by q
the smallest one. It follows from the properties of f1 and f2 that f ′1(q) ≤ f ′2(q).
This inequality, together with the equality f1(q) = f2(q), leads to q ≤ γ − 1. If
q = γ − 1, then f ′1(q) = f ′2(q) and γ − 1 is the unique positive fixed point of F .
However, if q < γ − 1, then f ′1(q) < f ′2(q). Since limx→∞(f1(x)/f2(x)) = ∞, there
exists another fixed point p > q. Moreover, f ′1(p) > f ′2(p), which is equivalent to
p > γ − 1.

Thus:

• there is a unique positive fixed point of F if and only if q = γ − 1, that is, if
f1(γ − 1) = f2(γ − 1). This equality is equivalent to c = c∗;

• there are two positive fixed points q, p of F if and only if f1(γ−1) < f2(γ−1),
which is equivalent to c > c∗;

• F does not have positive fixed points if c < c∗.

In the first case, it is easy to check that solutions of (1.2) starting at an initial
condition x0 ∈ (0, q) converge to zero. If F (x) ≥ q for all x > q, then all solutions
starting at [q,∞) converge to q; if there are points x > q such that F (x) < q,
then the immediate basin of attraction of q is [q, r], where r is the smallest point in
F−1(q) \ {q}. Therefore, q is semistable.

In the second case, we have that F ′(p) < 1 < F ′(q). Thus, q is unstable. If (3.1)
holds, then F ′(p) > −1, implying that the equilibrium p is asymptotically stable.

Finally, if c < c∗, then F (x) < x for all x > 0 and therefore all solutions of (1.2)
converge to 0.

Figure 3.1 shows the three different possibilities considered in the statement of
Theorem 3.3.

It is well known that a discrete dynamical system generated by a map with two
critical points can lead to the coexistence of several attractors. However, if γ < 1
or γ = 1 and σ < c, we will prove that the unique positive fixed point p is a
global attractor of all positive solutions of (1.2) when it is asymptotically stable.
Moreover, we get that the parameter region of global asymptotic stability includes
the nonhyperbolic case, thus extending condition (3.1) to cγ ≤ G(γ, σ).

To prove this result, we need the following generalization of Theorem 1 in [10].

Theorem 3.4. Assume that 0 < σ < 1 and f : [0,∞) → [0,∞) satisfies the
following conditions:

(A1): g(x) = (1/σ)f(x) has a unique positive fixed point p > 0, g(0) = 0, and
g′(0+) > 1 (g′(0+) can be ∞).

(A2): f has a unique critical point z; moreover, f ′(x) > 0 for all x ∈ (0, z) and
f ′(x) < 0 for all x > z.

(A3): (Sf)(x) < 0 for all x > z, where

(Sf)(x) =
f ′′′(x)

f ′(x)
− 3

2

(
f ′′(x)

f ′(x)

)2
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is the Schwarzian derivative of f .
(A4): f ′′(x) < 0 for all x ∈ (0, z).

Then, the unique positive equilibrium p of equation

xn+1 = (1− σ)xn + f(xn) (3.4)

is globally asymptotically stable if

1− σ + f ′(p) ≥ −1. (3.5)

If (3.5) does not hold, then p is unstable.
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Figure 3.1. Graphs of the map F for γ = 8, σ = 0.8, and different
values of c: c = c∗ ≈ 0.425 in blue (one positive fixed point),
c = 0.4 < c∗ in red (no positive fixed points), and c = 0.5 > c∗ in
black (two positive fixed points). The dashed line is the graph of
y = x.

Proof. Equation (3.4) can be written in the form of equation (4) in [10]:

xn+1 = αxn + (1− α)g(xn), (3.6)

with α = 1− σ and g(x) = (1/σ)f(x).
It is clear that conditions (A2)– (A4) hold for g because g′(x) = (1/σ)f ′(x),

g′′(x) = (1/σ)f ′′(x), and (Sg)(x) = (Sf)(x).
There are two relevant differences with Theorem 1 in [10] . On the one hand,

condition (A3) there required (Sf)(x) < 0 for all x 6= z. However, a simple
inspection of the proof shows that the less restrictive condition (Sf)(x) < 0 for
all x > z is enough to get the result. On the other hand, the restriction z < p is
required in [10, Theorem 1]. In case z ≥ p, the map φ(x) = (1−σ)x+f(x) defining
the right-hand side of (3.4) satisfies φ′(x) > 0 for 0 < x ≤ p, φ(x) > x for x < p,
and 0 < φ(x) < x for x > p. Hence, simple arguments show that p is globally
asymptotically stable (see, e.g., [3, Lemma 1]).

Now we are in a position to prove the global stability result for (1.2).

Corollary 3.5. Assume that 0 < γ < 1, or γ = 1 and c > σ. Then, the unique
positive equilibrium p for the Lasota equation (1.2) is globally asymptotically stable
if and only if cγ ≤ G(γ, σ), where G(γ, σ) is defined in (3.1).

Proof. Consider the map f(x) = (cx)γe−x defined in (2.1). It is clear from the
proof of Theorem 3.1 that condition cγ ≤ G(γ, σ) is equivalent to (3.5). Thus, in
order to use Theorem 3.4, we only need to check conditions (A1)–(A4).
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Conditions (A1) and (A2) follow from elementary arguments, and (A3) was
proved in [8, Proposition 2]. Hence, it remains to prove (A4).

From the proof of Theorem 2.1, we know that f ′′(x) < 0 for all x ∈ (0, γ +
√
γ).

Since the unique critical point of f is z = γ < γ +
√
γ, (A4) follows.

4. Dynamics and bifurcations. In this section, we combine the rigorous analysis
from the previous sections with numerical bifurcation diagrams to show the potential
rich dynamics of the solutions to the Lasota equation (1.2) and the role of the
parameters γ and σ. For parameter c, we fix the value c = 0.47 already used by
Lasota in [5]. Although his study is restricted to γ = 8 and three different values of
σ (σ = 0.1, 0.4, 0.8), we will consider more cases to give an idea of the more relevant
dynamical phenomena. In particular, we will revisit the cases studied by Lasota.
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Figure 4.1. Main bifurcation boundaries and regions with differ-
ent dynamical behavior for equation (1.2) with c = 0.47, in the
parameter plane (γ, σ). The two solid lines represent the extinc-
tion boundary (red color) and the stability boundary of the largest
positive equilibrium (blue color). The vertical dashed line γ = 1
(from σ = 0 to σ = c = 0.47) is the border between global sta-
bility of the unique positive equilibrium and a bistability region,
in which both the largest positive equilibrium and the extinction
equilibrium are asymptotically stable.

We begin by displaying in Figure 4.1 a bifurcation diagram for c = 0.47, which
shows in the parameter plane (γ, σ) the stability and extinction boundaries pro-
vided in Section 3. In this case, condition cγ ≤ G(γ, σ) holds for all γ ∈ (0, 1],
and therefore Corollary 3.5 implies that the unique positive equilibrium is globally
asymptotically stable in this parameter range (if γ = 1, this equilibrium exists only
for σ < 0.47 = c).

The red solid line is given by equation (3.3) when γ > 1. According to Theo-
rem 3.3, this line corresponds to a tangent bifurcation and represents the boundary
between extinction and bistability. In the bistable case, there are solutions that con-
verge to the extinction equilibrium and others that converge to the largest positive
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equilibrium, so permanence depends on the initial condition. For σ > c, the red line
γ = 1 represents the boundary between global stability of the positive equilibrium
and extinction.

The blue solid line represents the boundary of local asymptotic stability of p, so
the region to the right of this line corresponds to more complicated dynamics, which
includes periodic attractors, chaotic attractors, and essential extinction, as we show
below in some numerical bifurcation diagrams. We recall that essential extinction
means that almost all solutions (in a sense of Lebesgue measure) converge to zero
[14, 15]. Essential extinction usually occurs after a boundary collision between the
basins of attraction of a chaotic attractor and the extinction equilibrium 0; however,
we report below different transitions from bistability to essential extinction.

In the remainder of this section, we show some relevant numerical bifurcation
diagrams to illustrate the rich behavior of equation (1.2). The value of c is always
set to 0.47. In some cases (Figures 4.2, 4.3), we fix a value of γ and use σ as a
bifurcation parameter, while in Figure 4.4 we do the opposite.

4.1. Bubbles. A first interesting phenomenon is the existence of the so-called bub-
bles, which are characteristic in bifurcation diagrams of population models where
some adults survive more than one reproduction period. A primary bubble in the
sense of [11, Definition 3] is shown in Figure 4.2: the largest positive equilibrium
loses its asymptotic stability in a period-doubling bifurcation as the destruction
rate σ is increased, but stability is regained at a larger value of σ, after a period-
halving bifurcation occurs. This phenomenon shows that increasing the mortality
rate can be either stabilizing or destabilizing. More complex bubbling effects can
be observed in Figure 4.3 (c). In this case, the equation can reach a chaotic regime
inside the bubble (see [11] for more details and related references).
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Figure 4.2. Bifurcation diagram showing a bubble for equation
(1.2) with c = 0.47, γ = 7.65, using σ as the bifurcation parameter.
Black dashed lines correspond to unstable equilibria.

4.2. Hydra effect. It is easy to check that the largest equilibrium of (1.2) de-
creases as σ is increased. However, the average population size of the nontrivial
attractor can increase with σ when the largest equilibrium loses its asymptotic sta-
bility. This phenomenon can be observed in Figure 4.3 (b), where the average of the
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2-periodic attractor is represented by a solid red line. The phenomenon of a popu-
lation increasing in response to an increase in its per-capita mortality rate is known
as the hydra effect [1]. A formal notion of hydra effect suitable for the context of
this paper is given in [11, Definition 2].
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Figure 4.3. Bifurcation diagrams for equation (1.2) with c = 0.47,
using σ as the bifurcation parameter. Black dashed lines cor-
respond to unstable equilibria. For more details, see the text.
(a): γ = 7; (b): γ = 8; (c): γ = 8.5 and σ ∈ (0, 1); (d): magni-
fication for γ = 8.5.

4.3. Sudden collapses. A typical feature of population models with Allee effects,
where population cannot survive in the long term if its abundance is below a critical
size, is the possibility of sudden collapses. Roughly speaking, this means that there
are critical values of some relevant parameter such that extinction occurs if the
parameter goes beyond this critical value, while populations can persist at densities
bounded away from zero for values just below the critical one. Sudden collapses
typically occur when the basins of attraction of the zero equilibrium and another
attractor collide (boundary collisions). See, e.g., [6, 14, 15].

There are two main mechanisms leading to sudden collapses. The simplest one
is a tangent bifurcation, which leads from bistability to extinction when the two
positive equilibria of (1.2) collide and then disappear (see Figure 3.1). A bifurcation
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diagram showing this first case is given in Figure 4.3 (a), for c = 0.47 and γ = 7. A
more complex mechanism for sudden collapses is a catastrophe bifurcation, which
takes place when a chaotic attractor collides with the basin of attraction of zero.
This situation is represented in Figure 4.3 (b), for c = 0.47 and γ = 8. We emphasize
that these are the values chosen by Lasota [5] to investigate the dynamics of (1.2)
as σ is increased. Although he found chaotic orbits for σ = 0.8, it seems he did
not observe the sudden collapse, which occurs at σ ≈ 0.87, when F 2(c1) = q. As
before, c1 and q are the smallest critical point and the smallest positive fixed point
of F , respectively.

The two above mentioned mechanisms are well known and have been rigorously
explained (see, e.g., [14]); however, we have found a different situation. For c = 0.47,
γ = 8.5, essential extinction would be expected to begin at σ = σ1 ≈ 0.86, when
F 2(c1) = q. However, at a previous value σ = σ2 ≈ 0.8315, an attracting 3-cycle
disappears in a tangent bifurcation for F 3, in such a way that the transition from
bistability to essential extinction occurs at σ = σ2 (see Figure 4.3, (c) and (d)).

The three examples shown in Figure 4.3 illustrate that there are multiple possi-
bilities for the transition to extinction or essential extinction in equation (1.2).

4.4. Extinction windows. The influence of parameter γ on the dynamics of (1.2)
is quite interesting, as it can be observed in the two-parameter diagram in Figure 4.1
for c = 0.47. For small values of σ, there is a transition from global stability of the
positive equilibrium to bistability as γ passes the critical value γ = 1. This dynam-
ical change occurs after a pitchfork bifurcation, where a new branch of (unstable)
fixed points is born; see [8], where this bifurcation is explained for the gamma-Ricker
map, which corresponds to (1.2) with σ = 1. This case is shown in Figure 4.4 (a)
for σ = 0.05.

For larger values of σ, there are extinction windows, which were also observed in
other models with Allee effects [6, 14, 15]. A simple extinction window originated
by two tangent bifurcations as γ is increased (two positive equilibria disappear at
the first one, but are created again in the second one) is shown in Figure 4.4 (b)
for σ = 0.1. Since the map F governing the dynamics of (1.2) is bimodal for lager
values of σ (see Theorem 2.1), there can be multiple extinction windows, as it has
been reported in [6] for a population model with harvesting also governed by a
bimodal map. These complicated dynamics are shown in Figure 4.4 (c) for σ = 0.9.
Thus, a thorough analysis of the influence of γ on the dynamics of (1.2) in the
parameter region where oscillations and essential extinction can occur seems to be
a very difficult task.

It is worth noticing that, in some population models, γ is a cooperation parameter
[2, 4], and extinction windows are related to a kind of “rescue effect”. That is
to say, populations that go to extinction when cooperation rates are small can
persist at intermediate population levels due to high cooperation intensity. However,
larger rates of cooperation can lead to chaos and essential extinction. For related
discussions, see [7, 8].

5. Discussion. Some months ago, the first author contacted Dr. P. J. Mitkowski
to discuss about a model of delay differential equations for blood cell production,
and he sent us a copy of the paper [5]. In this paper, published by Lasota in 1977,
the beautiful equation (1.2) was proposed as a simple one-dimensional discrete-time
model for the production of blood cells. To explain the influence of the destruction
rate σ on the behavior of the solutions of (1.2), Lasota fixed c = 0.47 and γ = 8.
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Figure 4.4. Bifurcation diagrams for equation (1.2) with c = 0.47
and different values of σ, using γ as the bifurcation parame-
ter. Black dashed lines correspond to unstable equilibria, and red
dashed lines to unstable 2-periodic orbits. (a): There are neither
oscillations nor extinction windows for σ = 0.05. (b): An extinc-
tion window for σ = 0.1. (c): Multiple extinction windows for
σ = 0.9.

Then, he considered three values of σ, which were enough to explain the dynamics
of blood cell production in some relevant clinical cases.

Our main motivation to write this paper was to carry out a much more detailed
analysis of the dynamics of (1.2). We have combined an analytical study in Sec-
tions 2 and 3 with a numerical approach in Section 4. While in the latter section
we have fixed c = 0.47 as in [5], our theoretical results (Theorems 2.1, 3.1, 3.3 and
Corollary 3.5) show the strong influence of c on the dynamics. In particular, very
small values of c lead the system to extinction (see Figure 3.1).

The main purpose of Lasota in [5] was showing chaotic behavior in some biological
models, including (1.2); this fact explains the choice γ = 8 in [5]. Indeed, Figure 4.1
shows that if c = 0.47 and γ < 7.5, then the dynamics of (1.2) is much simpler, as
illustrated in Figure 4.3 for γ = 7.

The three cases studied in [5] correspond to c = 0.47 and γ = 8, which are the
parameters used in Figure 4.3 (b). We are in a position to discuss these cases in
more detail. Lasota distinguished three situations:

1. Normal conditions in blood cell production are assumed to correspond to
small values of σ (σ = 0.1 in [5]). In this case, the number of blood cells
tends to remain constant, but the organism dies if the number of cells is too
small. This situation corresponds to the case when (1.2) has three equilibria
0 < q < p, and 0 and p are asymptotically stable. In this example, this occurs
for σ ∈ (0, σ1), where σ1 ≈ 0.331 is the value at which p loses its asymptotic
stability after a period-doubling bifurcation.

2. Intermediate values of σ would lead to a (non-severe) disease. For σ = 0.4,
Lasota observed a 2-periodic attractor, explaining some oscillations in the
number of blood cells that are typical of such diseases. The 2-periodic attrac-
tor corresponds to σ in the interval (σ1, σ2) ≈ (0.331, 0.651).

An interesting remark of Lasota is that the ill system is able to adapt to
a larger destruction rate, because the average value of the 2-periodic orbit
for σ = 0.4 (about 13.1) is not much worse than the value of the attracting
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positive equilibrium (about 15.4) for σ = 0.1. Actually, we observe a hydra
effect, characterized by the fact that the average population can even increase
as σ increases. For example, the average is 13.05 for σ = 0.33, and 13.074 for
σ = 0.5 (see the thick red line in Figure 4.3 (b)).

3. Larger values of σ in Lasota’s example lead to chaotic behavior. The typical
route of period-doubling bifurcations to chaos is observed in Figure 4.3 (b), (c).
Lasota used the value σ = 0.8, for which a 3-periodic orbit can be found, and
he reported a bistability scenario: solutions starting from an invariant interval
[A,B] converge to the chaotic attractor, while solutions starting at an initial
point x0 ∈ (0, A) converge to zero. However, he did not mention that the
basins of attraction of these two attractors collide at a larger value σ ≈ 0.87,
leading the population of cells to essential extinction.

One of the main conclusions of Lasota’s example is that increasing σ is desta-
bilizing. However, this is not always the case: our results show that a bubbling
phenomenon is possible. For example, in Figure 4.2 we observe that the larger
positive equilibrium p is asymptotically stable for σ = 0.9 but unstable for σ = 0.7.
Figure 4.3 (c) shows that the chaotic behavior can also be reversed by moving σ to
a larger value. We refer the interested reader to [11] for further details and relevant
references on bubbling.

Another interesting aspect not covered by Lasota’s paper [5] is the influence of
parameter γ in the dynamics of (1.2). Although the meaning of this parameter
was not explained in [5], for a related model, Mitkowski [12] argued that γ can be
interpreted as the degree of disturbance from the normal response in the feedback
loop that regulates the production of cells in the bone marrow: when γ = 0, the
answer is correct, but when γ > 0, the response is inhibited and the greater is the
inhibition, the greater is the value of γ. For example, extinction is not possible for
γ < 1 (see Remark 3.2). For γ > 1, the dynamics strongly depend on the interaction
between σ and γ: while for small values of σ changes in γ do not affect the dynamics,
for larger values of σ there are extinction windows which can alternate with chaotic
attractors (see Figure 4.4).

To finish, we emphasize that equation (1.2) is also of interest in population
dynamics. When σ = 1, (1.2) is equivalent to the gamma stock-recruitment model
used in fisheries [13], and has been also used in other contexts such as cooperation
interactions in a group of individuals [2] and populations with Allee effects [4]. An
important feature of this model is its flexibility, allowing different forms of density
dependence (compensatory, overcompensatory, depensatory). For recent results and
discussions in this direction, see [7, 8, 9]. In this context, equation (1.2) is a relevant
generalization of the classical Ricker model.

On the one hand, the usual discrete-time models with Allee effects assume that
adults cannot survive the reproductive season [15], but this assumption is not real-
istic for many populations. The introduction of a positive adult survivorship rate
1 − σ (0 < σ < 1) increases the generality of the model and induces some new
dynamical phenomena in comparison with the classical gamma model. The most
relevant are hydra effects, period-doubling reversals (bubbling), multiple extinction
windows, and new mechanisms leading to essential extinction.

On the other hand, although the Ricker model with adult survivorship (corre-
sponding to (1.2) with γ = 1) has been considered before (see, e.g., [6, 11, 17] and
references therein), the introduction of parameter γ makes the model more flexible.
For example, Yakubu et al. showed that equation (1.2) with γ = 1 fits well the
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Atlantic cod fishery data, but the Pacific halibut data are best fitted with γ = 2.
For γ > 1, the recruitment function f(x) = (cx)γe−x combines both negative and
positive density dependence. The parameter γ represents the strength of cooper-
ation, and its influence on the stability and the size of the positive equilibria has
been studied in [8].

The above discussion highlights the importance of studying equation (1.2) in the
framework of population dynamics. In particular, for γ > 1, our analysis points out
the subtle interplay between adult survivorship rates and Allee effects.
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